Lecture 27

HW10 due 3am Nov 9 (Friday)
HW11 will be 3am Nov 13 (Tue) as usual

Midterm 2 grades posted today or tomorrow.
Class average ≈ 86\%.

Good!
A train accelerates with constant acceleration, \(a(t) = 4 \text{ ft/s}^2 \).

At time \(t = 0 \) it has velocity 100 ft/s.

How far does it go in 20 s?

Know:
- \(a(t) = 4 \)
- \(v(0) = 100 \)
- \(s(0) = 0 \)

Want: \(s(20) \).

\(d \) is antideriv of \(v(t) \)
\(v(t) \) is antideriv of \(a(t) \)

\(\implies v(t) = 4t + C \)

and \(v(0) = 100 \), so \(4(0) + C = 100 \)

\(C = 100 \)

so \(v(t) = 4t + 100 \)

then \(s(t) = 2t^2 + 100t + D \)

and \(s(0) = 0 \), so \(2(0)^2 + 100(0) + D = 0 \)

\(D = 0 \)

so \(s(t) = 2t^2 + 100t \)

\(s(20) = 2(20)^2 + 100(20) = 800 + 2000 = 2800 \text{ ft} \)

Remake

Every continuous function has an antiderivative.

But, e.g. the antiderivative of \(f(x) = e^{-x^2} \) cannot be written in terms of "elementary" functions (\(+, -, \div, \exp, \log, \ln, \sin, \cos, \tan, \arcsin, ... \)).

We give this antideriv a name, "error function" \(\text{erf}(x) \).
Areas

We all know areas of simple shapes:

\[
\text{rectangle} \quad A = \omega \cdot h
\]

How about more complicated shapes?

Let's try to calculate the area under the graph of \(y = f(x) \), over the x-axis, between \(x = a \) and \(x = b \).

Example: \(y = x^2 \).

Estimate the area of the region between \(y = f(x) \) and the x-axis and between \(x = 0 \) and \(x = 1 \).

Idea: approximate our region by a bunch of rectangles.

Total area of rectangles:

\[
\text{total area of rectangles} = \frac{1}{4} \left[\left(\frac{1}{4} \right)^2 + \left(\frac{2}{4} \right)^2 + \left(\frac{3}{4} \right)^2 + 1^2 \right]
\]

\[
= \frac{15}{32}
\]
This gives an overestimate of the area under \(y = x^2 \) from 0 to 1.
(Let the rectangles completely cover that area)

It is the "estimated area using \(4 \) rectangles and using the right endpoints of the intervals as sample points."

So, call it \(R_4 \).

Then \(R_4 = \frac{15}{32} \).

Ex. Estimate the same area, using \(5 \) rectangles and left endpoints as sample points.

Estimated area
\[
L_5 = \frac{1}{5} \left(0^2 + \left(\frac{1}{5} \right)^2 + \left(\frac{2}{5} \right)^2 + \left(\frac{3}{5} \right)^2 + \left(\frac{4}{5} \right)^2 \right) = \frac{30}{125}
\]
This is an underestimate of the actual area.