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A boundary element model for the computation of sequence-dependent hydrodynamic properties of
short DNA molecules is introduced. The hydrated surface is modeled as a curved tube of uniform
radius with ends capped by hemispheres, and the axis of the tube is a general space curve whose
length and curvature are determined locally by the sequence using a rigid basepair model of
double-helical DNA with parameters based on x-ray crystallography. Diffusion coefficients for
families of random and periodic DNA sequences are computed and compared with theories for
straight tubes and experimental data. Our results indicate that sequence-dependent curvature can
have a measurable impact on both the translational and rotational diffusion coefficients, even for
relatively short fragments of lengths less than about 150 basepairs, and that previous estimates of the
hydrated radius of DNA are likely to be underestimates. Moreover, our results suggest a possible
method for refining the rigid basepair model parameters for DNA in solution as well as the hydrated
radius. © 2008 American Institute of Physics. [DOI: 10.1063/1.2992080]

I. INTRODUCTION

There are many experimental methods for probing the
structure of macromolecules in solution. Examples range
from more modern techniques such as light scattering,1 fluo-
rescence polarization,2 and electric dichroism and
birefringence3 to more classic techniques such as
centrifugation“_6 and electrophoresis,’ including newer vari-
ants such as membrane-confined® and capillary9 electro-
phoresis, which employ a solvent rather than a gel support
medium. When a macromolecule is relatively rigid and its
surrounding medium can be modeled as a Newtonian fluid,
there exist well-defined theories connecting experimental ob-
servables to the overall size and shape of the macromolecule.
Hydrodynamic properties such as the translational and rota-
tional diffusion coefficients of the macromolecule at infinite
dilution play a central role in these theories. Indeed, experi-
mental measurements often lead to direct estimates of these
diffusion coefficients, which are then connected to the size
and shape of a macromolecule through an appropriate hydro-
dynamic model. Recent advances in experimental, modeling,
and computational techniques now allow the structure of
macromolecules in solution to be studied with more reso-
lution than ever before. Methods for solution, combined with
methods for crystalline states such as x-ray diffraction, to-
gether provide a powerful means of exploring macromolecu-
lar structure in various applications to proteinslo_13 and
DNA 417

A hydrodynamic model of a macromolecule involves
two main modeling assumptions. The first assumption is that
the macromolecule can be represented by an effective hy-
drated surface which represents not only the macromolecule
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itself but also any tightly bound solvent molecules. In classic
treatments, this surface has traditionally been modeled as a
simple shape such as an ellipsoid or a straight circular
cylinder.18 The second assumption is that the solvent medium
exterior to the hydrated surface can be modeled as a New-
tonian fluid. For the description of relatively slow diffusive
translational and rotational motions of a relatively large mac-
romolecule, the steady Stokes equations with no-slip bound-
ary conditions have had great success and have become
standard.'*%° Except for the simplest of geometries such as
spheres and ellipsoids, the Stokes equations are, in general,
too complex to solve exactly and, hence, approximations
must be made. Two common classes of approximations are
boundary element methods,'*?"** which provide convergent
approximations to the Stokes equations and the no-slip
boundary condition, and bead-type methods,'** which pro-
vide only heuristic approximations.

In this article, we introduce a boundary element model
for the stable and accurate computation of sequence-
dependent hydrodynamic properties of short DNA fragments.
We model the hydrated surface as a curved cylinder or tube
of uniform radius with ends capped by hemispheres. The axis
of the tube is a general space curve whose length and curva-
ture are determined locally by the sequence. This axis is
constructed using a rigid basepair model of double-helical
DNA in which the relative displacement and orientation be-
tween adjacent basepairs (dimer step) is described by a set of
six parameters depending on the dimer composition.zé‘_26 For
the case of B-DNA, parameters for all possible dimer com-
positions have been estimated from crystallographic data.”’
Using these parameters, we construct an axis and a corre-
sponding tubular surface which twists and bends in space
according to the sequence. This rigid surface is expected to
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provide a reasonable approximation for DNA fragments with
lengths from about 20 to 150 basepairs. At longer lengths,
the rigidity assumption becomes more of an issue since the
persistence length of DNA is about 150 basepairs.28 At
shorter lengths, we expect an atomistic-type surface which
captures local fine-scale features to be more approplriate.16
Studies on straight tube models have shown that, for lengths
greater than about 20 basepairs, the details of the capped
ends have a negligible effect on global hydrodynamic prop-
erties such as the translational and rotational diffusion coef-
ficients, provided the end-to-end length of the axial curve is
the same.”>! Thus a tube model with ends capped by hemi-
spheres is expected to produce nearly identical results as a
model with ends capped by disks provided the length of the
axial curve is matched. We prefer to work with hemispheri-
cal caps since they lead to a better conditioned hydrody-
namic problem because sharp edges are avoided.

The basic hydrodynamic problem is to solve the steady
Stokes equations with no-slip boundary conditions in the
three-dimensional domain exterior to the hydrated surface.
To this end, we employ a new stable, accurate, and
singularity-free boundary integral formulation described
elsewhere.”” The formulation is a Fredholm equation of the
second kind and employs a mixed combination of the classic
double- and single-layer potentials defined on parallel sur-
faces. In contrast to formulations of the first kind based on
the single-layer potential alone,'”?"* the mixed formulation
is not subject to ill conditioning in the limit of fine discreti-
zations, and also avoids issues associated with null vectors,
which pose a difficulty independent of the conditioning
problem.33 By virtue of being singularity-free, the mixed for-
mulation can be discretized using standard high-order Gauss
quadrature rules. Moreover, because parametrizations of the
tubular surface geometry are available, all integrals can be
formulated on the exact curved surface without a further ap-
proximation by flat elements. Thus curvature effects in both
the circumferential and axial directions can be accurately re-
solved without the need for fine meshes or heuristic area
correction factors.”’ Numerical experiments on a variety of
tubular surfaces with relatively large curvatures indicate that
global hydrodynamic quantities such as resistance matrices
and diffusion coefficients can be computed with a typical
accuracy of about 0.1% using moderate meshes. Compared
with typical experimental errors in these quantities, the pro-
posed numerical method can be viewed as delivering nearly
exact results. Other formulations of the second kind are
possible,lz’zo’3 33 but these typically require the use of prod-
uct integration rules®®? or specialized coordinate transfor-
mations and projections38 to accurately approximate weakly
singular integrals, and some also require that one or more
distinguished points within the hydrated surface be identified
for the placement of point singularities.lz’34

For purposes of validation, we use our boundary element
method to accurately compute diffusion coefficients for a
straight tube model of DNA and compare our results with
various empirical formulas'"?" and experimental data.®* A
classic model for the hydrated surface of an arbitrary DNA
sequence of length up to about 150 basepairs is that of a
straight circular tube. The length of the tube is determined by
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the rise per basepair, whose average value is about 3.4 A
and the radius of the tube is a prescribed constant, whose
value is estimated to be between 10 A*® and 13 A." The
first estimate is based on x-ray diffraction data, whereas the
second is based on experimental data in solution and empiri-
cal formulas for the diffusion coefficients. Using our bound-
ary element method, we compute the translational and rota-
tional diffusion coefficients for a straight tube model as a
function of length (number of basepairs) for different radius
values. For the translational diffusion coefficient we observe
a good agreement between the boundary element results and
the empirical formulas, but for the rotational diffusion coef-
ficient we observe more significant differences. Our bound-
ary element results confirm the previous observations that a
hydrated radius of about 10—13 A is consistent with the
experimental data on the translational diffusion coefficient,"”
whereas a radius of 13—17 A is consistent with the experi-
mental data on the rotational diffusion coefficient. We sur-
mise that this difference may largely be due to the limited
validity of the straight tube assumption, which is a critical
assumption in various experimental techniques for measur-
ing rotational diffusion.”'®

To illustrate the effects of the sequence, we compute the
translational and rotational diffusion coefficients as a func-
tion of length for families of random and periodic DNA se-
quences using the rigid basepair model with crystallographic
data.”” Our results show that while the data for the sequence-
dependent curved tube model exhibit the same general trends
as that for the straight tube model, there is a noticeable sys-
tematic offset due to curvature effects. For each value of the
radius, the straight model uniformly underestimates both the
translational and rotational diffusion coefficients over the en-
tire range of lengths compared to the sequence-dependent
curved model. This result suggests that sequence-dependent
curvature can have a measurable impact on the diffusion co-
efficients, even for relatively short fragments of lengths less
than about 150 basepairs, and that previous estimates of the
hydrated radius are likely to be underestimates. The variabil-
ity of the sequence-dependent data also suggests a possible
method for refining rigid basepair model parameters for
DNA in solution. In particular, from experimental data on
known sequences of known length, the hydrodynamic model
introduced here could be used to numerically fit the relative
displacement and rotation parameters for all the different
possible dimer steps, as well as the hydrated radius. Indeed,
the possibility of refining these structural parameters has
been a major motivation for this work.

The presentation is structured as follows. In Sec. II we
outline a rigid basepair model of DNA, translate crystallo-
graphic data?’ to the parametrization used here, and describe
our method for constructing a tubular surface model for a
given DNA sequence. In Sec. IIT we briefly outline the hy-
drodynamic equations and numerical boundary element pro-
cedure for computing the resistance and mobility matrices
and diffusion coefficients for a given surface. In Sec. IV we
present numerical results for both the straight and the
sequence-dependent curved tube models and compare them
with previous results and experimental data. In Sec. V we
end with some concluding remarks.
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FIG. 1. Illustration of conventions used in the rigid basepair model of DNA.
(a) Indexing scheme for basepairs (X,X), (a=1,...,n). (b) Reference point
¢ and frame {d,} for an arbitrary basepair (X,X). (c) Relative rotation and
displacement between adjacent basepairs (X,X), and (X,X),,, with associ-
ated middle frame {3,‘-’}.

Il. MODEL

Here we outline a rigid basepair model for describing the
three-dimensional sequence-dependent structure of a DNA
molecule. We introduce the quantities necessary to define the
configuration of a basepair, define coordinates for describing
the relative rotations and displacements between adjacent
basepairs, translate crystallographic data®’ to the parametri-
zation used here, and describe our method for constructing a
tubular surface model for a given DNA sequence.

A. Basepairs, configurations

We consider right-handed double-helical DNA in which
bases T, A, C, and G are attached to two oriented antiparallel
backbone strands and form only the standard Watson—Crick
pairs (A,T) and (C,G). Choosing one backbone strand as a
reference, a DNA molecule consisting of n basepairs is iden-
tified with a sequence of bases X;X,...X,, listed in the 5’ -3’
direction along the strand, where X, e{T,A,C,G}. The
basepairs associated with this sequence are denoted by

(X,)?)l,(X,)?)z, ,(X,)_(),,, where X is defined as the
Watson—Crick complement of X in the sense that A=T and
C=G. The notation (X,X), for a basepair indicates that base

X is attached to the reference strand while X is attached to
the opposite strand as illustrated in Fig. 1(a).

We adopt a standard model of DNA* in which each
basepair is modeled as a flat rigid object. The configuration
of an arbitrary basepair (X,X), is specified by giving the
location of a reference point ¢¢ € R? fixed in the basepair and
the orientation of a right-handed orthonormal frame {d¢},
dl e R? (i=1,2,3), attached to the basepair. The reference
point and the frame vectors are defined according to the
Tsukuba convention.”® The vector d{ points in the direction
of the major groove along the perpendicular bisector of the
C1’-C1’" axis of an ideal basepair, whereas d5 points in the
direction of the reference strand and is parallel to the
C1'-C1’ axis. As a result, d5=d{ X dj is perpendicular to the
plane of (X,X), and normally points in the direction of

(X ,)_(),Hl. The reference point ¢“ is located at the intersection
of the perpendicular bisector of the C1’-C1’ axis with the
axis defined by the pyrimidine C6 and the purine C8 atoms
as illustrated in Fig. 1(b).

There are four possible basepairs (X,X), corresponding
to the choice X, € {T,A,C,G}. In a rigid basepair model, the
positions of the nonhydrogen atoms in each of these base-
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pairs with respect to ¢“ and {d} are considered to be con-
stant. As a result, once the reference point and frame of a
basepair are specified, so too are the positions of all of its
nonhydrogen atoms. Estimated values for these positions for
basepairs in their ideal forms have been tabulated by Olson
et al.*® Thus the configuration of a DNA molecule consisting
of n basepairs is completely defined by the reference points
g“ and frames {d¢} (a=1,...,n).

B. Rotation, displacement coordinates

In the present model, the three-dimensional shape of a
DNA molecule is determined by the relative rotation and
displacement between adjacent basepairs as illustrated in
Fig. 1(c). The relative rotation and displacement between

(X,X), and (X,X),,; can be described in the general form
3 3
' =2 A, g =g+ 2 i, (1)
i=1 i=1

where A®e R¥*3 is a rotation matrix which describes the
orientation of frame {d;‘“} with respect to {df}, 7" e R¥is a
coordinate vector which describes the position of ¢! with
respect to ¢“, and {d“} is a right-handed orthonormal frame

between {d{} and {dﬁ’”}. The frame {c_lf’} is often referred to
as a middle frame and will be defined below. From Eq. (1)
we deduce that the entries in A? and 7" are given by

1 ~ 1
Nb=dd-d, ot =30 (g - ). 2)
A rotation matrix A can be parametrized by a coordi-
nate vector & € R? in a variety of ways. In this work, we
parametrize rotation matrices using the Cayley (also referred
to as Euler-Rodrigues or Gibbs) formula®’

A=cay[#'] =1+ ([WX]+%[0”><]2), (3)

44|67

where I is the identity matrix and [ #*X] denotes the skew-
symmetric matrix

0 -8 &
[x1=| & o -a|. (4)
-6, 6 0
The Cayley formula can be explicitly inverted as
¢ =cay '[A“] = #vec[/\“ - (A9, (5)
t[AY]+ 1

where trf{ A9] and (A9)7 denote the trace and the transpose of
A? and, for an arbitrary skew-symmetric matrix A, we define
vec[A]=(A3,,A,3,4,;). Equations (3) and (5) provide a one-
to-one correspondence between rotation matrices A“ and co-
ordinates ¢, provided that trf A“]# —1. Matrices for which
tr[ A“]=—1 can be shown to correspond to a rotation through
ar-radians (180°), which are unlikely to occur between adja-
cent basepairs in our application.

The Cayley parametrization of a rotation matrix has a
straightforward geometrical interpretation. The matrix A“ in
Eq. (3) corresponds to a right-handed rotation about a unit
vector ¥ through an angle ¢“ € [0, 7), where

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



165105-4 O. Gonzalez and J. Li
1 ! 2 ¢'d¢ (6a)
=— d a
oo
‘_ 1]
¢* =2 arctan 5 ) (6b)

From Eq. (6a) we deduce that a simple rotation about the
frame vector df is obtained when #'=(6{,0,0), where the
angle of rotation is determined by Eq. (6b). Similar conclu-
sions can be drawn for simple rotations about the other frame
vectors. In general, a rotation about a given unit vector m*
=37 ufd* through a given angle ¢# [0, ) is obtained

when

f:Ztan(%)Mf. (7)

The middle frame {Jl“} used to describe relative displace-
ments can now be defined. Let A? be the relative rotation
matrix for frame {dj.”l} with respect to {d{}. Then the coor-
dinates ¢, axis 1”, and angle ¢ associated with this rotation
are as given in Egs. (5), (6a), and (6b). The middle frame is
here defined by a relative rotation about the same axis v, but
through an angle of ¢%/2. Using Eq. (7) we obtain

’;
N a7 ¢\ o
dj = z cay;[6°]d}, 6/ =2 tan(j) zh (8)

Thus the relative rotation and displacement between an
arbitrary pair of adjacent basepairs (X,X), and (X,X),,; are
completely described by the coordinates ¢ and 7”. The defi-
nitions above satisfy all the qualitative guidelines set forth in
the Cambridge convention,** including the symmetry condi-
tions associated with a change in reference strand. Accord-
ingly, we refer to ¢ as tilt-roll-twist coordinates and 7/ as
shift-slide-rise coordinates. For a given configuration {¢“,d/}

of basepair (X ,}_()a, the above definitions establish a one-to-
one correspondence between {#°, 7"} and the configuration

{g®*",d**"} of basepair (X,X),,,. Notice that ¢ are not con-
ventional angular coordinates as employed by many authors.
Rather, they are abstract coordinates defined via the param-
etrization in Eq. (3). These abstract coordinates can be put
into correspondence with conventional angular ones, and are
nearly identical in the case of small rotations when the an-
gular ones are measured in radians.

C. Crystallographic estimates

In the simplest model of sequence-dependent DNA
structure, the coordinate set {6%, 7} is completely deter-
mined by the composition of basepairs (X,X), and (X,X),,,.
Thus there are 16 different coordinate sets corresponding to
the 16 possible basepair combinations defined by X,, X,
e{T,A,C,G}. Crystal structures of B-form DNA were ana-
lyzed by Olson et al.*’ In that work, estimates for a set of
relative rotation and displacement coordinates were reported
for all of the 16 possible combinations of adjacent basepairs.
These estimates were translated into the coordinates defined
here and are summarized in Tables I and II as a function of
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TABLE I. Estimates of tilt-roll-twist in the Cayley coordinates.

T A C G
0.00 -2.56 -0.18 -3.09 0, X 10%
A 1.98 1.28 1.27 8.17 0, X 107
5.23 6.32 5.64 5.72 0, % 10"
2.56 0.00 2.76 -0.92 0, X 10%
T 1.28 6.09 3.49 8.66 0, % 10?
6.32 6.85 6.56 6.76 0, % 10!
0.18 -2.76 0.00 -0.18 6, X 10?
G 1.27 3.49 0.55 6.55 6, X 10%
5.64 6.56 6.04 5.91 6% 10!
3.09 0.92 0.18 0.00 6, X 10?
C 8.17 8.66 6.55 9.92 6, X 10?
5.72 6.76 5.91 6.52 6, X 10!

X, (rows) and X,,; (columns). Notice that only 10 of the 16
entries in each table are independent, as required by symme-
try considerations based on the Watson—Crick pairing rules.
In particular, each entry below the main diagonal in each
table is a simple multiple of the corresponding entry above.
Notice that the parameters ¢ in Table I are dimensionless,
whereas the parameters 7" in Table II have dimensions of
length.

In this work, we use Tables I and II to define the three-
dimensional structure of a DNA molecule. Given a molecule
with sequence X X,...X,, there are n—1 dimer steps X, X, -
To each such step we associate a unique coordinate set
{¢°, 7} from the tables. For a given configuration {¢“,d{} of

a+1

basepair (X,X),, the configuration {g**',d**'} of basepair
(X,X),4; is determined by {#*,7"}. Thus the three-
dimensional shape of a molecule is built up recursively be-
ginning from an arbitrary choice of configuration for the first
basepair. The three-dimensional structure constructed from
the data in Tables I and II is to be interpreted as an approxi-
mation of the relaxed ground-state shape of a molecule. Suf-
ficiently short molecules are expected to remain close to this
shape under appropriate experimental conditions. At long
lengths, the shape of a DNA molecule is expected to be
highly variable due to its intrinsic flexibility.

D. Hydrated surface

We model the hydrated surface of a DNA molecule as a
curved cylinder or tube of uniform radius with ends capped

TABLE II. Estimates of shift-slide-rise (A) in the Cayley midframe.

T A C G
0.00 -0.35 1.35 0.90 7 % 10!

A -5.95 -0.82 -5.82 -2.68 7, % 10!
331 3.27 3.36 3.34 75X 107

0.35 0.00 2.85 -0.94 7, X 10!

T -0.82 0.31 0.79 5.04 7,% 10!
3.27 3.42 3.37 3.33 75X 100

-1.35 -2.85 0.00 0.56 7, X 10!

G -5.82 0.79 -3.81 237 7, % 10!
3.36 3.37 3.40 3.42 73X 107

-0.90 0.94 -0.56 0.00 7 X 10!

C -2.68 5.04 -2.37 3.80 7, % 10!
334 333 3.42 3.39 75X 10°
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by hemispheres. The axis of this tube is a space curve de-
fined by the basepair reference points. For a given radius r
and sequence S=XX,...X,, we denote the tubular surface by
I'(r,S) and the axial curve by y(S). We model ¥(S) as a biarc
curve,* which is a space curve formed by a concatenation of
circular arcs. A main motivation for this choice is that it
leads to a simple construction of the surface I'(r,S). In par-
ticular, I'(r,S) is constructed by superimposing a toroidal
segment of radius r on each arc of ¥(S).

In the simplest approach, the curve y(S) is defined by
interpolating the basepair reference points ¢* (a=1,...,n).
However, to maintain smoothness of the surface I'(r,S), the
maximum curvature of the curve ¥(S) must be bounded by
1/r, otherwise the surface I'(r,S) will locally self-intersect
and develop kinks. While such irregularities in I'(r,S) would
likely have a negligible effect on global hydrodynamic quan-
tities, they can significantly increase the computational effort
required to solve the hydrodynamic equations. Thus the
problem of defining ¥(S) can be described as that of finding
a biarc curve which best fits the reference points g
(a=1,...,n) subject to the restriction k5= 1/r, where k)
denotes the maximum curvature of y(S).

Guided by the above characterization we devised an it-
erative procedure for determining the axial curve y(S). Given
a control parameter 0 <{<1, the procedure begins with an
initial set of nodes qZ=q“, constructed as described in Sec. II,
and an interpolating curve y,(S), defined as the unique biarc
interpolant of qz,48 with tangent vectors computed from a
cubic spline. If Ky, (8)= {/r, the procedure is terminated and
Y(S)=y(S). Otherwise, segments of high curvature on y,(S)
are identified, and the indices of all interior high curvature
nodes are collected into a set J;. To smoothen the curve we
perform the local Gaussian convolution
1 g+ !

. a & Jy.

a . aEJk
Gr+1 =

The nodes ¢f,, are then interpolated as before to obtain
Yir1(S). The procedure is repeated until the curvature condi-
tion is satisfied. By design, the procedure smooths local fine-
scale kinks of the axial curve while preserving large-scale
features, where the scale is given by r. In practice, we used
the parameter value {=1/2 and found that for realistic values
of r (for example, r=13 A) the procedure is terminated for
most sequences after only one or two iterations. The result-
ing smoothened axial curves were found to differ from the
unsmoothened curves by less than 0.1% in the /,-norm. The
result of this procedure is a biarc curve y(S) which closely
follows the path of the basepair reference points g“ (see
Fig. 2). The curve begins at ¢!, ends at ¢", and satisfies the
curvature condition kg =1/r.

The surface I'(r,S) is defined by superimposing a toroi-
dal segment of radius r on each circular arc of the biarc
curve y(S). We close the ends of I'(r,S) using hemispherical
caps of radius r. In the simplest approach, the hemispheres
would be centered at the points ¢' and ¢, which would cause
the surface to extend beyond the first and last basepairs. To
eliminate this effect, we translate the centers of the hemi-
spheres along ¥(S) by a distance r from each end. Thus the
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(@)

(b) (d)

FIG. 2. Illustration of curved and straight tube models for the 40 basepair
sequence (CTTTTAAAGAG);CTTTTAA with radius r=13 A. (a) Refer-
ence points ¢“. (b) Reference points ¢ and smoothened axial curve ¥(S). (c)
Curved tube model I'(r,S). (d) Straight tube model Iy (r,S).

points ¢! and ¢" are located, approximately, at the apexes of
the hemispheres. The resulting surface I'(r,S) can be shown
to be continuously differentiable because (S) is continu-
ously differentiable and satisfies the curvature condition, and
because the ends of I'(r,S) are capped by hemispheres. The
overall procedure is illustrated in Fig. 2. For reference, the
figure also shows a straight tube model I'y,(r,S). The straight
tube is constructed in a similar way from equally spaced
reference points placed along a line with spacing 3.4 A,
which corresponds to a commonly accepted value for the
average rise per basepailr.46 This value is in close agreement
with the average value of rise obtained from Table II, which
is 3.36 A.

lll. THEORY

Here we briefly outline the standard theory for modeling
the hydrodynamics of a rigid molecule in an incompressible
Newtonian fluid at infinite dilution. We state the basic flow
equations, define various associated flow quantities, and in-
troduce the resistance and mobility matrices and diffusion
coefficients for a rigid body of arbitrary shape. We discuss
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various properties of the diffusion coefficients relevant to our
study and then briefly outline our numerical procedure,
which is described in detail elsewhere.

A. Flow equations

We consider the slow diffusive motion of a relatively
large rigid macromolecular body in an incompressible New-
tonian fluid of absolute viscosity w>0. In a body-fixed
frame, we denote the hydrated surface by I', the interior body
domain by B, and the exterior fluid domain by B,. Given a
velocity field v:I'—R3, we seek to determine the hydrody-
namic loads exerted by the fluid on the body. According to
standard theory,]9’20 these loads are determined by the fluid
velocity field u:B,— R and pressure field p:B,— R which
satisfy the classic Stokes equations

pu;ji—p;=0, xeB,, (9a)
u;;=0, xeB, (9b)
uj=v, xel, (9¢)
upp — 0, |x| — o, (9d)

Equation (9a) is the local balance law of linear momen-
tum for the fluid and Eq. (9b) is the local incompressibility
constraint. Equation (9¢) is the no-slip boundary condition
which states that the fluid and the body velocities coincide at
each point of the hydrated surface. (For the case of small
macromolecules, a different type of boundary condition may
be more appropriate.”"*’) The limits in Eq. (9d) are boundary
conditions that are consistent with the fluid being at rest at
infinity. Unless mentioned otherwise, all vector quantities are
referred to a body-fixed frame and indices take values from 1
to 3. Here and throughout we will use the usual conventions
that a pair of repeated indices implies summation, and that
indices appearing after a comma denote partial derivatives.

B. Body velocities, hydrodynamic loads

When the body B is rigid, the boundary velocity field v
in Eq. (9¢) takes the general form

v=V+Q X (x-c), (10)

where X denotes the cross product. Here V is the linear
velocity of a given reference point ¢, and () is the angular
velocity of the body-fixed frame. Under mild assumptions on
the surface I',** the system in Egs. (92)—(9d) has a unique
solution (u,p) for given (V,Q). The fluid stress field o:B,
— R3*3 associated with this solution is defined by

where 9;; is the Kronecker delta symbol, and the traction
field f:I' — R? exerted by the fluid on the body surface (force
per unit area) is defined by

f=ov, (12)

where v is the outward unit normal on I'. The hydrodynamic
loads of the fluid on the body are found by integrating this
traction field over the body surface. In particular, the result-
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ant force F and torque 7, about the reference point c, are
given by

F:J f)dA,, T:j (x—c) X f(x)dA,, (13)
r r

where dA, denotes an infinitesimal area element at x eI'.
The resultant loads (F,T) are purely hydrodynamic in the
sense that they vanish when the body velocities (V,{)) van-
ish. Resultant loads due to hydrostatic effects, that is, buoy-
ancy loads caused by a body force field, may be accounted
for separately.

C. Resistance, mobility matrices

Linearity of Egs. (9)—(13) implies the existence of ma-
trices L, € R**? (a=1,...,4) such that

F=—L1V—L3Q, T=—L2V—L4Q. (14)

These matrices are called the hydrodynamic resistance ma-
trices associated with the body B. They are intrinsic proper-
ties of the shape of B and are proportional to the fluid vis-
cosity u. With the exception of L, they depend on the choice
of reference point ¢ appearing in Eqgs. (10) and (13).'%2*-%
Self-adjointness of the differential operator associated with
the system in Egs. (9a)—(9d) implies that the overall resis-
tance matrix

L= <L2 L4> (15)

. . 19.20.51 . . . .
is symmetric.” *~~°" Furthermore, an energy dissipation in-

equality associated with the system in Eqgs. (9a)—(9d) implies
that L is also positive-definite.

Throughout our developments we denote the inverse of
L by M so that

M, M; L, Ly\™!
M: = . (16)
M, M,) " \L, L,

The block entries M, € R3** are called the mobility matrices
associated with B and are related to the resistance matrices
L, € R**3 through the expressions

M =L+ L' LS LY, My=—L7'LyS™,

M,=-S"'L,L;', M,=5", (17)

where S =L4—L2LI1L3. Since L is symmetric positive-
definite, we find that M is also symmetric positive-definite.
In particular, the block entries L, Ly, M, and M, are all
symmetric positive-definite. It can be shown that, with the
exception of M,, the mobility matrices also depend on the
choice of the reference point ¢ In view of Egs. (14) and
(16), we have

V=—M1F—M3T, Q=—M2F—M4T. (18)

The resistance matrix L and the mobility matrix M pro-
vide a fundamental relation between velocities and loads for
a rigid body immersed in a Newtonian fluid. For a body
subject to prescribed velocities (V,€)), the resultant hydro-
dynamic loads (F,T) predicted by the solution of the system
in Egs. (9a)—(9d) are unique and given by (F,T)=-L(V,().
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Conversely, for a body subject to prescribed hydrodynamic
loads (F,T), the resulting velocities (V,{)) must also be
unique and given by (V,Q)=-M(F,T).

The matrices L and M satisfy a simple transformation
law under a change in reference point. Let ¢ and ¢’ be two
arbitrary reference points with associated matrices (L, M)
and (L',M’), and let r=c’—c be the vector from ¢ to c’.
Then””

L'=0"Lo, M =0"'MQ7, (19)

where Q and its inverse Q™! are matrices given in block form
by, employing the notation from Sec. II B,

I [rX] ~ I —[rX]
Q:(o I ) Ql:(o I ) (20

D. Diffusion, mobility coefficients

As derived by Brenner,’> the translational and rota-

tional diffusion coefficients for a rigid body immersed in a
Newtonian fluid are

D,=kT®S, D,=kT9,, (21)

where k is the Boltzmann constant, 7 is the absolute tem-
perature of the fluid, and ¢, and 9, are mobility coefficients
defined by

Y= 1ue(My), 9= 1tr(M,). (22)

The diffusion coefficients D, and D, quantify the mean-
square linear and angular displacements of the body per unit
time in free Brownian motion. In contrast, the mobility co-
efficients 1, and U, quantify the mean linear and angular
velocities of the body per unit load under the assumption of
hydrodynamic force and torque balance. The relations in
Eq. (21) can be viewed as generalizations to a rigid body of
arbitrary shape of the classic Stokes—Einstein relations for
bodies of spherical or ellipsoidal shape.lg’sé"55

The diffusion coefficients D, and D, play central roles in
the interpretation of various different types of experimental
data. The orientational averages implicit in the above defini-
tions account for the rotational aspect of the Brownian mo-
tion of a macromolecule in solution. In experiments in which
a macromolecule has no preferred orientation, these orienta-
tionally averaged coefficients are expected to provide accu-
rate descriptions of translational and rotational diffusive mo-
tions. (Although only one such mode of motion may be
measurable in any given experiment.) On the other hand, in
experiments in which a macromolecule has a preferred ori-
entation, the above coefficients would not be expected to
provide accurate descriptions unless M; and M, are nearly
isotropic, as in the case of a nearly spherical macromolecule.
When M, and M, are far from isotropic, the translational and
rotational diffusive motions of a macromolecule with a pre-
ferred orientation are better described by individual compo-
nents of M, and M, which correspond to the directions in
which diffusion is measured.

For the analysis of translational diffusion data we use the
orientationally averaged coefficient D, defined in Eq. (21).
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However, due to the nature of the corresponding experimen-
tal data, for the analysis of rotational diffusion we use a
transversely averaged coefficient defined by

D =kTOF, OF =it (My), (23)

where tr(M,) is the sum of the smallest two eigenvalues of
M,. This coefficient characterizes diffusive rotational motion
which occurs transverse to the axis of a nearly cylindrical
body. In particular, this average explicitly excludes the larg-
est eigenvalue of M,, which characterizes diffusive rotational
motion parallel to the axis. The definition in Eq. (23) can be
viewed as a natural generalization to the case of curved cyl-
inders of the transverse rotational diffusion coefficient of
straight cylinders.lz‘17

In this work, we follow standard convention and refer all
diffusion coefficients to the center of diffusion.'**® This
point is the unique point at which the mobility matrices M,
and M5 are equal and, consequently, symmetric because the
overall matrix M is symmetric. It also has the interesting
property that, among all points in space, it is the unique point
at which the coefficients ¥, and ¢, achieve minimum
values.'>*" (This is trivially true for ¥, since it is indepen-
dent of the reference point.) The center of diffusion can also
be described as that point at which the translational and ro-
tational diffusive motions are most independent. For sym-
metric bodies such as spheres, ellipsoids, and straight cylin-
ders, the center of diffusion is coincident with the center of
volume. However, for bodies of arbitrary shape, these two
points are generally distinct. The use of the center of diffu-
sion as the reference point guarantees that the predicted dif-
fusion coefficients for a body are not overstated.

The center of diffusion of a body can be determined
provided the mobility matrix is known at some given refer-
ence point. In particular, if ¢ is a given reference point with
associated mobility matrix M, then the center of diffusion ¢’
is given by, employing the notation from Sec. II B,

¢ =c+ (M- M) vec(M5 - M}). (24)

. Lo . . . 12,50
This expression is equivalent to those in previous works,

but may be more convenient because it avoids the principal
axes frame employed there. Once ¢’ is known, the associated
mobility matrix M’ can be found using Eq. (19), and the
associated diffusion coefficients D, and D/ can be obtained
from relations analogous to Egs. (21) and (23). The resulting

expressions take the form
rL L
D, =D,,

r

kT
D/ =D,- ?vec(M3 - M3) - (u[ M1 — M) vec(Ms - MY).

(25)

E. Numerical procedure

The basic hydrodynamic problem is to solve the steady
Stokes system in Egs. (9a)—(9d) in the three-dimensional do-
main exterior to the hydrated surface I'(r,S) of a given DNA
molecule. To this end, we employ a boundary element
method described in detail elsewhere.* Choosing an arbi-
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165105-8 O. Gonzalez and J. Li

trary body-fixed frame for the surface I'(r,S), we first use a
numerical integration procedure to determine its center of
volume, which we take as our initial reference point c. For a
given linear velocity V and angular velocity (), the boundary
element method yields an approximate resultant hydrody-
namic force F and torque 7. From the relation (F,T)
=-L(V,Q), we deduce that the columns of —L are the result-
ant loads corresponding to unit velocities, that is,

e (s

v=1,00 "\ p

0=(0,0,0)
Thus the determination of L for I'(r,S) requires six indepen-
dent computations. From L we compute the mobility matrix
M=L"" by matrix inversion, and then compute the center of
diffusion c¢’, the associated mobility matrix M, and the dif-
fusion coefficients D/ and D/ as described above.

The boundary element method we employ is defined by
four parameters: the size h of curved quadrilateral elements
used to represent the surface I'(r,S), the number q2 of Gauss
quadrature points used in each element, and two parameters
A e(0,1) and ¢ € (0, ¢p(,.5) which control the conditioning
of the method. Here ¢ry, s is a purely geometrical parameter
which in the present case is equal to r. Previous studies™
indicate that accurate results on tubular geometries can be
obtained with moderate values of % using g=1, A=1/2, and
¢/ ¢r(.5y=1/2. In our numerical experiments below, we
choose an & value that is small enough so that the relative
errors in computed hydrodynamic quantities are below 0.1%
uniformly over the entire range of lengths considered. Thus
numerical errors can be considered negligible.

v=(0,0,0) |* (26)
0=(0,0,1)

IV. RESULTS

Here we use our boundary element method to numeri-
cally compute translational and rotational diffusion coeffi-
cients for the straight and sequence-dependent curved tube
models introduced in Sec. II. For convenience, all results are
presented in terms of the dimensionless coefficients
pD;  —, D]t

r L
, D

D ;
kT

!

- : (27)
where ¢ is a characteristic length scale equal to 34 A. We
compute diffusion coefficients for straight tubes and compare
our results with various empirical formulas and experimental
data. We then compute diffusion coefficients for curved tubes
corresponding to random and periodic DNA sequences and
compare these results with those for straight tubes.

A. Straight tube model

Figure 3 illustrates convergence results for our numerical
method as a function of the element size parameter / and the
number of basepairs n for a straight tube of fixed radius. The
parameter & is proportional to the average size of a quadri-
lateral element in a given mesh. The results summarized in
this figure were used to select and justify the numerical pa-
rameters (g,\, ¢/ ¢r) and the element size h that were used
in all subsequent calculations.
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FIG. 3. Convergence results for straight tubes of fixed radius. (a) Tube with
r=10 A and n=20 discretized with elements of reference size h.. [(b) and

(©)] 5,’ and 5} vs 1/h for tube shown in (a). The scale on the horizontal
axis is such that 1/h,=18. Upward-pointing triangles and circles denote
results for g=1 and ¢=2 with (N, ¢/ ¢p)=(1/2,1/4). Downward-pointing
triangles and squares denote results for g=1 and g=2 with (N, @/ ¢r)
=(1/2,1/2). (d) D, (solid) and D/* (dashed) vs n for tubes with r=10 A.
Triangles denote results for elements of size h,. Circles denote results for
elements of size h..=h,/2. Both results were obtained with g=1 and

(N, ¢/ pp)=(1/2,1/2). (e) AD}/D] (solid) and AD.*/D!* (dashed) vs n,
where AD’ is the difference between results with element sizes h, and h...

Plot (a) in Fig. 3 illustrates a straight tube model with
r=10 A, n=20, and a moderate element size h., which we
take as a reference. Plots (b) and (c) show convergence re-
sults for the translational and rotational diffusion coefficients
for the tube shown in (a). Results are given for two different
g X q Gauss quadrature rules: g=1 and g=2. Moreover, re-
sults are given for two different pairs of conditioning param-
eters: (N, @/ pr)=(1/2,1/4) and (N, P/ ¢r)=(1/2,1/2). For
reference, the scale on the horizontal axis is such that 1/h4,
=18. The data illustrate that, for the different choices of
quadrature rule and conditioning parameters, the diffusion
coefficients converge to limiting values on moderately re-
fined meshes. The convergence characteristics are generally
better for g=2 than for g=1, and are generally better for
(N, ¢/ pr)=(1/2,1/2) than for (N,¢/¢r)=(1/2,1/4). Be-
cause larger values of g require increased computational ef-
fort, we select the parameters g=1 and (\,¢/¢r)
=(1/2,1/2) for all subsequent calculations.

Plot (d) of Fig. 3 shows the diffusion coefficients D] and
ﬁ;i as a function of the number of base pairs n for a straight
tube with radius =10 A. Results are given for two element
sizes: h, and h., (h.. is approximately half of 4.). The data
show that, for the entire range of n considered, reducing the
element size by a factor of about 2 causes no significant
changes in D] and D/*. Plot (e) shows the relative differ-

ences in each of D/ and D™ obtained with element sizes 4,
and h,. as a function of n. The data show that the relative
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FIG. 4. Comparison of boundary element computations with empirical for-
mulas for the diffusion coefficients of a straight tube. [(a) and (b)] Compari-

sons for 5[ and E;L. Solid curves correspond to boundary element compu-
tations, dashed curves correspond to the empirical formulas derived by
Tirado er al. (Ref. 17), and dotted curves correspond to the empirical for-
mulas derived by Yoshizaki and Yamakawa (Ref. 31). In each plot, the upper
group of curves correspond to results for a tube of radius =10 A, and the
lower group corresponds to results for r=15 A.

difference in each coefficient is well under 0.1% uniformly
in n. Based on these results, we expect the element size A, to
be sufficiently small for tubes with =10 A for the range of
n we consider. Notice that tubes with larger values of r
would have lower circumferential curvature, which would be
even more adequately resolved by elements of size /.. While
the above results pertain to straight tubes, similar conver-
gence results and accuracies hold for curved tubes with mod-
erate axial curvatures.’

Figure 4 presents a comparison between our boundary
element computations and two sets of empirical formulas'""'
for the diffusion coefficients of a straight circular tube.

Shown in the figure are plots of nﬁ,’ and n35r’L versus n for
two values of the radius: =10 A and r=15 A. We choose

to plot nD; and nD!* rather than D, and D!" since they
enhance the sensitivity and allow results for different radius
values to be more easily distinguished. The empirical formu-
las derived by Tirado et al."” are based on a curve fit of
numerical results obtained from a bead-type model in which
a cylinder is represented by a stack of rings of beads. In that
model, the cylinders are left hollow and open, with no cap or
plate at either end. The empirical formulas derived by
Yoshizaki and Yamakawa®' are based on a combination of
numerical results and slender-body theory.56’57 In that work,
interpolation formulas were derived which were consistent
with slender-body theory in the limit of long lengths and
with numerical boundary element results in the limit of short
lengths (the boundary element data were limited to tubes
with length to diameter ratios L/d<<5, or equivalently,
n <38 basepairs on our scale).

J. Chem. Phys. 129, 165105 (2008)
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FIG. 5. Comparison of boundary element computations and experimental
data on the translational diffusion coefficient for DNA sequences of various
lengths. The solid curves denote boundary element results from the straight
tube model with different radii: r=10,11,...,15 A ordered from upper to
lower curve. The different open symbols denote different sets of experimen-
tal data: downward triangles (Ref. 39), diamonds (Ref. 40), circles (Ref. 43),
upward triangles (Ref. 44), and squares (Ref. 45).

The data in Fig. 4 show that, for each of the two values
of r, our boundary element computations are in general

agreement with the empirical formulas for 5,’ , but that more
significant differences are visible between all three ap-

proaches for D;L. By design, the empirical formulas derived
by Yoshizaki and Yamakawa®' closely follow our boundary
element results at shorter lengths, but show some slight dis-
crepancy at longer lengths. This discrepancy is likely due to
the approximations inherent in slender-body theory, and
would presumably decrease in the limit of long length where
slender-body theory is applicable. In contrast, the empirical
formulas derived by Tirado et al."” are in better agreement
with our results at longer lengths than at shorter lengths.
Because of the fundamental differences between the bead-
type and Stokes models, it is ultimately difficult to under-
stand the differences observed in the figure. Nevertheless, the
results suggest that the bead-type model provides a reason-
able approximation of the more precise Stokes model at
longer lengths where end effects are less important.

Figure 5 shows a comparison between our boundary el-
ement computations and experimental data on the transla-
tional diffusion coefficient for DNA sequences of various
lengths. The curves in the figure are the results of our bound-
ary element computations using a straight tube model with
six different values of the radius: r=10,11,...,15 A. The
symbols in the figure correspond to different sets of experi-
mental data obtained by different techniques: velocity
sedimentation,”* dynamic light scattering,“o’44 and capil-
lary electrophoresis.45 Differences due to experimental con-
ditions are expected to be minimal since all the data were
normalized to standard conditions.'® The observed disagree-
ment between the electrophoresis data and those from other
techniques is at present not well understood.*> With the ex-
ception of this electrophoresis data, nearly all the experimen-
tal values fall within the region covered by the computed
curves.

The experimental data in Fig. 5 for sequences of lengths
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FIG. 6. Comparison of boundary element computations and experimental
data on the rotational diffusion coefficient for DNA sequences of various
lengths. The solid curves denote boundary element results from the straight
tube model with different radii: r=12,13,...,18 A ordered from upper to
lower curve. The different open symbols denote different sets of experimen-
tal data: diamonds (Ref. 40), downward triangles (Ref. 41), and circles
(Ref. 42).

greater than 50 basepairs can be seen to be consistent with
two distinct radius ranges. The light scattering data* are
closely consistent with r=10—11 A and the sedimentation
data® are consistent with r=12—13 A. This difference could
be a characteristic of the different experimental techniques,
or simply the result of experimental error. In this respect, it is
important to note that the reported sequence lengths are
themselves subject to error. Alternatively, the difference
might be due to sequence effects, for example, sequence-
dependent axial curvature, which are ignored in the interpre-
tation of the experimental measurements. The data for se-
quences of about 50 basepairs or less show more scatter
relative to the computed curves, although they are still gen-
erally consistent. In this short length range, we expect that
any sequence-dependent curvature effect would play a lesser
role and that local irregularities in the actual hydrated surface
would become increasingly important. As a result, a straight
tube model of uniform radius with ends capped by hemi-
spheres may be overly simplistic. Indeed, for extremely short
sequences, we expect that an atomistic-type surface model is
likely more appropriate.

Figure 6 shows a comparison between our boundary el-
ement computations and experimental data on the rotational
diffusion coefficient for DNA sequences of various lengths.
The curves in the figure are the results of our boundary ele-
ment computations using a straight tube model with seven
different values of the radius: r=12,13,...,18 A. The sym-
bols in the figure correspond to different sets of experimental
data obtained by different techniques: dynamic light
scattering4o and transient electric birefringence.‘“’42 As be-
fore, the data are normalized to standard conditions.'® Notice
that nearly all the experimental values fall within the region
covered by the computed curves, but here the computed
curves correspond to larger values of r. Thus, in contrast to
the translational data, the bulk of the rotational data is con-
sistent with 7=13—17 A. This difference can likely be attrib-
uted to sequence-dependent axial curvature, which is ignored
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(b)

FIG. 7. Sequence-dependent curved tube models of different DNA se-
quences. (a) Four different sequences of n=40 basepairs. (b) Four different
sequences of n=120 basepairs.

in the interpretation of the experimental measurements, and
experimental errors, which are expected to be higher since
rotational diffusion coefficients are more difficult to measure.
However, the systematic nature of the difference toward
larger values of r suggests that a systematic effect such as
curvature is more likely than experimental error.

B. Sequence-dependent curved tube model

Figure 7 shows curved tube models for various different
DNA sequences. Shown are models for four different 40
basepair sequences and four different 120 basepair se-
quences, all with a tube radius of r=13 A. These tube mod-
els were constructed as described in Sec. II using the crys-
tallographic data in Tables I and II. The figure illustrates the
possible variability in overall axial curvature due to sequence
effects.

To study the effects of sequence on the diffusion coeffi-
cients as a function of n, we considered sample sets of the
form E,,z{S,L, ...,S"}, where m is a fixed number and each
S/ is a sequence of length n. For different values of n the
sample X, was constructed by a culling procedure. We first
constructed a set E;:{S,l,, ,SZ’/}, m' > m, consisting of an
arbitrary mixture of completely random sequences, periodic
sequences with random repeating units, and periodic se-
quences containing A-tracts of varying lengths. The radius of
gyration R of each S{, e 2, was computed and the minimum
and maximum values R,;, and R, were recorded. The set
3., was then constructed by selecting appropriate elements of
2. to obtain an approximately uniform distribution in R be-
tween R,;, and R,,. In our numerical experiments, we con-
sidered lengths 15=n=120 (in increments of 5), and for
each value of n we constructed sample sets of size m=20.
The four sequences shown in Fig. 7(a) are typical elements
from the sample set 24, and the four sequences shown in
Fig. 7(b) are typical elements from the sample set 2. ;5.

Figure 8 shows the translational diffusion coefficient of
each sequence in the sample set X, for each value of n com-
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FIG. 8. Comparison of numerical results from sequence-dependent curved
tube model and straight tube model for translational diffusion coefficient.
Cross and plus symbols denote results from the sequence-dependent curved
model with different radii: (crosses) r=10 A and (pluses) r=15 A. The
solid curves denote results from the straight tube model with different radii:
r=10,11,...,15 A ordered from upper to lower curve. The open symbols
denote experimental data as in Fig. 5.

puted using the curved tube model. Results are shown for
two values of the radius: r=10 A and r=15 A. For com-
parison, the six curves and the experimental data from Fig. 5
are included for the length range considered here. It can be
seen that for r=10 A and for r=15 A the diffusion coeffi-
cients obtained from the straight tube model are uniformly
below those obtained from the sequence-dependent curved
tube model. Similar results are expected for each of the in-
termediate radius values. Thus, for given values of n and r,
the data show that the straight tube model underestimates the

diffusion coefficient D, relative to the curved model. Equiva-

lently, for given values of n and 5;, the data show that the
straight tube model underestimates the radius r relative to the
curved model. This latter observation is relevant to previous
studies in which the hydrated radius of DNA has been esti-

mated from given data on n and 13; . In particular, it suggests
that previous estimates of the hydrated radius based on the
straight tube model are likely to be underestimates.

Figure 9 shows the rotational diffusion coefficient of
each sequence in the sample set 2, for each value of n com-
puted using the curved tube model. Results are shown for
two values of the radius: =12 A and r=18 A. For com-
parison, the seven curves and the experimental data from
Fig. 6 are included as before for the length range considered
here. Just as for the translational diffusion coefficient, it can
be seen that for r=12 A and for r=18 A the rotational dif-
fusion coefficients obtained from the straight tube model are
uniformly below those obtained from the sequence-
dependent curved tube model. Similar results are expected
for each of the intermediate radius values. For given values
of n and r, the data show that the straight tube model under-

estimates the diffusion coefficient D/ relative to the curved

model. Equivalently, for given values of n and E;L, the data
show that the straight tube model underestimates the radius r
relative to the curved model. The difference between the
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FIG. 9. Comparison of numerical results from sequence-dependent curved
tube model and straight tube model for rotational diffusion coefficient. Cross
and plus symbols denote results from the sequence-dependent curved model
with different radii: (crosses) r=12 A, (pluses) r=18 A. For clarity, the
crosses have been shifted horizontally one unit to the left. The solid curves
denote results from the straight tube model with different radii: r
=12,13,...,18 A ordered from upper to lower curve. The open symbols
denote experimental data as in Fig. 6.

straight and the curved models is significantly more pro-
nounced for the rotational diffusion coefficient than for the
translational diffusion coefficient.

V. CONCLUDING REMARKS

The data in Figs. 8 and 9 may have an elegant math-
ematical explanation. Indeed, the data suggest that among all
curved tubes of fixed length and radius the translational and
rotational diffusion coefficients are minimal for a straight
tube. Moreover, that for straight tubes of fixed length, both
diffusion coefficients increase as the tube radius decreases.
While such results seem plausible and even intuitive, we are
not aware of any general results along these lines. We remark
that such results would not only be of intrinsic mathematical
interest, but would also be useful in the analysis and inter-
pretation of hydrodynamic data on tubelike structures. Here
such results would lend further support to our statement that
previous estimates of the hydrated radius based on a straight
tube model are likely to be underestimates.

The variability of the sequence-dependent data in Figs. 8
and 9 suggests a possible method for refining rigid basepair
model parameters for DNA in solution. In particular, from
experimental data on known sequences of known length, the
sequence-dependent model introduced here could be used to
numerically fit the relative displacement and rotation param-
eters for all the different possible dimer steps, as well as the
hydrated radius. The computational effort required in such an
endeavor would be large, but would be well within the reach
of modern techniques. It is an open question whether the
diffusion coefficients are sufficiently sensitive and whether
current experimental techniques are sufficiently accurate to
make a meaningful fit possible. However, through a proper
selection of sequences to maximize sensitivity, such a fit may
ultimately be feasible. We remark that, at the present time,
we are not aware of any experimental results on the
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sequence-dependent variability of the diffusion coefficients
of DNA fragments at the length scales considered here.

Our computational model for the diffusion coefficients
of DNA fragments is based on a fundamental assumption of
rigidity and neglects thermally induced bending fluctuations.
For fragments of about 150 basepairs, we expect that such
fluctuations induce a local axial curvature of the order
1073 rad/A (root mean square). For comparison, we note
that the straight tube model has zero curvature by definition,
whereas the curved tube model yields a sequence-averaged
curvature of the order of 1072 rad/A. Previous studies™® re-
lated to the straight tube model indicate that these fluctua-
tions have a negligible effect on the translational diffusion
coefficient at this length scale. In view of the curvature esti-
mates above, we expect any such effects to also be negligible
and even smaller for the curved model. The effects of fluc-
tuations on the rotational diffusion coefficient have been less
well studied. Based on the results in Figs. 8 and 9, we expect
the effects to be larger compared to the translational diffu-
sion coefficient, but we are not aware of any quantitative
results along these lines.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the generous
support of the National Science Foundation DMS-0706951.

'B. Berne and R. Pecora, Dynamic Light Scattering: With Applications to
Chemistry, Biology and Physics (Wiley, New York, 1976).

2B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-
VCH, Weinheim, 2002).

’E. Fredericq and C. Houssier, Electric Dichroism and Electric Birefrin-
gence (Clarendon, Oxford, 1973).

“H. Fujita, Foundations of Ultracentrifugal Analysis (Wiley, New York,
1975).

SH. Schachman, Ultracentrifugation in Biochemistry (Academic, New
York, 1959).

® Modern Analytical Ultracentrifugation, edited by T. Schuster and T. Laue
(Birkhauser, Boston, 1994).

D. Hawecroft, Electrophoresis (Oxford University Press, Oxford, 1997).

8T, Laue, T. Ridgeway, J. Wooll, H. Shepard, T. Moody, T. Wilson, J.
Chaires, and D. Stevenson, J. Pharm. Sci. 85, 1331 (1996).

°D. Baker, Capillary Electrophoresis (Wiley, New York, 1995).

105, Allison and V. Tran, Biophys. J. 68, 2261 (1995).

1S, Aragon and D. Hahn, Biophys. J. 91, 1591 (2006).

2D, Brune and S. Kim, Proc. Natl. Acad. Sci. U.S.A. 90, 3835 (1993).

], Garcia de la Torre, M. Huertas, and B. Carrasco, Biophys. J. 78, 719
(2000).

14S. Allison, C. Chen, and D. Stigter, Biophys. J. 81, 2558 (2001).

158. Allison and S. Mazur, Biopolymers 46, 359 (1998).

'S, Mazur, C. Chen, and S. Allison, J. Phys. Chem. B 105, 1100 (2001).

J. Chem. Phys. 129, 165105 (2008)

7M. Tirado, C. Martinez, and J. Garcia de la Torre, J. Chem. Phys. 81,
2047 (1984).

18C. Cantor and P. Schimmel, Biophysical Chemistry (Freeman, San Fran-
cisco, 1980), Pt. II.

9y, Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With
Special Applications to Particulate Media (Kluwer, Boston, 1983).

3. Kim and S. Karrila, Microhydrodynamics: Principles and Selected
Applications (Butterworth-Heinemann, Boston, 1991).

'S Aragon, J. Comput. Chem. 25, 1191 (2004).

2aG. Youngren and A. Acrivos, J. Fluid Mech. 69, 377 (1975).

2. Garcia de la Torre and V. Bloomfield, Q. Rev. Biophys. 14, 81 (1981).

%R.E. Dickerson, M. Bansal, C. R. Calladine, S. Dieckmann, W. N. Hunter,
O. Kennard, R. Lavery, H. C. M. Nelson, W. K. Olson, W. Saenger, Z.
Shakked, H. Sklenar, D. M. Soumpasis, C.-S. Tung, E. von Kitzing, A.
H.-J. Wang, and V. B. Zhurkin, J. Mol. Biol. 205, 787 (1989).

M. El Hassan and C. Calladine, J. Mol. Biol. 251, 648 (1995).

W, K. Olson, M. Bansal, S. K. Burley, R. E. Dickerson, M. Gerstein, S.
C. Harvey, U. Heinemann, X. J. Lu, S. Neidle, Z. Shakked, H. Sklenar,
M. Suzuki, C. S. Tung, E. Westhof, C. Wolberger, and H. M. Berman, J.
Mol. Biol. 313, 229 (2001).

W, Olson, A. Gorin, X. Lu, L. Hock, and V. Zhurkin, Proc. Natl. Acad.
Sci. U.S.A. 95, 11163 (1998).

28], Schellman and S. Harvey, Biophys. Chem. 55, 95 (1995).

*M. Tirado and J. Garcia de la Torre, J. Chem. Phys. 71, 2581 (1979).

M. Tirado and J. Garcia de la Torre, J. Chem. Phys. 73, 1986 (1980).

*I'T. Yoshizaki and H. Yamakawa, J. Chem. Phys. 72, 57 (1980).

320. Gonzalez, “On stable, complete and singularity-free boundary integral
formulations of exterior Stokes flow,” SIAM J. Appl. Math. (to be pub-
lished).

0. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible
Flow (Gordon and Breach, New York, 1963).

**H. Power and L. Wrobel, Boundary Integral Methods in Fluid Mechanics
(Computational Mechanics, Southampton, 1995).

33 C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized
Viscous Flow (Cambridge University Press, Cambridge, England, 1992).

K. Atkinson, The Numerical Solution of Integral Equations of the Second
Kind (Cambridge University Press, Cambridge, England, 1997).

TR. Kress, Linear Integral Equations (Springer-Verlag, Berlin, 1989).

38L. Ying, G. Biros, and D. Zorin, J. Comput. Phys. 219, 247 (2006).

¥a. Bonifacio, T. Brown, G. Conn, and A. Lane, Biophys. J. 73, 1532
(1997).

“OW. Eimer and R. Pecora, J. Chem. Phys. 94, 2324 (1991).

17, Elias and D. Eden, Macromolecules 14, 410 (1981).

“2p. Hagerman, Biopolymers 20, 1503 (1981).

#R. Kovacic and K. van Holde, Biochemistry 16, 1490 (1977).

ML Mandelkern, J. Alias, D. Eden, and D. Crothers, J. Mol. Biol. 152,
153 (1981).

BN. Stellwagen, S. Magnusdottir, C. Gelfi, and P. Righetti, Biopolymers
58, 390 (2001).

4R, Sinden, DNA Structure and Function (Academic, San Diego, 1994).

*TP. Hughes, Spacecraft Attitude Dynamics (Wiley, Boston, 1983).

4 Sharrock, The Mathematics of Surfaces I (Oxford University Press,
New York, 1987), pp. 395-411.

495, Allison, Macromolecules 32, 5304 (1999).

0g, Harvey and J. Garcia de la Torre, Macromolecules 13, 960 (1980).

G, Galdi, Handbook of Mathematical Fluid Mechanics (Elsevier, Amster-
dam, 2002), Vol. 1, pp. 653-792.

>H. Brenner, J. Colloid Sci. 20, 104 (1965).

33H. Brenner, J. Colloid Interface Sci. 23, 407 (1967).

> A. Einstein, Investigations on the Theory of the Brownian Movement
(Dover, New York, 1956).

33, Koenig, Biopolymers 14, 2421 (1975).

%R. Johnson, J. Fluid Mech. 99, 411 (1980).

°7J. Keller and S. Rubinow, J. Fluid Mech. 75, 705 (1976).

M. Yamakawa and M. Fujii, Macromolecules 6, 407 (1973).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1021/js960082i
http://dx.doi.org/10.1529/biophysj.105.078188
http://dx.doi.org/10.1073/pnas.90.9.3835
http://dx.doi.org/10.1002/(SICI)1097-0282(199811)46:6<359::AID-BIP2>3.0.CO;2-#
http://dx.doi.org/10.1021/jp003199a
http://dx.doi.org/10.1063/1.447827
http://dx.doi.org/10.1002/jcc.20045
http://dx.doi.org/10.1017/S0022112075001486
http://dx.doi.org/10.1016/0022-2836(89)90324-0
http://dx.doi.org/10.1006/jmbi.1995.0462
http://dx.doi.org/10.1006/jmbi.2001.4987
http://dx.doi.org/10.1006/jmbi.2001.4987
http://dx.doi.org/10.1073/pnas.95.19.11163
http://dx.doi.org/10.1073/pnas.95.19.11163
http://dx.doi.org/10.1016/0301-4622(94)00144-9
http://dx.doi.org/10.1063/1.438613
http://dx.doi.org/10.1063/1.440288
http://dx.doi.org/10.1063/1.438945
http://dx.doi.org/10.1016/j.jcp.2006.03.021
http://dx.doi.org/10.1063/1.459904
http://dx.doi.org/10.1021/ma50003a034
http://dx.doi.org/10.1002/bip.1981.360200710
http://dx.doi.org/10.1021/bi00626a038
http://dx.doi.org/10.1016/0022-2836(81)90099-1
http://dx.doi.org/10.1002/1097-0282(20010405)58:4<390::AID-BIP1015>3.0.CO;2-K
http://dx.doi.org/10.1021/ma990576c
http://dx.doi.org/10.1021/ma60076a037
http://dx.doi.org/10.1016/0095-8522(65)90002-4
http://dx.doi.org/10.1016/0021-9797(67)90185-3
http://dx.doi.org/10.1002/bip.1975.360141115
http://dx.doi.org/10.1017/S0022112080000687
http://dx.doi.org/10.1017/S0022112076000475
http://dx.doi.org/10.1021/ma60033a018

