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Curves, circles, and spheres
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Abstract. The standard radius of curvature at a point q(s) on a smooth
curve can be defined as the limiting radius of circles through three points that
all coalesce to q(s). In the study of ideal knot shapes it has recently proven
useful to consider a global radius of curvature of the curve at q(s) defined as the
smallest possible radius amongst all circles passing through this point and any
two other points on the curve, coalescent or not. In particular, the minimum
value of the global radius of curvature gives a convenient measure of curve
thickness. Given the utility of the construction inherent to global curvature,

it is also natural to consider variants of global radii of curvature defined in
related ways. For example multi-point radius functions can be introduced as
the radius of a sphere through four points on the curve, circles that are tangent
at one point of the curve and intersect at another, etc. Then single argument,
global radius of curvature functions can be constructed by minimizing over
all but one argument. In this article we describe the interrelations between
all possible global radius of curvature functions of this type, and show that
there are two of particular interest. Properties of the divers global radius of
curvature functions are illustrated with the simple examples of ellipses and
helices, including certain critical helices that arise in the optimal shapes of
compact filaments, in α-helical proteins, and in B-form DNA.

1. Introduction

Several applications within physics and biology lead to the following basic math-
ematical question: for a given curve q(s) in three dimensions, what is the distance
from self-intersection? There are various optimal design problems that are associ-
ated with this distance; for example, amongst closed curves of a given knot type
and prescribed length, what is the configuration, or ideal shape, that maximizes
the distance from self-intersection [4, 8, 12, 14, 18]? Or what is the longest curve
that can be placed in a given container, subject to a prescribed lower bound on the
distance of closest approach [15, 19]? Similarly one could consider non-singular
self-interaction energies on curves that take a closest-approach or related distance
as argument [3, 8].
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These rather natural and intuitive problems all depend on making the notion
of distance from self-intersection precise. One way of doing this is to introduce
the normal injectivity radius Inj[q] for a curve q(s), see for example [6, p. 271],
which can be described informally in the following way. At each point along the
curve construct a circle in the normal plane with center at q(s), and for a given
fixed radius consider the tubular envelope of these circles. For smooth curves and
sufficiently small radii, the tubular surface so obtained will be smooth. However
for sufficiently large radii the tubular surface will develop a singularity, either when
circles from distinct points on the curve first touch, or when a crease develops
with the tube radius equalling the local radius of curvature of the base curve at
some point. Due to this geometrical construction, and following [14], the normal
injectivity radius of a curve will here be called its thickness.

The above mathematical notion of thickness can be made entirely rigorous and,
as the name suggests, it also can be used as a model for the actual thickness of
physical filaments [9]. However, for the purposes of both numerical simulations and
mathematical analysis the above geometrical definition suffers from the fact that
it is implicit. In contrast, in [8] it was shown that the thickness of smooth, closed
curves could be characterized explicitly as

(1.1) Inj[q] = inf
s,t,σ

ppp(s, t, σ)

where the infimum is taken over all distinct points on the curve, and the function
ppp(s, t, σ) is the radius of the circle through the points q(s), q(t) and q(σ). (The
reciprocal of the function ppp(s, t, σ) is sometimes called the Menger curvature of
the three points [2, p. 75].) In particular, the thickness of a curve can be defined
as the infimum of a three-point distance function, namely the radius of a circle
through three points on the curve. The analogous construction for the usual two-
point Euclidean distance function is patently insufficient for defining thickness, by
dint of the fact that curve continuity and the limit s→ t implies

(1.2) 0 ≡ inf
s,t

pp(s, t),

where pp(s, t) is our notation for half of the usual Euclidean distance between q(s)
and q(t).

Once the characterization (1.1) and its implications have been accepted as es-
tablishing the utility of the multi-point distance function ppp(s, t, σ) that is based
upon the radius of a circle through points on a curve, Pandora’s box is opened and
many different further possibilities arise. For the sake of simplicity, in this article
we shall give full consideration only to generic sets of points (and coalescent limits
thereof) on smooth curves, so that sets of three points are assumed non-collinear,
sets of four points non-coplanar, and so on. With this understanding, four distinct
points on the curve define a unique sphere with a zeroth-order intersection at each
of the four points, three distinct points define a unique circle with a zeroth-order
contact at each of the three points, or a unique sphere with zeroth-order contact
at two of the points and a first-order contact, or tangency, at the third, and so
on. We introduce a mnemonic notation for the radii of the corresponding objects,
e.g. pppp(s, t, σ, τ) for the radius of the sphere with zeroth-order contacts at q(s),
q(t), q(σ) and q(τ) (where p stands for point), ppp(s, t, σ) for the radius of the cir-
cle with zeroth-order contacts at q(s), q(t) and q(σ) (as before), while ptp(s, t, σ)
denotes the radius of the sphere with zeroth-order contacts at q(s) and q(σ), and
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a first-order contact or tangency at q(t). No assumption is made on the ordering
of the values taken by the arguments of these functions, so that we have trivial
identities arising from permutations, such as pppp(s, t, σ, τ) = pppp(s, t, τ, σ) and
ptp(s, t, σ) = ppt(s, σ, t). However, typically ptp(s, t, σ) 6= ppt(s, t, σ) 6= tpp(s, t, σ).
We use c (for circle) as the mnemonic notation for second-order contact, so that
cp(s, t) denotes the sphere with zeroth-order contact at q(t) and second-order con-
tact at q(s). In other words, cp(s, t) is the radius of the unique sphere containing
the point q(t) and the standard osculating circle of the curve at q(s). Finally, we
retain the traditional notation ρ(s) (rather than c(s)) for the radius of the oscu-
lating circle at the point q(s), and we adopt ρos(s) for the radius of the osculating
sphere, which has contact of order three at q(s) (see Section 3).

Table 1 summarizes all thirteen, distinct, multi-point distance functions which
arise as radii of line segments, circles and spheres that are defined by various orders
of contact to a given curve at one, two, three or four distinct points. The row in the
table indicates whether it is the radius of a line segment, circle, or sphere (which
may be interpreted as zero-, one- or two-dimensional spheres), while the column
indicates the number of distinct arguments in the corresponding function. These
functions are studied in Section 4 where various inequalities between entries in each
column are derived. In particular, we find that while there is generally no ordering
among the functions contained in any one block of the table, within one column a
function appearing in a higher row is bounded above by any function appearing in
a lower row. The only exceptions to this rule are the two functions cp and pc that
are marked with asterisks; there are only partial orderings between these functions
and those appearing above them.

1 2 3 4
line 0 pp

circle ρ
pt

tp
ppp

sphere ρos

cp⋆

pc⋆

tt

tpp

ptp

ppt

pppp

Table 1. All possible multi-point radius functions that are defined
in terms of line segments, circles and spheres. Rows correspond to
the type of object, while columns correspond to the number of
arguments associated with each radius function. With the excep-
tion of the two asterisked functions, the following inequalities hold:
within a given column, and when evaluated at the same arguments,
any function appearing in a higher of the three rows is smaller than
any function appearing in a lower row.

Our motivation for introducing the above functions is to consider potentially
useful generalizations of the global radius of curvature function that was introduced
in [8]. For reasons that will become apparent later, within the current article we
will change from the notation ρG of [8] for the global radius of curvature function
to the notation ρppp. The central tenet of global radius of curvature is to start
from a multi-point radius function such as ppp(s, t, σ), and to produce a nonlocally
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defined, global radius of curvature function along the curve through minimization
over all but the first of the multi-point arguments, thus

(1.3) ρppp(s) = inf
t,σ

ppp(s, t, σ)

where the infimum is taken over all distinct points on the curve. The coalescent
limit of q(σ), q(t) → q(s) is one possible competitor in this minimization, so the
classic local radius of curvature is an upper bound for the global radius of curvature.
But in general the global radius of curvature can sample the curve non-locally, and
is strictly smaller than the local radius of curvature (see Figure 1). Indeed, in
Section 5 of this article we will demonstrate that the local radius of curvature ρ(s)
can equal the global radius of curvature ρppp(s) only at extremal points of ρ(s) (and
that even this stringent necessary condition is by no means sufficient).

1 2
3

4

Figure 1. The radius of the circle through three neighboring
points along a curve, such as 1, 2 and 3, approximates the local
radius of curvature at the point 2. In contrast, a global radius of
curvature at the point 2 contains information concerning non-local
parts of the curve, e.g. the fact that there are rather small circles
through the point 2 and two other points of the curve such as 1
and 4.

It may now be seen that each of the thirteen multi-point radius functions in-
troduced in Table 1 generates a global radius of curvature function, analogous to
(1.3), when it is minimized over all but its first argument. Of course the one-point
functions of the first column remain unchanged, as there is no minimization to carry
out. Moreover, by (1.2) we find that minimization of the two-point radius function
pp yields the zero function. Thus, there remain twelve nontrivial global radius of
curvature functions as shown in Table 2. We denote all of these functions by ρ with
the subscript that is inherited from the mnemonic name introduced in Table 1.

The global radius of curvature functions introduced in Table 2 are studied in
Section 5. In addition to the column inequalities carried over from Table 1, there
are now also row inequalities. Specifically, (and for simplicity again ignoring the two
asterisked functions) it can be shown that along each row, any function dominates
any other function appearing in a column to its right. This fact follows from a simple
comparison on the set of competitors involved in the minimization that leads to
the global curvature function. The more surprising conclusion is that, for curves
that are either closed or infinite, but are otherwise arbitrary, amongst the row
and column inequalities, there are in fact several identities. (Possible interactions
with end-points complicates matters, but for closed or infinite curves there are no
end-points.) As a consequence, amongst the twelve non-trivial radius of curvature
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0 1 2 3
line 0 ρpp = 0

circle ρ
ρpt

ρtp
ρppp

sphere ρos

ρcp
⋆

ρpc
⋆

ρtt

ρtpp

ρptp

ρppt

ρpppp

Table 2. Global radius of curvature functions. Each function of a
single variable is defined by minimization of the multi-point func-
tions of Table 1 over all but their first argument. Rows correspond
to the type of object, while columns correspond to the number of
minimizations associated with the function. Only five of the twelve
functions are distinct on smooth curves that are closed or infinite.

functions appearing in Table 2, there are only five independent ones, for example
ρ, ρos, ρpt, ρpc, and ρtt.

We argue that the two most interesting global radius of curvature functions
are ρpt (as considered in [8]) and ρtt. For example, in Section 6 we demonstrate
that the thickness, or normal injectivity radius, of any closed or infinite curve
equals the (common) minimal value of ρpt and ρtt along the curve. It is noteworthy
that numerical evaluation of ρpt or ρtt at a given point on a curve involves only a
one-dimensional minimization (because they each appear in the second columns of
Tables 1 and 2). In contrast, evaluation of a function such as ρppp would involve a
two-dimensional search, which is a priori a much more intensive computation.

In Section 7 we close the presentation with illustrations of various of the multi-
point radius and global radius of curvature functions in the particular cases of
ellipses, and helical structures.

Finally it should be noted that while for simplicity we consider only smooth
curves in this article, many of the results that we present can be extended to curves
that are not smooth. For example, a uniform lower bound on a suitable multi-point
radius function has been used to establish regularity of a priori non-smooth curves
[4, 7, 9, 17].

2. Preliminaries

By a curve Γ we mean a continuous three-dimensional vector function q(s) of a
real variable s. We consider curves Γ that are either (a) finite by which we mean the
parameter s takes values in a closed interval [0, L] with the set q(s) being bounded,
or (b) infinite in the sense that s takes values in the open interval (−∞,∞) and
|q(s)| → ∞ as |s| → ∞. (Of course, these two cases are not exhaustive, but they
suffice for our interests.)

A curve Γ is smooth if the function q(s) is continuously differentiable to any
order and if the tangent vector q′(s) is nonzero for all s. In the smooth case we
interpret s as the arclength parameter. We denote the standard local curvature
and torsion of Γ at q(s) by κ(s) and τ(s), and we denote the local Frenet frame of
tangent, principal normal and binormal by {t(s),n(s), b(s)} wherever it is defined.
Throughout, all curves will be assumed to be smooth and finite in the sense of
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possibility (a) above, unless explicit mention to the contrary is made. We shall
consider the infimum of various functionals defined on both finite and infinite curves.
For simplicity of exposition we shall implicitly assume throughout that the infima
are attained at finite points q(s) on the curve.

A curve Γ is closed if q(L) = q(0), in which case we interpret the parameter s
modulo L. Moreover, if Γ is smoothly closed, the derivatives of all orders of q(s)
agree at s = 0 and s = L. Finally, a curve Γ is simple if it has no self-intersections,
that is, q(s1) = q(s2) only when s1 = s2.

3. Local circles and spheres

The local behavior of a curve Γ at a point q(s) can be described in terms of
various osculating or tangent objects: the osculating line L(s), plane P(s), circle
C(s), sphere S(s) and circumsphere Sc(s). All but the last are standard objects in
the differential geometry of curves.

3.1. Definitions. L(s) is the line through q(s) spanned by t(s). When κ 6=
0, P(s) is the plane through q(s) spanned by the tangent and principal normal
{t(s),n(s)}, and C(s) is the circle contained in P(s) with center

(3.1) c(s) = q(s) + ρ(s)n(s),

and radius

(3.2) ρ(s) =
1

κ(s)
,

i.e. the standard local radius of curvature. When both κ 6= 0 and τ 6= 0, the
osculating sphere S(s) [20, p. 25], which is the sphere through four coalescent
points, has center

(3.3) cos(s) = q(s) + ρ(s)n(s) +
ρ′(s)

τ(s)
b(s)

and radius

(3.4) ρos(s) =

√

ρ2(s) +

(

ρ′(s)

τ(s)

)2

.

We will also make use of another locally-defined sphere, which we call the osculating

circumsphere and denote Sc(s), that is defined to be the unique sphere of radius
ρ(s) that contains C(s) as a great circle. The osculating circle is always contained
in the intersection of the osculating sphere and osculating circumsphere, and, in
general, it is all of the intersection because (3.4) reveals that typically ρos > ρ.

Remarks 3.1

(1) The objects L(s), P(s), C(s) and S(s) may be defined in terms of their
contact order with Γ [10, p. 26, 72], [20, p. 23]. For example, L(s) is the
unique line that has a contact order of at least one with Γ at q(s). When
κ(s) 6= 0, P(s) is the unique plane that has a contact order of at least two,
and so on.

(2) When κ(s) = 0, we set ρ(s) = ∞, and identify the osculating circle with
the osculating line. The osculating plane, sphere and circumsphere may
or may not be uniquely defined depending on the behavior of κ and τ near
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s. In all cases it is consistent to set ρos(s) = ∞ since any limit of (3.4)
must be infinite.

(3) When κ(s) 6= 0, but τ(s) = 0, the osculating sphere again may or may not
be uniquely defined depending on the limiting behavior of κ and τ near
s. Following the contact-order arguments in [10, p. 72] we set

S(s) =







P(s), if limσ→s ρ
′(σ)/τ(σ) is infinite

limσ→s S(σ), if limσ→s ρ
′(σ)/τ(σ) is finite

Sc(s), if limσ→s ρ
′(σ)/τ(σ) is undefined.

The problematic last case occurs, for example, when Γ is itself a circle. It
could be handled differently; for example the osculating sphere of a circle
is explicitly left undefined in [10, p. 74].

Figure 2. Geometrical interpretation of the Taylor expansions
(3.5) and (3.6). The spheres S and Sc intersect on the osculating
circle C, and thereby define four spherical quadrants, corresponding
to the intersections of the interiors and exteriors of the two spheres.
Locally and generically, a curve lies either outside (solid curve)
or inside (dashed curve) the (larger) osculating sphere S, whereas
it crosses the (smaller) osculating circumsphere Sc, i.e. the curve
passes between the four spherical quadrants in a highly constrained
way.

3.2. Relationships, properties. At each point q(s) on a curve Γ the oscu-
lating line L(s), plane P(s), circle C(s), sphere S(s) and circumsphere Sc(s) enjoy
the following relationships:

C = P ∩ S (κ 6= 0, τ 6= 0)
C = L (κ = 0)
ρ ≤ ρos (any κ, τ ).

Moreover, while Γ is tangent to both the osculating sphere S and circumsphere S
c,

when κ 6= 0 and τ 6= 0 we find that, generically and locally, Γ pierces or crosses
Sc, but lies on one side or the other of the sphere S, as illustrated in Figure 2. For
Sc(s) this conclusion follows from the h3 coefficient in the Taylor expansion

(3.5) |q(s+ h) − c(s)|2 =
1

κ2
−

( κ′

3κ

)

h3 +
(τ2

12
−

κ′′

12κ

)

h4 +O(h5),
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while the result for S(s) follows from the h4 coefficient in the Taylor expansion

|q(s+ h) − cos(s)|
2 =

1

κ2
+

κ′2

τ2κ4

+
(τ2

12
−

κ′′

12κ
+
κ′

2

6κ2
+

κ′τ ′

12τκ

)

h4 +O(h5).

(3.6)

4. Global circles and spheres

Just as the local behavior of a curve can be described in terms of local osculating
lines, circles and spheres, aspects of the global behavior of a curve can be described
by analogous multi-point objects: two-point line segments L(s, t), three-point cir-
cles C(s, t, σ) and four-point spheres S(s, t, σ, τ). Here we study these objects and
use them to introduce various generalized global radius of curvature functions for
curves.

4.1. Definitions. Let Γ be a simple curve. Then for any two distinct points
q(s) and q(t) we define L(s, t) to be the unique line segment between them with
half-length

(4.1) pp(s, t) =
1

2
|q(s) − q(t)|.

For any three non-collinear points q(s), q(t) and q(σ) we define C(s, t, σ) to be the
unique circle (the circumcircle) that contains them, with radius (the circumradius)
given by any of the classic formulæ [5, p. 13]:

(4.2) ppp(s, t, σ) =
2pp(s, t)pp(s, σ)pp(t, σ)

A(s, t, σ)

where A(s, t, σ) is the area of the triangle with vertices q(s), q(t) and q(σ), or

(4.3) ppp(s, t, σ) =
pp(s, σ)

| sin θstσ|
=

pp(t, s)

| sin θtσs|
=

pp(σ, t)

| sin θσst|

where θstσ is the angle between the edge vectors q(s)−q(t) and q(σ)−q(t), and so
on. The three forms in (4.3) all coincide by the Sine Rule of elementary geometry.
(Note that typically these formulæ are written in terms of edge lengths, but for us
the factor of one half in the definition (4.1) of pp is convenient, so we work with
half of the edge lengths.) The circle radius can also be written as a ratio involving
a Cayley-Menger determinant [1, p. 241], namely

(4.4) ppp
2(s, t, σ) = −2

∆(3)

Γ(3)
,

where

∆(3) =

∣

∣

∣

∣

∣

∣

0 pp2(s, t) pp2(s, σ)
pp2(s, t) 0 pp2(t, σ)
pp2(s, σ) pp2(t, σ) 0

∣

∣

∣

∣

∣

∣

,(4.5)

and

Γ(3) =

∣

∣

∣

∣

∣

∣

∣

∣

0 pp2(s, t) pp2(s, σ) 1
pp2(s, t) 0 pp2(t, σ) 1
pp2(s, σ) pp2(t, σ) 0 1

1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

.(4.6)
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It is the Cayley-Menger form of the radius formula that generalizes to spheres.
For any four non-coplanar points q(s), q(t), q(σ) and q(τ) we define S(s, t, σ, τ)
to be the unique sphere that contains them. The radius of this sphere, denoted
pppp(s, t, σ, τ), satisfies

(4.7) pppp
2(s, t, σ, τ) = −2

∆(4)

Γ(4)
,

where the 4 × 4 determinant ∆(4) and 5 × 5 determinant Γ(4) are the natural
generalizations of (4.5) and (4.6) written in terms of the six edge half-lengths.

Remarks 4.1

(1) At any distinct pair, non-collinear triple, or non-coplanar quadruple of
points, the functions pp, ppp and pppp are, respectively, continuous and
symmetric in their arguments.

(2) When (s, t, σ) are distinct but collinear, we set ppp(s, t, σ) = ∞. Similarly,
when (s, t, σ, τ) are distinct but coplanar, we set pppp(s, t, σ, τ) = ∞,
unless these points are co-circular in which case we set pppp(s, t, σ, τ) =
ppp(s, t, σ).

(3) The sphere S(s, t, σ, τ) enjoys several equivalent geometric characteriza-
tions at any quadruple of non-coplanar points. For example, it is the
unique sphere defined by the point q(s) and the circle C(t, σ, τ), but is
also the unique sphere defined by the point q(t) and the circle C(s, σ, τ)
and so on. These equivalent characterizations will be exploited below.

4.2. Coalescent functions. Various radius functions can be derived from
ppp and pppp by considering (generic) coalescent limits along the curve Γ . For
example, from the three-point function we obtain

ppp(s, t, σ)
σ→t
→ pt(s, t)

t→s
→ ρ(s), (s, t, σ non-collinear).

Here pt(s, t) is the radius of the unique circle that passes through q(s) and is tangent
to Γ at q(t). We denote this circle by C(s, t, t) and note that it is actually the limit
of C(s, t, σ) as q(σ) → q(t) along Γ . As before, ρ(s) is the radius of the standard
osculating circle C(s) at q(s). Thus we recover the classic result that the osculating
circle may be interpreted as C(s, s, s), the limit of C(s, t, σ) as q(σ), q(t) → q(s)
along Γ .

By changing the order of the first limit we obtain a slightly different result,
namely

ppp(s, t, σ)
t→s
→ tp(s, σ)

σ→s
→ ρ(s), (s, t, σ non-collinear).

Here tp(s, t) is the radius of the unique circle C(s, s, t) that passes through q(t)
and is tangent to Γ at q(s). In particular, we have tp(s, t) = pt(t, s), but tp(s, t) 6=
tp(t, s) = pt(s, t), because, in general, both of the two-point circular radius functions
are non-symmetric in their arguments.

Analogous limits may also be considered for the four-point function pppp. For
example,

pppp(s, t, σ, τ)
τ→σ
→ ppt(s, t, σ)

σ→t
→ pc(s, t)

t→s
→ ρos(s), (s, t, σ, τ non-coplanar).

Here ppt(s, t, σ) is the radius of the unique sphere defined by the point q(s) and
the circle C(t, σ, σ). Similarly, pc(s, t) is the radius of the unique sphere defined by



10 O. GONZALEZ, J. H. MADDOCKS, AND J. SMUTNY

the point q(s) and the osculating circle C(t, t, t). As before, ρos(s) is the radius of
the osculating sphere at q(s).

By changing the order of the limits we obtain various different three-point
functions analogous to ppt, and various different two-point functions analogous to
pc. The different functions may be represented in the following way:

pppp
4pt→3pt

→







ppt

ptp

tpp







3pt→2pt
→







pc

cp

tt







2pt→1pt
→ ρos.

For example, ptp(s, t, σ) is the radius of the unique sphere defined by the point q(s)
and the circle C(t, t, σ), or, equivalently, defined by the point q(σ) and the circle
C(s, t, t). The two-point function tt(s, t) is the radius of the unique sphere defined
by the two circles C(s, s, t) and C(s, t, t). In particular, tt(s, t) is the radius of the
sphere that is tangent to Γ at both q(s) and q(t).

4.3. Explicit formulæ. Explicit formulæ for the coalescent limit functions
are available whenever the remaining arguments are in generic position. For the
two-point circular functions pt and tp we have

(4.8) pt(s, σ) = tp(σ, s) =
pp(s, σ)

| sin θsσ′ |
, (s 6= σ)

where θsσ′ is the angle between q(s) − q(σ) and the tangent vector to C at q(σ).
When sin θsσ′ = 0 we set pt(s, σ) = ∞. Note that (4.8) is the limit of (4.3) as the
triangle closes.

For the two-point spherical function tt we find

tt
2(s, σ) = pp

2(s, σ)
1 −

(

t(σ) · R(e)t(s)
)2

|t(s) × t(σ) · e|2
, (s 6= σ)(4.9)

where t(s) × t(σ) · e is the standard scalar triple product,

(4.10) e =
q(s) − q(σ)

|q(s) − q(σ)|

is the unit vector along the chord, and

(4.11) R(e) = [2e ⊗ e − I]

with e ⊗ e being the usual vector outer product so that R(e) is the (symmetric)
proper rotation matrix that maps the curve tangent t(σ) into the (compatibly
oriented) tangent t⋆(s, σ) at q(s) of the circle C(σ, σ, s) (which was defined as the
circle with tangent t(σ) at q(σ) passing through the point q(s)). Formula (4.9) is
valid whenever the two tangents and the chord associated with (s, σ) are linearly
independent. In the case when they are linearly dependent we set tt(s, σ) = ∞,
unless they are co-circular in the sense that C(s, σ, σ) = C(s, s, σ), in which case we
set tt(s, σ) = pt(s, σ) = tp(s, σ).

As t(s) and t(σ) are unit vectors and R(e) is a rotation matrix, t(σ) ·R(e)t(s)
is the cosine of the angle ψ(s, σ) between the unit vectors t(s) and t⋆(s, σ) and we
may rewrite (4.9) as

tt(s, σ) = pp(s, σ)
| sinψ(s, σ)|

|t(s) × t(σ) · e|
, (s 6= σ).(4.12)

The angle ψ has previously been considered in various knot energies [13, p. 318],
[16, p. 294].
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Formulæ for the two-point spherical functions cp and pc are also available. In
particular, let (α, β, γ) be the coordinates of q(σ) with respect to the Frenet frame
at q(s) in the sense that

(4.13) q(σ) = q(s) + αt(s) + βn(s) + γb(s).

Then we find

(4.14) cp(s, σ) = pc(σ, s) =

√

ρ2(s) +
[α2 + β2 + γ2 − 2βρ(s)]2

4γ2
, (s 6= σ).

This formula is valid whenever γ 6= 0, that is, q(σ) 6∈ P(s). When q(σ) ∈ P(s) we
set cp(s, σ) = ∞, unless q(σ) ∈ C(s) in which case we set cp(s, σ) = ρ(s).

For points s at which τ(s) 6= 0, formula (4.14) suggests the definition

(4.15) cp(s, s) = lim
σ→s

cp(s, σ) = ρos(s).

However, just as in Remarks 3.1, the most appropriate definition for cp(s, s) at
points with τ(s) = 0 is unclear.

4.4. Multi-point radius inequalities. The functions pp, ppp and pppp sat-
isfy the basic inequalities:

(4.16) 0 ≤ pp(s, t) ≤ ppp(s, t, σ) ≤ pppp(s, t, σ, τ), (s, t, σ, τ distinct),

which follow from the facts that the half-length of any chord on a circle is bounded
by the circle radius, and the radius of any circle on a sphere is bounded by the
sphere radius.

By considering various coalescent limits in (4.16) we arrive at inequalities in-
volving the associated limit functions. For example, for the limit functions with
three-point arguments we find

(4.17) ppp(s, t, σ) ≤







ppt(s, t, σ)
ptp(s, t, σ)
tpp(s, t, σ)

(s, t, σ distinct),

and for the limit functions with two-point arguments we find

(4.18) pp(s, t) ≤















pt(s, t) ≤

{

pc(s, t)
tt(s, t)

tp(s, t) ≤

{

tt(s, t)
cp(s, t)

(s, t distinct),

where in (4.17) and (4.18) it is to be understood that the braces indicate alterna-
tives.

There exist curves Γ with pairs of points (s, t) such that all of the inequalities
(4.18) are sharp. Contrariwise, pairs of points of closest (or stationary) approach,
i.e. pairs of distinct points q(s) and q(t) and associated curve tangents t(s) and
t(t) satisfying

(4.19) t(s) · (q(s) − q(t)) = t(t) · (q(s) − q(t)) = 0,

are very special because at such pairs we always have equality between four of the
two-point radius functions

(4.20) pp(s, t) = pt(s, t) = tp(s, t) = tt(s, t).
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5. Global radius of curvature functions

To any simple curve Γ and multi-point radius function we may associate a
global radius of curvature function defined by minimizing over all but the first
argument, namely

ρpppp(s) = inft,σ,τ pppp(s, t, σ, τ) (s, t, σ, τ distinct)
ρppp(s) = inft,σ ppp(s, t, σ) (s, t, σ distinct)
ρpt(s) = inft pt(s, t) (s, t distinct)

...
ρpp(s) = inft pp(s, t) = 0 (s, t distinct).

These functions may be viewed as generalizations of the standard local radius of
curvature functions ρ(s) and ρos(s). Here we study various properties of these
global radius of curvature functions, and discuss the non-local information that
they contain about Γ .

5.1. Radius of curvature inequalities. The radius of curvature functions
are nested at each point q(s). In particular, for the circular radius of curvature
functions we have

(5.1) ρ ≥

{

ρtp

ρpt

}

≥ ρppp.

These inequalities follow from the observation that any circle which achieves any
radius function on the left is a competitor (or limit of competitors) for any function
on the right. Similarly, the spherical radius functions satisfy

(5.2) ρos ≥































ρpc

ρtt

ρcp







≥ ρppt = ρptp

ρtt

ρcp

}

≥ ρtpp































≥ ρpppp.

5.2. Distinct radius of curvature functions. When Γ is a simple, closed
or infinite, curve we find various equalities between the circular and spherical radius
of curvature functions. In particular, at each point q(s) we have

(5.3) ρpt = ρppp = ρptp = ρppt = ρpppp,

(5.4) ρtt = ρtpp = ρtp,

and

(5.5) ρ = ρ⋆
cp.

The first equality in (5.3) was derived in [8, p. 4770], and the further relations
in (5.3) and (5.4) are implied by similar arguments. The central idea in all of
the demonstrations is that a sphere realizing the minimum in the definition of a
global radius of curvature function at the point s, cannot have only zero-order
intersections at distinct points, for otherwise the sphere could be shrunk, while
retaining the same number of intersections with the curve Γ , and the same order
of contact at s, contradicting optimality.

The equality (5.5) is of a different character as it relates the entirely local object
ρ with a global radius of curvature. Moreover here the asterisk indicates that the
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equality only holds at points at which either κ′(s) 6= 0 or τ(s) 6= 0. At points where
κ′(s) = τ(s) = 0 the very definition of ρcp(s) is unclear. For the demonstration of
the generic case, note first that cp(s, σ) ≥ ρ(s) because any sphere with second-
order contact at s contains the osculating circle at s. Thus ρcp(s) ≥ ρ(s). If
κ′(s) 6= 0 the opposite inequality (and therefore equality) follows from the Taylor
expansion (3.5). In particular, the curve locally crosses the osculating circumsphere
Sc near q(s). Since the curve Γ is simple and has no end-points (it is closed or
infinite) it must re-cross the sphere Sc at some distinct point q(σ), which leads to
the conclusion that cp(s, σ) = ρ(s), so that ρcp(s) ≤ ρ(s). When κ′(s) = 0 but
τ(s) 6= 0, we have by (4.15) and (3.4) that limσ→s cp(s, σ) = ρos(s) = ρ(s), so
ρcp(s) ≤ ρ(s).

Thus for simple, closed or infinite, curves we have the seven equalities (5.3)–
(5.5) which imply that of the possible twelve radius of curvature functions there
are only five distinct ones. The functions {ρpt, ρtt, ρpc, ρ, ρos} can be taken as an
independent set. Combining inequalities (5.1) and (5.2) with equalities (5.3)–(5.5),
implies that these five functions are nested in the sense

(5.6) ρos ≥

{

ρ ≥ ρtt

ρpc

}

≥ ρpt ≥ 0.

We can then address the question of identifying special points along the curve
at which equalities can occur between some or all of the five independent curvature
functions. For example, equalities between the global radius of curvature functions
ρpt and ρtt can arise at points of closest approach as described in Section 4.4.
Equality between local and global radius of curvature functions can occur only at
certain special points along Γ . Specifically, for a simple, closed or infinite, curve,
equality between ρpt and ρ can occur only at extremal points of the local curvature
κ in the sense that

(5.7) κ 6= 0 and ρpt = ρ ⇒ κ′ = 0 and κ′′ ≤ κτ2.

Notice that these extremal points must be maxima (to second order) of the local
curvature whenever the torsion is zero, as would be the case for planar curves.
This result follows from the Taylor expansion (3.5). The proof is by contradiction:
suppose that ρpt(s) = ρ(s) and that κ′(s) 6= 0. Then Γ locally pierces the osculating
circumsphere Sc(s) of radius ρ(s). Since Γ is simple and has no end-points (it is
closed or infinite) it must re-cross Sc(s) at a distinct point q(σ). Then we can
shrink Sc(s) to find a sphere of smaller radius than ρ(s) that is tangent at q(s)
and which intersects Γ near q(σ). By considering circles on this sphere we find
ρtt(s) = ρtp(s) < ρ(s) = ρpt(s), a contradiction of (5.6). Thus κ′(s) = 0 is a
necessary condition. If the second condition κ′′ ≤ κτ2 were violated the expansion
(3.5) reveals that the curve would locally lie inside the osculating circumsphere
Sc(s). A similar shrinking argument would then lead to a contradiction as before.

Notice that if κ 6= 0 and ρpt = ρ, then all the circular radius of curvature
functions (both local and global) must be equal by virtue of (5.1) and (5.3). If
moreover τ 6= 0, then all the radius of curvature functions introduced thus far
(both circular and spherical, local and global) must be equal by virtue of (3.4),
(5.2), (5.3) and (5.4).
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6. Thickness of closed or infinite curves

Let Γ be a simple, closed or infinite, curve. Then to each of the five distinct
radius of curvature functions {ρpt, ρtt, ρpc, ρ, ρos} we may associate a functional (or
number) corresponding to its infimum:

∆pt[Γ ] = inf
s
ρpt(s), ∆tt[Γ ] = inf

s
ρtt(s),

and so on. Arguments involving properties of minimizing circles and spheres show
that

(6.1) ∆ρos
[Γ ] ≥ ∆pc[Γ ] = ∆ρ[Γ ] ≥ ∆tt[Γ ] = ∆pt[Γ ].

Thus for simple, closed or infinite, curves we have only three distinct functionals
of this type, namely ∆pt, ∆ρ and ∆ρos

. The number ∆ρ is just the minimal value
of the local osculating circle radius of curvature ρ along the curve, while ∆ρos

is the minimal value of the local osculating sphere radius of curvature ρos. For
smooth curves with non-vanishing torsion, formula (3.4) reveals that ρos(s) = ρ(s),
whenever ρ′(s) = 0. Consequently ∆ρos

[Γ ] = ∆ρ[Γ ] for such curves. However in
general the two numbers are different, as can be seen, for example, by consideration
of smooth, non-circular closed curves lying on a given sphere.

The number ∆pt is more interesting. It was first introduced in [8] within the
context of the study of ideal or tight knots, where it was shown that ∆pt = ∆ppp

gives an explicit characterization of the normal injectivity radius Inj or thickness of
the curve Γ . With the last equality in (6.1), we see that the thickness could also be
computed via a numerical evaluation of ∆tt[Γ ]. Consideration of smooth, simple
curves that are close to a figure eight, demonstrates that strict inequality between
∆ρ and ∆pt is possible.

Remark 6.1 The last equality of (6.1) relies on the fact that a simple, closed or
infinite, curve has no end-point. In particular, this equality is violated for the curve
with end-points that is sketched in Figure 3. Here ρtt(s) = R = 2r > r = ρpt(s).
And, by taking r as small as necessary, we see that ∆tt[Γ ] = ρtt(s) while ∆pt[Γ ] =
ρpt(s), so that the last equality in (6.1) fails. Moreover ρtp(σ) = r < ρtt(σ), which
shows that the identity (5.4) can also fail in the presence of end-points.

R

r

σ

s

Figure 3. A curve Γ that illustrates the effects of end-points on
global radius of curvature functions and curve thickness. The curve
is drawn such that ∆tt[Γ ] = ρtt(s) = R = 2r > r = ρpt(s) =
∆pt[Γ ].
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7. Examples

7.1. Ellipses. Here we illustrate various properties of the standard local ra-
dius of curvature function ρ, and the global radius of curvature functions ρpt and
ρtt for the case when Γ is an ellipse.
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(a) (b)

Figure 4. Plots of local and global radius of curvature functions
for an ellipse with principal axes of length 1.0 and 0.6: (a) ρ, ρpt

and ρtt versus the polar angular coordinate around the ellipse (with
θ = 0 corresponding to a vertex of minimal radius of curvature),
(b) magnified view of ρpt and ρtt near their common maxima at
θ = π/2 (corresponding to the inset of part a).

Figure 4 shows plots of ρ, ρpt and ρtt along a particular ellipse. Nestedness
between all three functions is in agreement with (5.6). Moreover, equality between
all three functions occurs only at local minima of ρ (equivalently, local maxima of
κ), which is in accordance with (5.7) in the case of zero torsion. The two global
radius of curvature functions also coincide at the ends of the minor axes, which are
a pair of points of stationary approach as defined in (4.19). While ρtt is smooth,
ρpt has corners near each of its local maxima. As discussed below, these corners
are associated with a discontinuity in the family of minimizing circles for ρpt.

Figure 5 illustrates various properties of the osculating and minimizing circles
associated with the functions ρ, ρpt and ρtt on an ellipse. Panel (a) shows the
locus of centers of all osculating circles, and the loci of the centers of all minimizing
circles associated with ρtt and ρpt. The osculating and ρpt loci actually coincide
on the two arrow-head portions, which fact is explained later. Panel (b) illustrates
the classic (but apparently not widely-known) result that for planar curves the
osculating circles are nested between extremal points, or vertices, of the local radius
of curvature ρ (see, e.g. [11, Theorem 3-12, p. 48], [21, p. 403]). In panel (c) we plot
the minimizing circles associated with ρtt for various points along the ellipse. These
circles are actually osculating circles at the two local minima of ρ, i.e. at the left and
right end-points of the line segment, but minimizing circles with centers at interior
points are instead doubly tangent at distinct points of the ellipse. Panels (d)–(f)
illustrate the minimizing circles for ρpt. Panel (d) depicts the continuous, nested,
family of minimizing circles with centers on the arrow-head portion of the locus of
centers. The minimizing circles are non-unique at the point illustrated in panel (e),
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Figure 5. Osculating circles associated with ρ and minimizing cir-
cles associated with ρtt and ρpt for an ellipse: (a) three loci of the
centers of i) the osculating circles (diamond-shaped curve drawn in
dashes), ii) the minimizing circles realizing ρtt (horizontal line seg-
ment drawn in small dots), and iii) the minimizing circles realizing
ρpt (dark curve with discontinuities), (b) various osculating circles
with centers and tangency points marked in open dots, (c) various
minimizing circles for ρtt, (d)-(f) minimizing circles for ρpt with (d)
centers on the arrow-head portion of the locus of centers, (e) two
minimizing circles with the same radius, but different centers lying
on either side of the discontinuity in the locus, and (f) non-nested
minimizing circles with centers on the central portion of the locus.
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and then the (non-nested) family of minimizing circles smoothly evolves, as shown
in panel (f). It is this transition between two smooth families of minimizing circles
that explains the corner in the graph of ρpt(s) that can be seen in Figure 4 (b).

It remains to discuss the nestedness of the circles appearing in Figure 5 (d).
The numerics indicate that the minimizing circle at s has zeroth-order contact with
the ellipse at s. The minimizing circle for ρpt must, by definition, have a first-
order intersection or tangency to the ellipse at some point σ. For all but one of
the circles in part (d) the point σ is distinct from s, and, moreover, there is no
other intersection between each minimizing circle and the ellipse. By a crossing
argument this means that the order of contact between the ellipse and circle (i.e.
two closed planar curves) at σ must be at least of second-order. Thus the circle
realizing the minimum in ρpt(s) is in fact the osculating circle to the ellipse at σ, so
that ρpt(s) = ρ(σ). Therefore the loci of centers of minimizing circles for ρpt and
the osculating circles coincide locally, and local nestedness follows from the known
nestedness of osculating circles.

7.2. Helices. Helices are perhaps the simplest non-planar curves. Because
helices are uniform, any radius of curvature function must be constant. However
for helices it is interesting to consider how the various radius of curvature functions
are realized as minima of the linear pp, circular {pt, tp} and spherical {cp, pc, tt}
two-point radius functions. Precisely because helices are uniform, it suffices to fix
an arbitrary point s on the helix and to examine how the two-point radius functions
vary with the second argument σ. It can be shown that helices possess a discrete
symmetry which implies pt(s, σ) = tp(s, σ) and pc(s, σ) = cp(s, σ). Accordingly, we
consider only one independent circular function pt and two independent spherical
functions {cp, tt}.

Figures 6 (a,b) show plots of pp, pt, cp and tt as functions of the difference in
arclength η = σ−s for a helix of pitch 1.2. (In all our examples the helices are scaled
to have radius one.) Nestedness between the linear, circular and spherical functions
is in agreement with (4.18), as is the non-nestedness of the spherical functions cp

and tt. (For helices the function tt tends to infinity near distinct points (s, σ) where
the associated tangents are parallel.) Notice that the circular function pt and the
spherical function tt enjoy the same global minimal value, as asserted by the last
equality in (6.1), that the global minimum of cp is strictly larger (i.e. the second
inequality in (6.1) is actually strict for this curve), and that, trivially, the global
minimum of pp is zero.

Figure 6 (c) illustrates how the minima of various two-point functions depend
on the helix pitch. For the helices with pitches 4 and 2.8, pt(s, σ) achieves its
global minimum at η = σ− s = 0. For pitch 4 the global minimum is the only local
minimum, whereas for pitch 2.8 there are two other local minima. The fact that the
global minimum is achieved at η = 0 implies the thickness equality ∆ρ[Γ ] = ∆pt[Γ ]
since the limit function pt(s, s) is just the standard local radius of curvature ρ(s).
For the helix with pitch 1.5, pt achieves its global minimum for η 6= 0; moreover, this
minimum value is strictly less than its value at the local minimum η = 0. Thus for
pitch 1.5 we have the strict inequality ∆ρ[Γ ] > ∆pt[Γ ], and the thickness is achieved
by a circle (or sphere) that intersects the helix at two distinct points. For the helix
with pitch 2.5126. . ., pt achieves its global minimum both at η = 0 and at η 6= 0.
Thus the thickness of a helix with this critical pitch is determined simultaneous by
local and global properties of the curve. Maritan et al [15] originally identified this
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Figure 6. Plots of linear, circular, and spherical, two-point radius
functions for helices: (a) pp, pt, cp, and tt versus η = σ − s for
a helix of pitch 1.2, (b) magnification of the inset shown in part
(a), (c) plots of the single function pt for four helices with different
pitches 1.5, 2.5126, 2.8 and 4. The horizontal line segment empha-
sizes the equality of the three local minima for the critical pitch
2.5126 of Maritan et al [15], (d) plots of the three functions pp, pt

and tt on the single critical-pitch helix within the inset indicated
in part (c).

critical pitch in their work on the optimal packing of filaments. They also observed
that many crystal structures of helical proteins have the same critical pitch. The
critical helix is further illustrated in Figure 7.

In all of our discussions we are by no means restricted to consider only connected
curves. Curves made up of multiple helices with a common axis, diameter and pitch,
remain uniform (cf. Figure 8), and therefore have constant radius of curvature
functions. Accordingly, just as for single helices, we can plot linear, circular and
spherical two-point radius functions for various double helices. In Figure 9, panels
(a) and (c) show the symmetric case of diametrically opposed strands (an offset
angle of π), and in (b) and (d) an unsymmetric case in which the strands are offset
by an angle of 2

3π. Panels (a) and (b) each plot the functions pp, pt and tt for one
double-helical structure (pitch = 2.5126), while panels (c) and (d) plot the single
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(a) (b)

(c) (d)

Figure 7. Visualization of the pitch 2.5126 critical single helix:
(a) the local osculating circumsphere (which is also the osculating
sphere) associated with ρ, (b) two doubly-tangent spheres of radius
ρ that achieve ρpt, (c) superposition of the local and global spheres,
(d) the tube formed as the envelope of all spheres with radius equal
to the thickness ∆pt[Γ ] that are centered on the helix.
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Figure 8. Structure formed by two helices with common axis,
diameter and pitch, and constant offset angle (here 0.7π).

function pt for a range of pitches. It can be shown that in all cases, ∆pt[Γ ] = ∆tt[Γ ]
is achieved by a circle that intersects both strands, or, equivalently, by a sphere
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Figure 9. Plots of linear, circular, and spherical, two-point radius
functions on double helices. The arclength parameter η = σ − s
now assumes all real values twice, once corresponding to pairs of
points on the same strand, and once with the pair on opposite
strands (with phasing chosen such that η = 0 corresponds to points
on opposite strands that lie in the same orthogonal cross-section of
the double helical structure). Accordingly, the plot of each function
generates two curves (one for each strand): (a) pp, pt, and tt for
pitch 2.5126, and offset angle π (i.e. the diametrically opposed
double helix), (b) same as (a) but with offset angle 2

3π, (c) pt for
three different pitches, all with offset angle π, (d) same as (c), but
with offset angle 2

3π.

that sits between the two strands with tangencies at either side. Panel (c) shows
that as the pitch is decreased, there is a critical value at which a global minimum
of pt, achieved across the diameter of the helical structure, splits into two global
minima, achieved by asymmetric leading and trailing spheres (and a symmetric
local maximum). Unlike the single helix, this transition, or bifurcation, for the
double helix is local and for this reason it is easy to calculate analytically that the
critical pitch is exactly 2π. In [19] it was observed that this critical pitch value
corresponds to the standard parameters for the B-form DNA double helix. For
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asymmetrically offset double helices, as shown in panel (d), there is a critical pitch
below which there are multiple local minima of the function pt. However for all
pitch values there is always a unique global minimum that varies smoothly.
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