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ABSTRACT

It is shown that conventional symplectic algorithms do not, in general, retain their symplectic
character when the symplectic two—form is non—constant. More importantly, it is shown that implicit
symplectic schemes are not suitable for the numerical integration of stiff systems possessing high
frequency contents. The presence of multiple roots on the unit circle at infinite sampling frequencies
leads, inevitably, to eventual blow-up of the scheme if the high frequencies are not resolved. In
sharp contrast with symplectic integrators, algorithms designed to simultaneously preserve the total
momentum and the energy of the system are shown to be free from these shortcomings. Specifically,
for stiff systems, the unresolved high-frequencies are shown to be controlled by property of exact
energy conservation without resorting to high-frequency numerical dissipation. A general technique
for the construction of exact energy—momentum algorithms is described within the context of the
N-body problem.

1. INTRODUCTION AND MOTIVATION.

In recent years, algorithms for Hamiltonian systems that preserve exactly the
symplectic character of the Hamiltonian flow have attracted considerable attention
in the numerical analysis and geometric mechanics literature; see e.g., the articles
of Scovel [1991] and Sanz Serna [1992] for a fairly up to date review of this expo-
nentially growing subject. First introduced in the pioneering work of DeVogelare
[1956], symplectic methods are geometrically appealing, but their significance from
the standpoint of improved numerical performance remains unsettled. Sharp phase
portraits obtained in long numerical simulations are often presented as numerical
evidence of improved performance, see e.g., Chanell & Scovel [1990]. However, from
the standpoint of (energy) stability in the nonlinear regime, we show by numerical
example that symplectic methods can produce disappointing results.

While symplectic algorithms have received much attention in the literature,
most of the existing numerical analysis results are implicitly restricted to the case in
which the phase space has a symplectic structure induced by a constant symplectic
matrix. Thisis the case, for example, when the phase space is either linear or a general
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manifold parametrized by local canonical coordinates. As will be shown below, the
symplectic matrix for a Hamiltonian system need not be constant. For instance, this
can occur when the phase space is a general manifold and non-canonical coordinates
are used. Given a Hamiltonian system with a nonconstant symplectic matrix, what
can we say about conventional ‘symplectic’ integrators?

The objectives of this contribution are to provide an assessment of the actual
performance exhibited by symplectic integrators for simple Hamiltonian systems and
to examine the significance of the symplectic condition when the phase space has a
symplectic structure induced by a nonconstant symplectic matrix i.e., when the phase
space is no longer linear. More specifically, consider a class of algorithms known to be
symplectic for Hamiltonian systems on linear spaces. Concrete examples are provided
by any of the symplectic members within the class of implicit Runge-Kutta methods,
characterized by the condition M = 0 derived in Lasagni [1988] and Sanz-Serna
[1988]. (Here M is the matrix defined in terms of of Butcher’s Tableau notation as
M = BA+ ATB — bb"'; sce e.g., Hairer & Wanner [1991] for an explanation of this
terminology). The implicit mid-point rule is the classical example whose symplectic
character was first noted in Feng Kan [1986]. Concerning these algorithms we ask
the following three questions:

a. Do symplectic algorithms retain the symplectic property within the more gen-
eral context of Hamiltonian systems on manifolds with non-constant symplectic
two—form?

b. Do symplectic integrators preserve the Hamiltonian? More importantly, do
unconditionally (algebraically) stable symplectic Runge-Kutta methods remain
stable regardless of the step-size?

c. Are implicit symplectic integrators suitable for the simulation of stiff systems?
(i.e., systems of ODE’s possessing a wide spectrum of frequency contents).

Surprisingly, the answer to these three questions is in general negative. For instance,
for a simple model problem the mid-point rule fails to be symplectic when the dy-
namics are formulated with a nonconstant symplectic matrix. Moreover, symplectic
schemes cannot in general conserve the Hamiltonian, unless the system is completely
integrable (Ge & Marsden [1989]). Finally, even though the mid—point rule is an alge-
braically stable Runge-Kutta method, we show algorithms of this type will in general
exhibit a severe blow—up for stiff systems. Similar numerical results are observed
for symplectic algorithms applied to Galerkin discretizations of infinite-dimensional,
non-integrable, Hamiltonian systems (Simo & Tarnow [1992a,b,c]).

An alternative to symplectic integrators are the exact energy-momentum con-
serving algorithms which, by design, preserve the constants of motion. Specific ex-
amples are the technique of Bayliss & Isaacson [1975], the schemes of LaBudde &
Greenspan [1976a,b], the integrators for the rotation group of Austin et al [1992] and
Simo & Wong [1991], and the energy-momentum method for infinite dimensional
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systems of Simo & Tarnow [1992a,b]. Concerning this class of methods we ask the
following questions:

d. Is it always possible to construct exact energy-momentum conserving algo-
rithms regardless of the integrability of the Hamiltonian system?

e. Does this task become trivial when working on optimal charts designed to
minimize issues such as enforcement of constraints?

f. Does preservation of the Hamiltonian result in enhanced numerical stability?

The answer to the first question is affirmative in general with the construction first
proposed in Simo & Tarnow [1992a,b] for infinite dimensional systems and the ap-
proach described below being specific examples. Constructions of this type are totally
unrelated to any issues pertaining to the integrability of the system. The answer to
the second question is, in general, negative. For instance, if we consider the spherical
pendulum under constant gravitational loading, the mid-point rule is not symplectic
on the unreduced phase space, but conserves energy and momentum since energy
and momentum are quadratic constraints on this space. By contrast, in the reduced
setting the mid-point rule is symplectic, but no longer preserves energy since the
energy constraint ceases to be quadratic. Finally, the answer to the third question
is also affirmative. In the simulations of Simo & Tarnow [1992a,b], as well as in the
ones described herein, energy-momentum methods are shown to be stable for time
steps at which symplectic schemes known to be unconditionally stable in the linear
regime experience a dramatic blow-up.

The preceding observations suggest that even for completely integrable systems,
exemplified by the classical problems considered below, the construction of algorithms
that simultaneously preserve the constants of motion as well as the symplectic char-
acter of the flow is far from trivial.

2. DYNAMICS OF THE SPHERICAL PENDULUM.

To motivate our subsequent developments consider the simplest, possibly the
oldest, model of a nonlinear Hamiltonian dynamical system: the spherical pendulum.
Two reasons for this choice are

i. The system is completely integrable for the case of a force field with constant di-
rection, a situation considered below. This allows a direct comparison between
the algorithmic flow and the exact flow.

ii. The configuration space is truly a differentiable manifold: the unit sphere. This
brings into the problem significant features not present in Hamiltonian systems
on linear spaces.

This classical problem provides, therefore, a tractable framework within which the
questions raised above can be addressed explicitly. If key features fail in a setting
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FIGURE 1. The motion of a (spherical) pendulum in the ordi-
nary Euclidean space under a force field.

as simple as the one provided by this model problem, it is unlikely that matters will
improve in more complicated situations arising in large-scale simulations.

2.1. Configuration Manifold and Phase Space.

The mechanical system of interest consists of a rigid link of unit length L = 1,
with one end fixed and the other end attached to a point mass m > 0. We choose
the fixed end O as the origin of an inertial frame identified with the standard basis
in R*. The possible configurations of the system are thus defined by the vector ¢,

directed from the origin O to the mass m, and subject to the constraint ||g|| = 1.
The configuration space ) for this mechanical system is, therefore, the manifold
Q:={qeR’: hg):=[lqll - 1] =0}, (1)

which can be identified with the unit sphere S? C R®. Observe that dim[Q] = 2.
Consider a motion of the system t — q(f) € @, with velocity ¢(¢) and momenta
defined via the Legendre transformation p(t) := m¢(t). The constraint h(q) = 0
implies that p is also constrained by the condition p - ¢ = 0, since

, d
p-qzmq-qzémal\q!\zzo- (2)

One way to satisfy the above constraints is to parametrize the configuration manifold
S? by a collection of local coordinate patches y: D — S? from open sets D of R? into
S? C R® and then formulate the dynamics in terms of the generalized configuration
coordinates in D and their conjugate momenta. If the local coordinates on P are
canonical, then Hamilton’s equations take their familiar canonical form.

While the use of generalized configuration coordinates results in exact enforce-
ment of the constraints, the use of canonical variables can be troublesome. For this
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reason it may be more convenient to use non-canonical coordinates on P. Since the
configuration space is embedded in R*, we consider using the natural coordinates of
R® as coordinates on Q. In this case, the coordinates ¢* and their conjugate mo-
menta pa (A = 1,2,3) are not independent and must satisfy the constraints in (1)
and (2). The task now is how to build these constraints into the dynamics. That is,
how can we formulate the dynamics such that the constraints are satisfied. To this
end, consider the following alternative choice for the generalized momenta. Let w
denote the angular velocity of the pendulum in the inertial frame. Then

g=wxgq (3)

and, since rotations about the pendulum axis do not enter the dynamics, we have w
constrained by the relation w - ¢ = 0. By definition, the angular momentum of the
point mass about the origin is @ := ¢ x p. Using (3), along with the triple cross
product identity and the constraint w - ¢ = 0, we conclude that

mi=qxp=ILw with I,:=mL*> (L=1). (4)

Taking 7 as the generalized momenta the phase space P for the system can be
identified with the set

P:={z=(¢g,w): ¢ € Qandw-q=0}. (5)

Clearly P is a differentiable manifold with dim[P] = 4, and not a linear space. The
equations of motion and a symplectic structure on P are defined below.

2.2. Hamilton’s Equations: Symplectic Form on P.

Suppose that the pendulum is placed in a force field with potential V : ) — R.
Using equation (3) along with (4) and the balance of angular momentum we obtain
the equations of motion

] = —q X7/ [
a=maxmih o, (6a)
w=—qxVV(q)
This system of first order equations, together with the initial data
qli=o = qo and m|—¢ = o, (6b)

where zg = (qo, ®0) € P, completely define the initial value problem for the motion
of the pendulum.

Equations (6a) define a Hamiltonian system on the phase space P as follows.
Define the Hamiltonian function H : P — R as

H(z)i= 5 |7l + V(a) o
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and consider a two-form {2 : TP x TP — R given by the expression

0(821,623) = 62T J(q) 625, J(q) = [_Oq _0‘1] , (8a)
where @ stands for the skew-symmetric matrix with axial vector ¢. Clearly, £2(,-)
is a skew-symmetric bilinear form since JT(q) = —J(¢). Using the triple-product
identity, expression (8a) is equivalent to

26z1,029) 1= —q - (673 X bgq1 — O™ X 0q2). (8b)

In view of (7) and (8), we conclude by inspection that equations (6a) can be written
in Hamiltonian form as

z=J(q)VH(z) in [0,T]. (9)
In sharp contrast with the situation found when P is a linear space, we note that
for the spherical pendulum the symplectic two-form defined by either (8a) or (8b) is
configuration dependent. Here the tangent space T, P at z € P is the subspace

T.P:={6z=(6q,6m): 6q-q =0 and éw-q =0}, (10)

which is obtained by enforcing on the admissible variations the linearized version of
the constraints on P as defined by (5).

By taking the dot product of (6a); 2 with ¢ one immediately concludes that
the flow generated by these equations automatically satisfies the constraint ||q|| = 1
together with & - ¢ = 0, and hence lies in P.

Let F' : P x[0,T] — P denote the flow generated by (9), assumed to be globally
defined for simplicity. Hence, for any z¢ € P the curve [0,T] 5 t +— 2z(t) = F(z;t) €
P is a solution of (9) with initial condition zg. To verify the symplectic character
of Fy : P — P we proceed as follows. Let 6z,(f) (a = 1,2) denote two arbitrary
elements of T,, P which evolve under the tangent map DFi(zo) : T.,,P — T., P i.e.,
0z4(t) = DFy(z0)0z0 for some fixed, but arbitrary tangent vectors 6zg,. That the
two-form {2 : TP x TP — R is conserved along the flow can be seen by considering
the evolution of £2(t) = §z1(t)TJ(q(t))dz2(t) as follows. Taking the time derivative
of £2(t) along the flow gives

Q(t) = 6210(¢)625 + 62T I(q)625 + 621 I(q)82, (11)
Consider the first term in (11). A simple calculation using the fact that 6z, € T, P
shows that J(q)dz2 lies in Ker[J(q)] i.e., J(q)[J(q)d22] = 0. Observing that T, P+ =

Ker[J(q)] we conclude that the first term vanishes since 6z; € T, P. Using (9) the
evolution of the tangent vectors is given by

624 = J(6qa) VH(2) + J(q) VP H(2)0z4 (a=1,2) (12)

Substituting (12) into the last two terms in (11) gives after some straight forward
manipulation

2(t) = 0. (13)
The above result, along with the fact that £2(-,-) is non-degenerate on TP, verifies
that the flow generated by (9) is a symplectic map on P for each ¢ > 0.
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Remarks. 2.1.

1. One can view ¢ = (¢', ¢*,¢*) as providing a global chart for the unit sphere
S? much in the same way as the group of unit quaternions provides a global chart
for the rotation group SO(3).

2. It is convenient to regard equations (9) as generating a Hamiltonian flow
in R® x R®, which is constrained by the conditions ||q|| = 1 and & -q = 0 that
project the dynamics onto P. The structure of the symplectic matrix J(q) agrees
with this approach. Viewed as a 3 x 3 real matrix J(q) has the two-dimensional null
space Ker[J(q)] := span](¢,0), (0, q)], whose orthogonal complement is precisely T, P
defined by (10). It follows that J(gq) restricted to T, P has rank four, is invertible and
satisfies the orthogonality condition J(q)[J(q)]T = 1 since, for any q € S%, we have

—[gqla=|q|’a—(g-a)g=a VYacR’ a-q=0. (14)

3. In a gravitational field with constant direction 7 (||7|| = 1) and variable
intensity defined by the function ¢ : R — R, the potential energy and the equation of
motion (6a)y reduce to

Vig)=—g(v-q) and 7 =g'(v-q)q %7, (15)

respectively. The invariance of the Hamiltonian under the circle group S* of rotations
about ~ yields the additional conserved quantity

Jy=m-y since J,=7-v=0, (16)

as a result of (15). The momentum map J. : P — R gives the angular momentum
about the gravity axis. []

Before proceeding with the analysis of algorithmic approximations on P we
first introduce the notion of symplectic reduction which will be used in the following
sections to illustrate a number of algorithmic issues.

2.3. The Case of a Gravitational Field: Reduction.

Consider the dynamics of the pendulum in a gravitational field. Due to the
presence of the conserved quantity J, the dynamics may be formulated on a reduced
phase space P as follows. Assume for simplicity that the initial position g, the initial
momentum py normal to gg, and the gravity axis « all lie in a plane with unit normal
e,. It then follows that

To = o X Pop = o€z and J,y:‘)/'ﬂ'ozo, (17)

where 19 = ||po||. The presence of two conserved quantities, the Hamiltonian H and
the angular momentum J., about the gravitational axis, yields a reduced phase space
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P of dimension dim[ﬁ] = 4 — 2 = 2. Hence, the reduced dynamics is completely
integrable and takes place on the level set J;l(O) C P of zero angular momentum
modulo rotations about =, i.e.,

Q=Q/S'~S" and P=J7Y0)/S' ~ T2 (18)

The reduced configuration space is therefore the unit circle S (identified with the
real line modulo 27 angles), while the reduced phase space can be identified with the
torus T2

The reduced dynamics takes place in the plane normal to e; and is governed
by the following classical equations. Consider the basis {ey, e, e3} with e; = 4 and
e ;= ez X e3, and let ¥ denote the angle between ¢ and ez so that

q = [cos(V)es +sin(P)e;] and 7 = I 0 ey. (19)

Using (19); we have that ¢ x VV(q) = ¢'(cos(?)) sin(¥)es and Hamilton’s equations
(6) collapse to the system

19 = T / IO .
7= —¢g'(cos(?))sin(V) } 0,7], (20a)

subject to the initial conditions
19|t=0 = 190 and 7T|t:0 = To. (20[))

Setting £ = (¥, 7) € P, equations (20a) are Hamiltonian with reduced Hamiltonian
function H : P — R given by

I;T(ﬁ) = i 7 — g(cos(1))), (21)

relative to the canonical symplectic two-form on R?

6(521,522) =02 -3522 where J:= [_01 (1)] ) (22)

In fact, inspection of (20a) reveals that this system can be written as

z=JVH(%) in [0,T], (23)

in agreement with the abstract symplectic reduction theorem (see Abraham & Mars-
den [1978, page 347]). A result exploited in the analysis below is that the reduced
dynamaics 1s Hamiltonian relative to (22) if and only if the original dynamics 1s Hamil-
tonian relative to (8). That the reduced symplectic structure (22) happens to be
canonical is a specific feature of this elementary example (the symmetry group of
rotations about 7 is abelian) which does not carry over to the general case.
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3. ALGORITHMIC APPROXIMATIONS ON P.

The analysis below is aimed at illustrating the following points raised in the
introduction. First, algorithms known to be symplectic on linear spaces need not
retain this property on general manifolds. Second, symplectic algorithms need not,
and in general will not, conserve energy. We will illustrate these points by considering
a conventional mid-point approximation to the Hamiltonian flow generated by (9) and
showing that this scheme, well-known to be symplectic on linear spaces, no longer
retains the symplectic property for the problem at hand.

That ‘optimal’ charts do not necessarily render trivial the conservation of the
constants of motion will be illustrated below by reformulating the mid-point rule
directly on the reduced space P, with canonical symplectic structure defined by
(22). In this setting, this algorithm retains its symplectic character but the property
of exact energy conservation is lost since the Hamiltonian is no longer quadratic.
Conventional higher order symplectic Runge-Kutta methods will not improve on this
situation, the underlying reason being that the function cos(-) cannot be integrated
exactly regardless of the order of accuracy of the method.

Finally, we describe a symplectic scheme on the reduced phase space which
when lifted to the unreduced phase space by a reconstruction procedure yields a
symplectic scheme on P. This scheme, however, does not fall within the class of
conventional Runge-Kutta methods.

3.1. Mid-point Approximation on P.

Let [0,T] = UN_o[tn,tnt1] be a partition of the time interval of interest. Sup-
pose one is given initial data z, = (¢,,7,) € P at time t,, where 2z, stands for an
algorithmic approximation to z(t,), and consider the mid-point approximation

Zny1 — zn = AtJ(q, L )VH(z,11) (24a)

with z, 1 := (@41, 7pp 1), Where g, 1 = +(gn+qng1) and Tyl i= (T Tng1)
As mentioned above, this algorithm would be symplectic if P were a linear space (with
J therefore constant). In view of (7) and (8) the explicit form of (24a) is

Gnt1— qn = —Atq, 1 x w1/
T2 . (24b)

Tnt1 — TTn = —At qn—i—% X vv(qn—i—%)
This approximation possesses the following noteworthy feature.
Lemma 3.1. The algorithmic flow generated by (24) does in fact lie in the phase

space P, i.e., z, = (qn,7,) € P for n =1,2,--- N, if the initial data 2o = (qo, ™0)
1s 1 P.
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Proof. Assume that z, € P. Taking the dot product of (24b); with 9yl
yields

Tort  (@ni1 — @) = gl gns]” = llgnll*] = 0. (25)

which implies that q,41 € Q). Now observe that Tyl (gn+1 —qn) = 0 as a result of
(24b); and qnyt - (wpt1 — 7)) = 0 as a result of (24b),. Making use of the identity

Tndl* Gnt1 — T Gn = @yl (Fng1 — )

+ gl (@nt1 — qn) (26)

we conclude that 7,41 - ¢n41 = 0 since z, € P. Hence 2,41 € P as claimed. [

By setting Az := zp41— 2z, and 2,1 = 2, + %Az we can view (24a) as a non-
linear algebraic system in the unknown Az. Observe that Az lies in the orthogonal
complement kerJ‘[J(qn_i_%)] to the null space of J(‘In+%) given by

ker[J(g,y )] = spanf(g,1,0),(0.q,, 1)} (27)

The restriction of the matrix J(qn_i_%) to the solution space kerJ‘[J(qn_i_%)] is as dis-
cussed above non-singular and skew-symmetric. However, it is no longer orthogonal.
To see this, consider

_(/I\n—l—l(/in—l—l 0
J(qn l)[J(qn l)]T = 3 : - - (28)
t3 NE 0 _qn—l—%qn—l—%

and note that since 9yl ¢ @ it follows that an—i—% | # 1. Therefore, for any a such

that a-q,, 1 =0we have

~[@n1 1@ tla=llg, 1] a # a, (29)

It is precisely this lack of orthogonality in the mid-point approximation J(‘In—|—%)
that renders algorithm (24) non-symplectic, A direct verification of this result in-
volves computing the transition matrix Aa¢(2n, 2Zn4+1) of the linearized algorithmic
dynamics, i.e.,

6Zn+1 = AAt(znazn—l—l)(Szna (30)

and checking by a brute-force calculation the failure of the symplectic condition

[Ani(Zn, 2n4 )] I @nr1)Ane(Zn, Zn1) # J(gn). (31)
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Remarks. 3.1.
1. Observe that equation (24b); can be solved for q,41 explicitly to obtain

qnt1 = cay[Atw, 1 /Io] qn, (32)

where cay : R® — SO(3) is the Cayley transform given by the expression (see Simo,
Tarnow & Doblaré [1992])

2

cay[¥] = 1 + T Iiee n iHﬁHz

10+ 197 (33)

That cay[¥] is a proper orthogonal matrix can be verified by a direct computation.

2. In general, algorithm (24) does not conserve energy. Let K () := ||=||*/ I,
denote the kinetic energy. By taking the dot product of (24b),; with gl and using

(24b); we arrive at
K(7nt1) = K(mn) = —(qnt1— qn) - vv(qn—l—%)‘ (34)
Since H(z) = K(x) + V(q), the Hamiltonian is exactly conserved if and only if

V(‘In+1) - V(‘In) = (‘1n+1 - ‘In) ) vv(qn—i—%); (35)

an equality which holds in general only if V(q) is a quadratic form in q.

3. Consider a gravitational field with VV(q) := —¢'(q - v)~ (v = constant).
From the preceding remark we conclude that energy is generally not preserved unless
g(+) is at most quadratic. On the other hand, since

J(znt1) = Jy(zn) = (Fng1 —7n) -7 =0 (36)

algorithm (24) exactly conserves momentum. []

In summary, the preceding analysis shows that the classical mid-point rule does
not retain its symplectic character for the pendulum problem formulated on P and
is not energy-conserving in general. In the next section we verify this result by
applying the symplectic reduction theorem. There, however, we consider an even
simpler problem: the dynamics of the pendulum in a gravitational field.
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3.2. Algorithmic Reduction.

Since (24) is momentum preserving if the potential function is that of a gravi-
tational field, the discrete dynamics also drop to the reduced manifold P = T2, This
reduction can be carried out explicitly as follows.

As in the continuum problem, choose the basis {e;, ez, e3} with ey = =, the
initial data q¢ in the plane normal to e;, and 7y = mpes directed along e;. From the
algorithmic dynamics (24b) one easily concludes that q,, g,+1 and Qnil remain in
the plane normal to e and 7, Tt 1 and 7,4, are directed along e;. Set

Quer = [cos(D 1 Jes + sin(d,41 )] } (37)

qn = [cos(Vy,)es + sin(V, )eq]

and let J := J,,41 — 9, be the angle between ¢, and ¢,,+1. Now use elementary
trigonometric identities to conclude that

gty 1" = (1 + cos(9)] = cos*(39). (38)

Since gy, Qntls and ¢,4+1 are in the plane normal to =, gl and 7,41, equation
(24b); along with (38) and an elementary trigonometric identity give

Iy

At

1
Tt (@ % @ni1)/ |y 3 ]1* =2 3 tan(30) ex: (39)

o=

a relation which can be rewritten as

19n—|—1 — 1911 = At/il 7Tn—|—%/]—0 with Ry 1= 197/2 (40)

N tan( 1)

2

The reduction is completed by evaluating the right-hand-side of (24b); with the aid
of trigonometric identities. Setting 19n_|_% = %(19”4_1 + ¥,,) the reduced equations for
the algorithmic flow take the following form

19n—|—1_19n: At/ilﬂ'n l/[o
- } (41)

Tnt1 — Tn = —At k2 ¢' (K2 cos(ﬁn_i_%)) sin(ﬁn_i_%)

where ko (o = 1,2) are functions of (¥,,,J,41) defined in the present context as

(Vg1 —Ua)/2
K1 = 1 5
tan( 3 (Jns1 — Jn))

Ko 1= COS(%(§n+1 —Jn)). (42)

Observe that x; and xy so defined differ from unity by terms of order At?, i.e.,

KalDn,0ng1) = 1+ O(A#2) (a = 1,2).
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The foregoing analysis shows that algorithm (41) restricted by conditions (42)
is equivalent to the conventional mid-point rule (24) formulated on the unreduced
phase space P. Does this scheme, well-known to define a symplectic transformation
if P were linear, retain its symplectic character within the present context? By the
symplectic reduction theorem, the mid-point rule (24) formulated on P is symplectic
if and only if the reduced algorithm (41) subject to (42) is symplectic on P. The
following result, derived for arbitrary functions k4, shows that this is not the case.

Lemma 3.2. Algorithm (41) with x1 and k2 viewed as arbitrary functions on @ X @

subject to the consistency requirement o (9y,0n41) = 1+ O(A#?) (a = 1,2) is
symplectic if

T g and o2 22 (43)

where ¥; = 1,, and ¥y = J,,41.

Proof. Set g) 1 := g'(r2cos(?,; 1)) and let Ani(Zn, Zng1) denote the tran-
2

sition matrix of the linearized algorithmic dynamics, i.e.,
0Zn41 = Ani(Zn, Zny1) 0Z,. (44)

From (41) it follows that AvAt(ﬁn, Znt1) = Bl_lBo, where

At”1,27"n+L Atx
Bl = 1 - IO : o 2[01 5 (45@)
by 1
and A
1,17, 4 1 Atk
BO = 1 —I_ IO : 2[01 (466)
—by 1

Now recall that for a one degree of freedom system the symplectic condition reduces
to the requirement that the transition matrix be volume preserving. Consequently,

det | Ani(Zn, Znt1)| =1 <= det[By] = det[By]. (47)
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A straight forward computation then shows that (47) holds conditions (43) hold, as
claimed. [

In particular, for the functions defined by relations (42), a simple computation
reveals that x1 1 + #1,2 =0 but

/432’1 — /432’2 = sin(%(ﬁ,ﬂ_l — 19,1)) 7£ 0 (48)

Therefore, in view of the result in the preceding lemma, we conclude that the mid-
point rule formulated on the unreduced phase space P cannot be symplectic since the
algorithmic flow in the reduced phase space P is not symplectic. This result may be
extended to higher order ‘symplectic’ Runge-Kutta methods as the following sections
will show.

Remarks. 3.2.

1. If expressions (48) are replaced by the conditions k1 = k3 = 1, then al-
gorithm (41) reduces to the conventional mid-point rule formulated directly on the
reduced space P. When formulated directly on P, the midpoint rule retains its sym-
plectic character since this reduced space is equipped with the canonical symplectic
structure defined by (22).

2. Motivated by the structure of (41) we examine below this algorithm in
its own right and, following Simo, Tarnow & Wong [1992], regard Ko(Vn,Vn41) as
arbitrary functions on Q X Q no longer defined by (48) and to be determined by
enforcing energy conservation. [J

3.3. Symplectic and E-M Algorithms on P.

The preceding lemma does not rule out the construction, by a suitable choice
of functions k. obeying restrictions (43), of a symplectic and energy-momentum
conserving scheme within the class of algorithms (41). To explore this possibility, we
compute the change in kinetic energy within a time-step predicted by this class of
methods.

Multiplying (41); by Tl and using (41); one obtains the algorithmic identity
K2

Iz’(ﬁn+1) — I;’(ﬂ'n) = —— g +1 Sln(§n+%)[19n+1 — 1971] (49)

K1

Using elementary trigonometric identities, this expression can be rewritten as

- - K2 (Vnt1 —Vn)/2
Ix (ﬂ-n—i_l) a Ix (ﬂ-n) - KJ—lg;H—2 Sln(l(ﬁn—l—l - ﬁn))

X [cos(Vp41) — cos(Vy,)]. (50)
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Exact energy conservation requires

K(mng1) — K(mn) = —[V(Ung1) = V(0)), (51)

where V(¥) := —g(cos(?9)). Enforcement of this condition yields

K9 sin(%(ﬁ,ﬂ_l —Un)) 19(cos(Vpy1)) — g(cos(Vy))
K1 (Vg1 — V) cos(Vp41) — cos(Vy,)

[ 92 cos(9,,1.1)). (52)

Two gain insight into the nature of this result, consider the following situations:

i. Suppose that the function ¢(-) is at most linear. Then ¢'(-) is constant and
the term within brackets in (52) is unity. By setting

(1911—1—1 - 1971)/2
sin(%(ﬁ,ﬂ_l — 19,1))

and ko =1, (53)

K1 =

we obtain a symplectic and energy-momentum conserving algorithm since (53) sat-
isfies conditions (43).

ii. If ¢(-) is arbitrary, it is not possible in general to simultaneously satisfy the
energy condition (52) while obeying the symplectic restrictions (43). Furthermore,
the solution of (52) for kg is, at the very least, totally impractical. Nevertheless, an
energy-momentum conserving algorithm is easily obtained by retaining expression
(53); for k1 and using (52) in (41)2 to obtain

(Vg1 —Un)/2 } Tnt g
sin(%(ﬁ,ﬂ-l —5)) Iy
cos(Vp41)) — g(cos(Vy,))

cos(ﬁ;_l) — cos(V,) } Sln(ﬁn—i—%)

Ipst —Op = Al {

Tpt1 — Tn = —At {g(

This algorithm, however, is not symplectic.

In summary, the preceding analysis illustrates that, even in the completely in-
tegrable case, the construction of symplectic schemes that retain the property of
energy conservation is not a trivial matter. The same conclusion holds for higher
order accurate algorithms, such as the symplectic family of algebraically stable, im-
plicit Runge-Kutta methods. These algorithms will not in general conserve energy,
regardless of the accuracy order of the method, since the function ¢(-) is arbitrary.
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3.4. Reconstruction: Conserving Schemes on P.

To illustrate the structure of a symplectic algorithm formulated directly on
the unreduced phase space P, again within the simplest possible context, consider
the dynamics of a spherical pendulum in a gravitational field and the one-parameter
family of algorithms (41) with

R1 = /23(19”4_1 — 1911) and Ko = 1. (54)

Clearly, conditions (43) are satisfied so that these schemes are symplectic and contain
the specific choice (53) as a particular case. The result below shows that the one-
parameter family of algorithms on P given by

qn—i—% ﬂ-n—l—%
X
[y Iy
L/ q,+1
v (),
[y g2l

Qnt+1— qn = —KAL

Y

(55)

Tptl1 — Tp = — At

is obtained by lifting the reduced algorithmic dynamics (41) and (54) to the canonical
phase space.

Lemma 3.3. Consider a force field with potential V(q) = —g(~-¢q) and let J, := 7w -~

be the momentum map. The one-parameter family of symplectic algorithm on P,
defined by (41) and (54) is obtained via reduction of (55) defined on P to the level
set J1(0)/S, with

k(D) := k1(V) sin[%ﬁ]/[%ﬁ] where ¢ := 4,41 — Uy. (56)

The symplectic-momentum preserving scheme in (53) corresponds to & = 1.

Proof. The proof that equations (55) reduce to (41) in the presence of a
gravitational field employs the same calculation described in Section 3.2, with relation
(39) now replaced by

Iy qn X gquny1 21

= — ] l19
Tnty = = [4mes] = sin(59) ez (57a)
and (40) replaced by
1
=0
— = K 2 1 .
19n—|—1 1911 At/i{snl(%ﬁ }7?'”_1_5/[0 (57[))

Equating (57) to (41); one obtains (56). Similarly, equation (55)2 reduces to (41),
with k3(¥) = 1. O
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Remarks. 3.3.

1. It can be shown that the preceding result with k = 1 holds for the general
case, i.e., the algorithm (55) is symplectic for an arbitrary potential V(g). The follow-
ing interpretation illustrates the difficulties involved in the formulation of symplectic
algorithms when the phase space is a general manifold. Let

qn—l—%

qn—i—% = and Pn—i—% = I_ qn—i—% ®Qn—|—% 9 (58)

 gagz

and define Zn4l € P as the orthogonal projection of Z,11 onto P, ie.,

in—l—% ::(Qn—l—%?ﬁ-n—l—%) with ﬁ-n—l—% = Pn—l—%ﬂ-n—l—%' (59)

The symplectic and momentum preserving algorithm (55) (with £ = 1) can then be
written as

Zpn4+1l — Zp = AtJ((jn+%)VH(2n+%) (60)

It follows that the mid-point rule, a one-stage implicit Runge-Kutta method, retains
its symplectic character if the intermediate stage Znil 18 projected onto P via the
orthogonal projection (58). The generalization of this result to general manifolds
other than the unit sphere, although possible, leads to schemes with questionable
practical effectiveness.

2. Energy conservation, on the other hand, can be easily enforced on the
conventional midpoint rule approximation without upsetting conservation of the mo-
mentum map. For the problem at hand by defining (¢, gn+1) via the difference
quotient
(gnt+1—qn) - VV(gryy)

V(gn+1) — V(gn)

and omiting the scalings by an—i—% || in (55) one arrives at an energy-momentum con-
serving algorithm which, however, is no longer symplectic. ]

(61)

R(qn,qnt1) =

4. CONSERVING SCHEMES FOR STIFF ODE’s.

The ultimate justification for any numerical method lies in improved perfor-
mance. The objective of this section is to provide an assessment of the numerical
performance of symplectic and energy-momentum algorithms. To demonstrate that
the observed performance is generic, to be expected also for Hamiltonian systems
on linear phase spaces, we consider a classical problem: the dynamics of N particles
in R? subjected to an interaction potential. For this problem conventional Gauss
Runge-Kutta methods retain their symplectic character since the phase space is lin-
ear and the symplectic two-form is constant. The two objectives of this sections are
(1) Demonstrate the inherit lack of stability of implicit symplectic schemes for stiff
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problems, (2) Show that implicit energy-momentum methods are ideally suited for
stiff systems.

First, we briefly summarize the form taken by Hamilton’s equations. Next, we
consider two representative examples of both symplectic and energy-momentum con-
serving algorithms. Although these two schemes are identical for linear Hamiltonian
systems, the respective performance is dramatically different in the nonlinear regime.
The chosen symplectic scheme, the conventional mid-point rule, is algebraically sta-
ble (see Hairer & Wanner [1991]) and unconditionally A-stable in the linear regime
and, nevertheless, exhibits blow-up in finite time in the nonlinear regime. The reason
for this lack of stability is to be found in the lack of dissipation of symplectic schemes
and the presence of a double root for infinite sample frequencies. As a result, high
frequencies not resolved in the time discretization are ‘seen’ by the algorithm as infi-
nite sample frequencies leading inevitably to weak (polynomial) instability. In sharp
contrast with this result, we show that the energy-momentum conserving scheme
remains stable.

MomentumpP,
A Particle-to-particle interaction force
Massm; : /
'[V ()\IJ) )\IJ](qJ_qI)
Relative distanc
A=llarall
a,
Momentum],
Massm
a '
-

O

Inertial (fixed) frame

FIGURE 2. The motion of N-particles in the ordinary Euclidean
space subject to a particle-to-particle interaction potential.

4.1. The N-Particle Problem: Hamiltonian Structure.

Consider N particles each with mass my > 0, position vector ¢; and momentum
pr=mrqr, (I =1,2,--- N). The configuration and phase spaces are, therefore,

Q~R*™ and P=7T*Q=~R*" xR, (62)

We shall denote by z = (q,p) € P an arbitrary point in the phase space, and use
the notation

a=(q,,qv) €Q and p=(p1,---,pn) € R (63)
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The system so defined is subjected to an interaction potential depending only on
the relative distances between particles. A typical example is furnished by Newton’s
inverse square law. The Hamiltonian H: P — R for the system at hand is separable,

of the form H(z) = K(p)+ V(q), with

N N-—-1 N
K(p):=) ym;'llpdll’, Via S V. (64)
I=1 I=1 J=I1+1
where A7 = Ajr := ||gqs — qr]| is the relative distance between particle m; and

particle m j. Observe that the potential function V:R - Ris completely arbitrary.
The phase space P is equipped with the (constant) canonical symplectic two-form

821, 822) = 621 - J6z5  where J::[_Ol (1)] (65)

The motion of the system is governed by Hamilton’s canonical equations given by

qgr =pr/mr
> = JVH — . N 66
o () pr= >, 0r7(qr—qr) (66)
J=1
J#T

where for our subsequent developments we have defined the N(N + 1)/2 coefficients
o1y as

ory =V'( A1)/ 11 =01 (67)

In addition to the usual preservation of the symplectic two-form by the Hamiltonian
flow, the system possesses the following conserved quantities.

i. Conservation of energy. Since the Hamiltonian is autonomous it follows that

H is conserved by the dynamics.

ii. Conservation of momentum. The Hamiltonian is obviously invariant under
translations and rotations, i.e., under the (symplectic) action of the Euclidean group
on P. It follows that the momentum maps

Zp] and J quxp] (68)

are conserved quantities by the dynamics. These are the familiar laws of conservation
of the total linear momentum and the total angular momentum of the system.
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4.2. Symplectic, Momentum Conserving Algorithm.

Let z, € P be prescribed initial data at time ¢, and consider the following
family of algorithms for the approximation of (66) in the interval [t,,, t,11]

n n+(l—«o
‘II+1_‘II Ath ( )/m

PIH—PI:AtZUIJ( T gt (69)
-
where N o
q; " i =aq;T +(1-a)qf, 0
p?+(1 Cy) (1 —a) n+1 +ap?.

and o € [0,1] is an algorithmic parameter. Regarding o7 as N(N 4 1)/2 algorithmic
parameters, it follows that the approximation (69) depends on N(N +1)/241 param-
eters which remain to be specified in order to achieve desired conservation properties
while maintaining consistency. Before doing so, we make the following observation.

Lemma 4.1. The algorithmic approximation (69) preserves exactly the momentum
maps defined by (68) for any « € [0, 1] and arbitrary o7z, provided that the symmetry
condition o755 = o holds.

Proof. The claim follows from a direct computation. Conservation of angular
momentum follows from the identity

N
J(Zn_|_1 Z { n—l—oz n—l—l _pI)
=1
+ (gt — gy x pptTY (71)

along with the algorithmic equations (69), the symmetry condition or; = o5 and
the skew-symmetry property q”""Cy X q?""a = —q?""a X q?""a Conservation of linear
momentum is obvious. []

Remarks. 4.1.

1. Consider the one-parameter family of algorithms obtained by setting

iy = OB i sy o e — ape) (72)
IJ
It can be easily shown that these algorithms are symplectic for any « € [0, 1], while
conditionally A-stable and only first order accurate if o # %; see Simo, Tarnow &

Wong [1992].



21 J.C. Simo & O. Gonzalez SECTION 4

2. For @ = ; algorithm (69) together with (72) reduces to the conventional
mid-point rule; a scheme well-known to be algebraically stable (and hence B-stable).
By the preceding lemma, the scheme is also exact momentum preserving. This is the

symplectic algorithm used in the simulations reported below. [

4.3. Energy and Momentum Conserving Algorithm.

Next we construct an exact energy and momentum preserving algorithm via
suitable definition of the algorithmic parameters o7y in the family of algorithms
1

(69). For simplicity, we shall restrict the subsequent discussion to the case o = 3.

To compute the change in energy within a time step [t,,?,+1], we observe that
the change in kinetic energy can be written in view of (64) as

N

- n - n — n n "‘1‘%
K(p"™) - K(p ):ijl(p1+l_p1)'p1 : (73)
I=1

Substituting equations (69) into the above identity yields, after straight forward
manipulations, the result

N—-1 N
K(p™™) - Kp")==3 > o000 =200+ (1)
I=1 J=1+1
Conservation of energy conservation requires K(p"t!) — K(p") = —[V(q"*!) —

V(q™)]. In view of (64)2, by setting

1 VNI = V(L)
YT AT AT =y

ory = (75)

this condition is automatically enforced and exact energy conservation holds.

Remarks. 4.2.
1. Use of expression (75) as a definition for o;; amounts to replacing the

~ 1 1
derivative V'(/\?j2) in (72) by a difference quotient and the distance /\?}_2 by the
average of the distances %(/\?}'1 + A%;). For the one-dimensional problem, the idea

of replacing the derivative of the potential by a finite difference quotient goes back
to Labudde & Greenspan [1976].

2. Algorithm (69) together with (75) and v = 1 is the exact energy-momentum
scheme tested in the simulations described below. [
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4.4. Numerical Results.

Here we present numerical examples for the symplectic mid-point rule given by
(69) and (72) with & =  and the energy-momentum conserving algorithm given by
(69) and (75). We take the case of four particles (N = 4) and use a nonlinear spring
interaction potential

~ 1
V(Ars) = §kIJ(/\IJ — L), (76)

where ks is the modulus of the spring joining particle I to particle J and Ly s is the
natural length.

Figure 3 summarizes the simulation results obtained for the four-particle prob-
lem, mases m; = my = m3 = my = 1, and the following initial conditions:

=(0,0,0)" = (0,0,0)"

= (0.8983,0.5616,0)" :( 0.0500, 0.0866, 0)"
= (0,1.0010,0)" p3 = (0,-0.1000,0)"

( (-

0.2589,0.5987, 0.7580)" = (—0.0500, 0.0288,0)"

CI4 =
k12 = 1E02 Li;=1
ki3 = 1E04 Li3=1
k14 = 1E06 L14 =
k23 = 1E07 L23 =
k24 — 5E03 L24 —
ksy = 5E02 L3y =1

Shown in the figure are the total energy and total angular momentum of the system
which were calculated from converged solutions to the algorithmic equations for three
time steps: At = .04, .03, and .02. These time steps were chosen on the basis of
linearized frequencies at the reference (unstressed) configuration. Linearization of
the potential at the reference configuration yields a stiffness matrix with a frequency
range (excluding rigid body modes) of wpin &~ 12 and wpme, ~ 4470 rad/sec. The
above time steps correspond to approximately 12, 16, and 25 sample points on the
low mode, respectively. The configuration given in the initial condition was such that
nearly all of the potential energy was contained in the softest springs. This was done
as an attempt to not artificially excite the ‘high modes’ in the system.

As shown in Figure 3, the midpoint rule does not conserve the total energy
of the system. In particular, for time steps of At = .04 and .03 the energy grows
exponentially. For the time step At = .02 the total energy oscillates about its initial
value and the amplitude remains bounded after more than 5 x 10° steps. The total
angular momentum, on the other hand, is conserved for all three time steps. (This
is due to the fact that the results are for converged solutions to the algorithmic
equations.) In contrast to the results for the midpoint rule, the energy-momentum
method exactly conserves both total energy and angular momentum for all three time
step sizes.
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FIGURE 3. Simulation results for the four-particle problem.
The plots show total energy and angular momentum calculated
from converged solutions to the algorithmic equations.

5. CONCLUDING REMARKS.

In the preceding analysis we have shown that the mid-point rule, the classical
symplectic Runge-Kutta method, fails to retain its symplectic character for general
Hamiltonian systems when the symplectic two-form is non-constant. For instance,
we have shown that in order to render the mid-point rule symplectic, a projection of
the intermediate stage onto the phase space is required. This is a manifestation of a
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general fact. For Hamiltonian systems with constraints, but with an underlying linear
phase space, it is possible to modify the conventional algorithms as to retain their the
symplectic character by introducing Lagrange multipliers. A general methodology for
this construction is described in Jay [1993]. This construction, however, fails if the
symplectic two-form is non-constant.

Even if the construction of symplectic schemes is practically feasible, this class
of algorithms is not suitable for the solution of stiff problems. In this situation,
implicit methods are used as a means of retaining unconditional stability without
resolving the high frequency present in the problem. By construction, symplectic
method cannot have any numerical dissipation since complex roots of the amplifi-
cation matrix must lie on the unit circle and, moreover, exhibits multiple roots at
infinite sampling frequencies. The mid-point rule provides a representative example
that illustrates these features. As a result, the unresolved high—frequencies in the
problem are seen by a symplectic algorithm as infinite sampling frequencies, thus
triggering a weak instability phenomenon that leads to an eventual blow-up of the
scheme. These result have been verified numerically in numerical simulations. In
sharp contrast with symplectic methods, we have shown that energy-momentum al-
gorithms provide the required control on the unresolved high-frequencies without
resorting to numerical dissipation, thus leading to unconditionally stable schemes.
These methods are therefore ideally suitable for the long—term numerical simulation
of a stiff systems such as those arising in rigid—body dynamics. We remark that fouth
order accurate methods can be constructed from second order accurate methods as
composite algorithms which retain stability and conservation properties, see Tarnow

& Simo [1992] for additional details.
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