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1. Background and motivation

I work in di�erential topology, dynamics, and geometric group theory. More precisely, I study
discrete subgroups of Lie groups via studying geometric structures on manifolds. This approach
has its roots with Klein's Erlangen program, which �rst formally proposed the idea of studying
geometries by making use of their groups of symmetries. In this language, a geometry consists of
a model space together with a transitive group action, where the meaningful geometric notions are
those preserved by the group action. A manifold carries a geometric structure if its charts lie in the
model space, with transition maps coming from the group action. For example, each surface can be
endowed with exactly one of three homogeneous Riemannian geometries given by the uniformization
theorem � it is E2 if the surface has 0 Euler characteristic, S2 if the Euler characteristic is positive,
and H2 if it is negative. These surfaces can be realized as quotients of the model spaces by an action
of a discrete group in their group of symmetries. One of the achievements of the �eld is Perelman's
proof of Thurston's geometrization conjecture about classifying the geometric structures supported
by three-manifolds.

In the modern study of geometric structures on manifolds, and in my own research, we commonly
use tools such as Lie theory, projective and (pseudo-)Riemannian geometry, Higgs bundles, algebraic
geometry, and algebraic topology. The framework of higher-dimensional geometries provides a new
perspective on objects such as Hitchin representations and higher Teichmuller spaces, using tools
such as Anosov representations [Lab06], [GW12] and positive and maximal representations, to better
understand them.

My work mostly concerns a�ne geometry, a non-Riemannian geometry modeled on real a�ne
n-space An with the structure group of a�ne transformations Aff(n) = GLnRnRn . My main
contribution to date is in constructing new examples and deepening the understanding of proper
a�ne manifolds. I introduce a construction called higher strip deformations [�K22] to provide new
examples of free groups acting on An .

One of the motivating open problems in a�ne geometry is the Auslander conjecture [Aus64], an
a�ne analogue of Bieberbach's celebrated theorem stating that all complete Euclidean manifolds
have virtually abelian fundamental groups. It proposes that if Γ < Aff(n) is a discrete group acting
on An properly discontinuously and cocompactly, then Γ is virtually solvable. The Auslander
conjecture is known to be true for n ≤ 6, [FG83], [AMS12]. Some observations about a�ne actions
of free groups on A7 in my work could in the future relate to the Auslander conjecture in dimension
7, the next open case.

Margulis [Mar84], [Mar83] constructed the �rst examples of �nitely generated free groups Γ in
Aff(3) acting properly discontinuously on A3. The quotients Γ\A3, called Margulis space-times, are
non-compact complete a�ne manifolds with non-virtually solvable fundamental groups, answering
Milnor's [Mil77] question about the necessity of the cocompactness condition in the Auslander
conjecture. Drumm and Drumm-Goldman [Dru92], [DG99] showed that in fact there are many
Margulis space-times: any discrete free group in SO(2, 1) can be the linear part of a proper a�ne
action. Making use of the interplay between hyperbolic geometry and a�ne geometry in three
dimensions, Danciger, Gueritaud, and Kassel [DGK16b] took this further and, for a discrete free
group Γ < SO(2, 1), used strip deformations of the hyperbolic surface Γ\H2 to describe the cone of
proper a�ne actions. It is their approach that I generalize in my work.
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In higher dimensions, the known picture of the theory of a�ne actions is much more mysterious.
Abels, Margulis, and Soifer [AMS02] showed that in some sense, SO(2n, 2n− 1) is a natural group
to �nd linear parts in. Smilga [Smi14] constructed fundamental domains in A2n,2n−1 for a family
of proper a�ne deformations of certain free groups in SO(2n, 2n− 1). Using di�erent methods, my
work elucidates a subtlety of Smilga's construction not present in dimension 3.

2. Past results

In my work so far I have constructed new examples of proper a�ne deformations of Fuchsian free
groups in SO(2n, 2n−1) for any n via a construction called a higher strip deformation, closely related
to in�nitesimal strips from [DGK16b]. My main result is a constructive proof of the following:

Theorem 1 ([�K22]). Let S = Γ\H2 be a noncompact convex cocompact surface and σ4n−1 :
PSL2R → SO(2n, 2n − 1) the irreducible representation. Then σ4n−1(Γ) admits an open cone of

cocycles determining proper a�ne actions on A2n,2n−1 .

The proper actions in Theorem 1 are constructed directly from geometric data on the surface S.
The proof gives a concrete family of deformations to work with.

A strip system on S is the data of a collection of properly embedded arcs a on S, a point pi ∈ ai
for each arc ai ∈ a called the waist, angles θi ∈ [−π, π], and real numbers wi. We turn this data
into an a�ne deformation of σ4n−1(Γ) by explicitly describing the translation part of each γ ∈ Γ.

It is enough to describe a higher strip deformation along one arc a with waist p and angle θ,
as a general higher strip deformation is a linear combination of these. Let ã be the lift of a to
S̃ ∼= H2, and choose a basepoint x0 ∈ H2 \ ã. For each arc ãj ∈ ã, let ηj ∈ PSL2R be the unit-speed
translation whose invariant axis crosses ãj at the lift p̃j ∈ ãj of p and makes the angle θ with the
perpendicular to ãj . Let c be a path between x0 and γ · x0. The translation u(γ) we associate to
σ4n−1(γ) is the sum of (appropriately normed and oriented) eigenvalue 1 eigenvectors of σ4n−1(ηj)
associated to each ãj that c crosses. This is illustrated in Figure 1.
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Figure 1. An illustration of a lift of an arc that the curve c
crosses three times. In this case, the translation u(γ) associated
to γ would be x0(σ4n−1(η1)) + x0(σ4n−1(η2)) + x0(σ4n−1(η3)),
where x0(A) denotes the appropriately scaled and oriented eigen-
value 1 eigenvector of A, also called the neutral vector. The
construction depends on the choice of basepoint x0 up to conju-
gation, and does not depend on the choice of path c.

In the case of n = 1, we recover in�nitesimal strip deformations from [DGK16b] by choosing all
angles θi to be 0, and in�nitesimal earthquakes by choosing the angles θi to be ±π
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The tool for studying a�ne deformations of subgroups Γ in SO(2n, 2n − 1) is the Margulis in-

variant. Given a Γ-cocycle u : Γ→ R2n,2n−1, it is a class function αu : Γ→ R, recording the signed
translation distance along an invariant axis of each γ ∈ Γ. The opposite-sign lemma in [Mar84],
[Mar83] states that as soon as there exist elements γ, η ∈ Γ so that αu(γ)αu(η) ≤ 0, the a�ne action
determined by u is not proper. The invariant was later extended to a di�use version de�ned on
geodesic currents by Labourie [Lab01], and used in [GLM04] by Goldman, Labourie, and Margulis
to show that an a�ne action with Fuchsian linear part is proper exactly when the di�use Margulis
invariant only takes positive (or only negative) values. These results were generalized to the case of
Anosov linear part by Ghosh and Treib in [GT22].

It is possible to directly compute the Margulis invariant of a higher strip deformation by summing
up contributions to αu(γ) corresponding to each intersection between a and (the geodesic curve
representing) γ. This contribution depends only on the relative positions of the axis of γ and the



axis of ηj , and can be expressed as a rational function in terms of the cross-ratio t of their endpoints.
The rational function in question is a hypergeometric function with one simple pole and 2n−1 simple
zeros. A sketch of the behavior of the function is described in Figure 2.

For n = 1, any choice of waists for a �lling arc system with choice of angles θi = 0 determines
a proper a�ne deformation, as the contribution upon each crossing to the Margulis invariant in
that case is positive for all possible arrangements of η and γ. However, for larger n, the situation
is more delicate. Even if we choose the angles θi to all be 0, we can achieve relative positions of η
and γ with both positive and negative contributions to the Margulis invariant � there are in total
2n relative positions where the sign of the Margulis invariant �ips. In the proof of Theorem 1, I
show that a choice of waist outside the convex core of S and a careful choice of angles θi still gives
an open family of proper a�ne deformations. These carefully constructed strip systems produce
proper a�ne deformations for each n.
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Figure 2. The Margulis invariant contribution upon one cross-
ing is 1
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tj . This rational function extends

to RP1, has 2n − 1 negative simple real zeros, and a pole at 1.
As n gets bigger, the largest modulus of a zero approaches in-
�nity. The picture on the left demonstrates regions of positivity
(blue) and negativity (red) of the contribution function if we �x
η (green) and the backwards endpoint of γ (pink).

Choosing appropriate arcs and translations η recovers Smilga's construction from [Smi14] in
the Fuchsian case. The waists of such a strip system land inside the convex core of S, and are
therefore harder to analyze due to the sign-switching behavior of the Margulis invariant. Given a
dynamical contracting condition on the linear part not needed in the case of n = 1, Smilga constructs
fundamental domains for such actions. I construct concrete examples of a�ne deformations of Smilga
type where the dynamics condition is not satis�ed and whose Margulis invariants take both positive
and negative values, showing the necessity of restricting the linear part of deformations of Smilga
type. I write down a thinness condition on the geometry of the convex core of S that guarantees
properness of an action even when the waists are inside the convex core, providing an alternate
perspective on Smilga's contracting assumption. The Margulis invariant perspective also explains
why the dynamics condition is only needed for n > 1.

Note that by [Mes07], [DZ19, Lab22], Fuchsian surface groups cannot have proper a�ne defor-
mations. However, virtually free groups can. By considering strip systems that are equivariant with
respect to a �nite group action, it is possible to construct higher strip deformations of virtually free
groups, such as PSL2 Z ∼= Z /2 ?Z /3. For PSL2 Z there is only one strip system, which for n = 1, 2
realizes the (up to scaling and coboundaries) unique cocycle. The Margulis invariant can be de�ned
for parabolic elements, but the [GLM04] result only applies to groups with fully loxodromic linear
part and PSL2 Z contains parabolic elements; we cannot currently make concrete conclusions about
the properness of the action determined by this cocycle. However, all the Margulis invariants of
the loxodromic elements are uniformly positive, leading us to conjecture that all nontrivial a�ne
deformations of σ3(PSL2 Z) and σ7(PSL2 Z) are proper. If we open up the cusp of the modular sur-
face PSL2 Z \H2, deforming its fundamental group to one with only loxodromic elements, we obtain
proper actions of Z /2 ? Z /3 on A2,1 and A4,3 . If we deform even further, making the convex core
of (Z /2 ?Z /3)\H2 thin enough, we can construct proper a�ne actions on any A2n,2n−1 . Note that
for n = 1, 2, all choices of cocycle will in fact give proper a�ne actions, as the group cohomologies
H1(PSL2 Z,R3) and H1(PSL2 Z,R7) are both one-dimensional.



3. Work in progress and near-future goals

3.1. Positive representations. In joint work with Jean-Philippe Burelle, we construct proper
a�ne deformations of positive representations of free groups in SO(2n, 2n−1), as well as fundamental
domains for these actions. We cone o� polyhedral fundamental domains for actions of free groups
in SO(n, n − 1) on spheres and projective spaces from [BT22]. These can be de�ned by using a
cyclical order on the space of oriented �ags F+(R2n,2n−1) in R2n,2n−1, giving Schottky domains for
positive free groups acting on S4n−2. By appropriately coning them o� and translating them in a�ne
space, we obtain crooked domains in A2n,2n−1, bounded by crooked hyperplanes, higher-dimensional
versions of Drumm's crooked planes. We use them in a similar way to their use in three dimensions
as in [Dru92],[DG99], [DGK16b].

IfH ⊂ A2n,2n−1 is a crooked hyperplane bounding a crooked half-spaceH+, we can identify a two-
dimensional stem quadrant of directions in H with the property that H+ +v ⊆ H+ for each v in the
stem quadrant. Constructing Schottky domains for positive free groups in SO(2n, 2n− 1) gives us
instructions for constructing a collection of crooked hyperplanes. In turn, their stem quadrants allow
us to identify allowable a�ne deformations. Translated crooked half-spaces determine fundamental
domains for an a�ne action. Observing that an allowable a�ne deformation has uniformly positive
Margulis invariants allows us to conclude that the action is proper on A2n,2n−1, and therefore the
crooked domains tile all of A2n,2n−1, yielding a complete a�ne manifold. This shows

Theorem 2 (in progress). Let Γ < SO(2n, 2n−1) be a positive free group containing only loxodromic

elements. Then the allowable a�ne deformations of Γ determine proper a�ne actions on A2n,2n−1,
and the crooked half-spaces are fundamental domains for these actions.

This construction works for any loxodromic positive representation of a free group in SO(2n, 2n−
1), with no further restrictions on the linear part, giving a large family of examples. It also pro-
vides fundamental domains for the actions, thus determining the topology of the quotient, making
questions about its geometry more tractable.

For the Fuchsian case, we can view a�ne deformations coming from this stem quadrant construc-
tion as limits of higher strip deformations: given an arc a on a surface S, we can use the limit map
∂H2 → F+(R2n,2n−1) to construct a crooked hyperplane Ha in A2n,2n−1. If we let waists on a limit
to the boundary, the translational parts associated to a limit to directions in the stem quadrant of
Ha. Further, for n = 1, in�nitesimal strip deformations from [DGK16b] are a special example of
these.

3.2. Actions with parabolics. As touched upon at the end of Section 2, the Margulis invariant
only characterizes properness when the linear part of Γ < SO(2n, 2n − 1) n R2n,2n−1 consists of
loxodromic elements. In three dimensions, there are versions of the Margulis invariant for parabolics,
see for instance [CD05], and [DGK] describe the cone of all proper actions for a discrete free group
in SO(2, 1), even in the presence of parabolics. My goal is to extend the properness criterion
from [GLM04] and [GT22] to discrete subgroups in SO(2n, 2n−1), potentially containing parabolic
elements.

Theorem 3 (in progress). Let Γ be a discrete subgroup of PSL2R and u : Γ→ R2n,2n−1 a σ4n−1(Γ)-
cocycle. Then the action of (Γ, u) on A2n,2n−1 is proper exactly when the normed Margulis invariant

is positive and bounded away from 0 for all loxodromic elements of Γ and takes the value ∞ on

parabolic elements.

One reason that the same methods present in [GLM04] do not work for Fuchsian free groups
with parabolics is that the methods in [GLM04] rely on the compactness of the space of geodesic
currents on the surface S, which is no longer compact when S is not convex cocompact. In the
Fuchsian case of Theorem 3, I circumvent this by taking a more direct and computational approach



in approximating a probability measure with closed curves on S, instead of relying on abstract
convergence properties.

The situation away from the Fuchsian representations is at the moment less clear. I believe
it would be possible to combine two di�erent generalizations of Anosov representation. [GT22]
introduce the notion of an a�ne Anosov representation, generalizing the results of [GLM04] to
groups with Anosov linear part. In [CZZ22, KL18, Zhu21], the notion of cusped or relative Anosov
representations is explored. Marrying these two approaches might lead to a robust notion of cusped
Margulis invariants, allowing us to develop an analogue of the [GLM04] properness criterion.

Proving Theorem 3 would allow us to construct new examples of complete a�ne manifolds,
and would let us further explore a�ne actions of PSL2 Z . Extending it to non-Fuchsian linear parts
would also make exploring deformations of positive representations with parabolics from Section 3.1
more tractable. More broadly, many of the results about Margulis space-times in higher dimensions
that are currently only known for representations with Anosov linear parts would likely generalize
to representations with cusped Anosov linear parts.

4. Further questions and the indeterminate future

4.1. Shape of the cone of proper actions. Given a linear part Γ < SO(2n, 2n−1), the Γ-cocycles
determining proper a�ne actions form a convex cone in H1(Γ,R2n,2n−1). For n = 1, the cone can
be described in terms of the arc complex of the surface S = Γ\H2, as in [CDG09], [DGK16b]. It is
also the set of all cocycles u such that the normed Margulis invariant is uniformly positive on all γ
represented by simple closed curves on S.

In higher dimensions, the picture is more elusive. The simple closed curves no longer su�ce,
which we can demonstrate with explicit examples of a three-holed sphere group in SO(6, 5) and a
higher strip deformation where the three cu� curves � the only simple closed curves on a three-
holed sphere � all have positive Margulis invariants, but some other non-simple curve has a negative
Margulis invariant. The greater dependence of the properness of the action on the geometry of the
surface we started o� with, as in the discussion of deformations of Smilga type in Section 2, further
suggests that describing the cone of proper cocycles might be more subtle in higher dimensions,
and could, even in the Fuchsian case, depend on more than just the topological type of S. It is
nonetheless sensible to ask:

Question 4. Let Γ be a Fuchsian free group in SO(2n, 2n− 1). Is there a natural proper subset of
geodesic currents Pn on S such that αu(γ) > 0 for each γ ∈ Pn means that u determines a proper
a�ne action on A2n,2n−1?

Question 5. Is there a natural parametrization of the cone of proper a�ne deformations depending
on topological and geometric data on S?

I am running computations in Mathematica in order to �nd some patterns in small examples, such
as Fuchsian three-holed sphere groups acting on A4,3. In the Fuchsian dimension 7 case in particular,
there might be a way to leverage the fact that the irreducible representation PSL2R → PSL7R
factors through the 7-dimensional representation of the exceptional Lie group G2.

In general, I expect Fock-Goncharov coordinates [FG03], [BD17] could be of use in studying po-
tential parametrizations. Some natural candidates for the set Pn would be curves that lift to simple
curves in some �nite-sheeted cover, with the number of sheets bounded by a function depending on
n.

4.2. Fundamental domains. Many methods of constructing complete a�ne manifolds rely on con-
structing fundamental domains for group actions on Ad, such as [Smi14], [Dru92], [DG99], [DGK16b],
as well as my joint work in progress with Burelle as sketched in Section 3.1. Special cases of higher
strip deformations coincide with a�ne deformations of Smilga type, and therefore his construction



of tennis ball fundamental domains � domains obtained by taking conical neighborhoods of disjoint
half-planes in the sphere � from [Smi14] works. Limits of higher strip deformations give us the
allowable a�ne deformations from Section 3.1, which also come with fundamental domains.

However, neither the Smilga construction nor the crooked half-spaces construction work for a
general proper higher strip deformation; the crooked half-spaces seem to be too rigid, with their
stem quadrants too small, and Smilga's tennis ball domains rely too much on the dynamics of the
linear part to work for a general higher strip deformation. The combinatorial data of a strip system
still appears simple enough that some adaptation of crooked domains seems plausible.

4.3. Higher strip deformations and a�ne actions with linear part away from the Fuch-

sian locus. In upcoming work with Burelle as discussed is Section 3.1, we can construct proper
a�ne deformations of free groups with any loxodromic positive linear part, and they are in a sense
limits of higher strip deformations when the linear part is also Fuchsian. A downside of our con-
struction is that we do not get an open cone of proper a�ne deformations from a choice of arcs.
Indeed, for every arc there is only a two-dimensional cone of admissible directions associated to it
in every dimension.

By carefully studying the behavior of the limit map of the linear part, it should be possible
to extend the de�nition of a higher strip deformation from the Fuchsian case to the more general
Anosov linear part case in a way that gives us an open cone of a�ne deformations whose properness
is easy to check. It is also possible that a good understanding of the setting with more general linear
part would rid us of any unnecessary structure muddying the waters in the Fuchsian case, making
it easier to answer Questions 4 and 5.

4.4. Connections to negative curvature. In three dimensions, in�nitesimal strip deformations
are derivatives along paths in the Teichmuller space determined by strip deformations on surfaces.
Another way to view Margulis space-times is as a rescaled version of AdS3-manifolds via geomet-
ric transitions, making Margulis spacetimes into in�nitesimal versions of AdS3-manifolds, as in
[DGK16a]. Using these guidelines, it is natural to ask

Question 6. What is the non-in�nitesimal equivalent of higher strip deformations? Is there a
natural construction of H2n,2n−1-manifolds corresponding to higher strip deformations that can be
described using a strip system? What is the relationship between properness of an a�ne action and
properness of an action on H2n,2n−1?

A direct computation should be feasible, but other tools that might be useful are Fock-Goncharov
coordinates on SO(2n, 2n). The hope is that a�ne deformations in SO(2n, 2n−1) would correspond
nicely to some form of bending in SO(2n, 2n) or its symmetric space H2n,2n−1. A concrete connection
between higher-dimensional Margulis spacetimes andH2n,2n−1-manifolds would be useful in studying
the questions about the cone of proper actions from Section 4.1, as we could study both a�ne and
H2n,2n−1-manifolds.

4.5. Connections to the Auslander conjecture. The Auslander conjecture, posing that fun-
damental groups of closed complete a�ne manifolds are virtually solvable, is known for manifolds
of dimension at most 6. The next natural case to look at is manifolds with linear holonomy in the
7-dimensional representation of G2. Having a good understanding of di�erent ways for free groups
with G2 linear part to act on A7 is a �rst step to untangling the Auslander conjecture in this case.
Higher strip deformations, as well as allowable a�ne deformations from Section 3.1, give a concrete
family of examples to work with. The case of higher strip deformations for PSL2 Z in dimension 7
suggests that there is some special behavior or extra symmetry of strip deformations in dimension
7 not present in higher dimensions which might restrict possible ways for a free group with linear
part in SO(4, 3) or G2 to act properly on a�ne 7-space, suggesting there is not �enough room" for
�tting together enough free groups to make an a�ne crystallographic group in dimension 7.
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