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Supplement to Section II.A: A full description of the oligomer configu-

ration coordinates

Origins and frames for bases, basepairs, and junctions

As described in the main article, a DNA oligomer comprising n basepairs is identified with a se-
quence of bases X1X2 · · ·Xn, with Xa ∈ {T,A,C,G}, listed in the 5′ to 3′ direction along a chosen
reference backbone. The basepairs associated with this sequence are denoted by (X,X)a where X
is defined as the Watson-Crick complement of X, and the notation implies that the base X is at-
tached to the reference backbone, while X is on the complementary backbone. We use the Curves+
[S10] implementation of the Tsukuba convention [S15] to assign a reference point ra and a right-
handed, orthonormal frame {da

i } (i = 1, 2, 3) to each base Xa. Likewise, a point r
a and frame {da

i }
are assigned to each complementary base Xa, but, because the two strands are anti-parallel, an
additional half turn (about d

a
1) is included in the definition of {d

a
i } so that the two frames {da

i }
and {da

i } are close to parallel when the basepair is close to its undeformed conformation. An
illustration of the base origins and frames is provided in Figure S1.
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Figure S1: A schematic view of rigid bases with their reference points or origins ra and ra, and
frames {da

i } and {da
i }, i = 1, 2, 3. By construction, and despite the two backbones of DNA being

anti-parallel, the two frames {da
i } and {da

i } are close to parallel for small deformations of the
B-form double-helix.

In a rigid-base model, the positions of the non-hydrogen atoms in each base relative to the
associated reference point and frame are considered to be constant. As a consequence, once
the reference point and frame of each base are specified, so too are the positions of all the non-
hydrogen atoms. Estimated values for these idealized atomic positions in each basepair in their
ideal rigid form are tabulated in [S15], while the positioning of atoms with respect to each of our
base frames for each of the four possible rigid bases Xa ∈ {T,A,C,G} is explained in [S10]. Inde-
pendent of the details, for our purposes the important point is that in our model the configuration

1



of a DNAmolecule consisting of n basepairs is completely defined by the reference points ra and
ra and the frames {da

i } and {da
i } (a = 1, . . . , n). These points and frames are in turn uniquely de-

fined by component vectors ra, ra ∈ R
3 and rotation matrices Da,D

a ∈ R
3×3, where ra

i = ei · ra,
ra
i = ei · ra, Da

ij = ei · da
j and D

a
ij = ei · d

a
j . Here {ei} denotes an arbitrary, but fixed laboratory

reference frame. In terms of these components, we have

d
a
j =

3∑

i=1

Da
ijei, r

a =

3∑

i=1

ra
i ei, d

a
j =

3∑

i=1

D
a
ijei, r

a =

3∑

i=1

ra
i ei. (S1)

Then a set of internal coordinates determining the three-dimensional shape of aDNAmolecule,
but not its absolute position and orientation in space, is given by the relative rotation and displace-
ment between neighboring bases both across and along the two backbone strands. The relative
rotation and displacement between the bases Xa and Xa across the strands can be described in the
general form

da
j =

3∑

i=1

Λa
ijd

a
i , ra = ra +

3∑

i=1

ξa
i ga

i , (S2)

where Λa ∈ R
3×3 is a rotation matrix that describes the orientation of frame {da

i } with respect to
{da

i }, ξa ∈ R
3 is a vector of intra-basepair translational coordinates which describes the position

of ra with respect to ra, and {ga
i } is a right-handed, orthonormal frame intermediate to the base

frames {da
i } and {da

i }; {ga
i } is defined to be the rotational average of the base frames {da

i } and
{da

i } and is referred to as the basepair frame associated with (X,X)a. We give an explicit formula
for it below. We also introduce the basepair reference point qa that is defined to be the Euclidean
average of the base reference points ra and ra.
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Figure S2: (a) Illustration of intra-basepair translation and rotation. (b) Illustration of the basepair
frame (blue) and the two base frames (red) in each basepair. The intra-basepair translation and
rotation coordinates are given as components in the basepair frame.

The relative displacement and rotation along the strands between the basepair origins and
frames associated with (X,X)a and (X,X)a+1 can be described in the general form

g
a+1
j =

3∑

i=1

La
ijg

a
i , qa+1 = qa +

3∑

i=1

ζa
i ha

i , (S3)
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where La ∈ R
3×3 is a rotation matrix that describes the orientation of frame {ga+1

i } with respect
to {ga

i }, ζa ∈ R
3 is a vector of inter-basepair translational coordinates that describes the position

of qa+1 with respect to qa, and {ha
i } is a right-handed, orthonormal frame intermediate to the two

basepair frames {ga
i } and {ga+1

i }; {ha
i } is referred to as the junction frame associated with (X,X)a

and (X,X)a+1 and is defined to be the rotational average of the frames {ga
i } and {ga+1

i }. Again it
is defined explicitly below.
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Figure S3: (a) Illustration of inter-basepair translation and rotation. (b) Illustration of the junction
frame (green) and the two basepair frames (blue) in a pair of adjacent basepairs. The inter-basepair
translation and rotation coordinates are given as components in the junction frame.

The Cayley parameterization of proper rotation matrices

To describe rotations we will use Cayley (or Euler-Rodrigues) parameters. This parameterization
of the group of proper rotations is the same as that used in the program Curves+ [S10] and in [S11]
up to different scalings. Versions of these parameters are described in many places, e.g. [S1] and
[S4]. Another popular choice of rotation matrix parameters is Euler angles, used, for example, in
the 3DNA software package [S12]. The main difference between the two parameterizations is that
in the case of Cayley parameters every rotation is represented by a single, but variable, rotation
axis with one associated rotation angle, while in the Euler angle case every rotation is decomposed
into three elementary rotations, i.e. into consecutive rotations around three specific axes through
three variable angles. The difference is well illustrated in [S1] for example.
The Cayley parameters for a rotationmatrix arise as a consequence of Euler’s Theorem on rota-

tions, which states that any proper, or right-handed, rotation matrix Q ∈ R
3×3 can be represented

as a pure, or simple, rotation about some axis (or unit vector) k ∈ R
3 through an angle ϕ ∈ [0, π].

That is, for any vector v ∈ R
3, the transformed vector Qv ∈ R

3 corresponds to a right-handed
rotation of v about k through an angle ϕ. For angles in the interval ϕ ∈ (0, π) the relation between
Q and the axis-angle pair (k, ϕ) is uniquely invertible, whereas for the two angles ϕ = 0 and ϕ = π
it is not. Given the pair (k, ϕ), the correspondingQ is given by the Euler-Rodrigues formula

Q = cos ϕI + (1 − cos ϕ) k ⊗ k + sin ϕk×, (S4)

where I ∈ R
3×3 is the identity matrix, k ⊗ k = kkT ∈ R

3×3 is the rank-one outer-product matrix,
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and k× ∈ R
3×3 is the skew matrix

k× =




0 −k3 k2

k3 0 −k1

−k2 k1 0



 , (S5)

which is defined such that (k×)v = k × v for any v ∈ R
3. Conversely, given a rotation matrix Q,

the corresponding pair (k, ϕ) is given by

ϕ = arccos

(
tr Q − 1

2

)
, k =

1

2 sin ϕ




Q32 − Q23

Q13 − Q31

Q21 − Q12



 =
1

2 sin ϕ
vec[Q − QT ]. (S6)

Here vec[A] ∈ R
3 denotes the axial vector associated with a skew matrix A ∈ R

3×3, which is
defined as vec[A] = (A32, A13, A21)

T . We remark that the relations in (S6) follow from (S4) upon
noting that Q − QT = 2 sin ϕk×, tr Q = 1 + 2 cos ϕ and vec[k×] = k.
The relation between Q and the pair (k, ϕ) is special in either of the two cases ϕ = 0 or ϕ = π.

As we are assuming that Q is a proper, or right-handed, rotation matrix, it satisfies Q−1 = QT

and detQ = +1. In this case, the three eigenvalues of Q are (+1, e−iϕ, eiϕ), where ϕ is the rotation
angle, and the rotation axis k is a real eigenvector ofQwith unit eigenvalue. WhenQ is symmetric,
which happens precisely in either of the two cases of rotation angle ϕ = 0 or ϕ = π, we have
sin ϕ = 0 and Q − QT = 0, so that the expression for k in (S6) is undefined. Specifically, when
ϕ = 0, we have Q = I , and the rotation axis k is completely arbitrary; that is, for any choice of k, a
rotation through zero angle about k will give Q = I . When ϕ = π, the rotation axis k is uniquely
defined up to sign as a dominant (unit) eigenvector of the matrix Q + I , which has eigenvalues
(0, 0, 2). For rotations through π either choice of sign for k yields the same rotation.
While rotations through an angle of ϕ = π are unlikely to occur between neighboring bases in

our application to B-form DNA, and accordingly are not of significant interest here, it is certainly
desirable to seek a representation of Q that is well-behaved for rotation angles close to ϕ = 0. By
a Cayley parameterization of Q we mean one in which the axis-angle pair (k, ϕ) is represented
by a single vector η ∈ R

3. Specifically, given any non-negative, invertible function f(ϕ), we can
consider a mapping of the form η = f(ϕ)k, which can be inverted to yield k = η/|η| and ϕ =
f−1(|η|), where |·| denotes the standard Euclidean norm. Notice that the direction of η encodes the
rotation axis, while its magnitude encodes the rotation angle. When these relations are substituted
into (S4) and (S6) we obtain a representation of Q in terms of the single vector η, rather than the
pair (k, ϕ). Moreover, the function f can be chosen such that the relation between Q and η has
better mathematical properties than that between Q and (k, ϕ). In this work, as in [S11], we use
the choice f(ϕ) = 2 tan(ϕ/2). Then we obtain the relations

Q = (I +
1

2
η×)(I − 1

2
η×)−1 =: cay(η), η =

1

1 + tr Q
vec[Q − QT ] =: cay−1(Q). (S7)

The above relations provide a one-to-one correspondence between a rotationmatrixQ and a single
vector η. In contrast to the axis-angle parameterization in (S4) and (S6), the Cayley parameteri-
zation in (S7) is well-defined for small rotation angles near ϕ = 0, which corresponds to |η| = 0.
Similar to the axis-angle parameterization, the Cayley parameterization becomes undefined at a
rotation angle of ϕ = π or equivalently when tr Q = −1, which corresponds to |η| = ∞. Thus
the Cayley parameterization in (S7) based on the choice f(ϕ) = 2 tan(ϕ/2) provides a one-to-one
relation between rotation matricesQwith rotation angles 0 ≤ ϕ < π and vectors η ∈ R

3 with mag-
nitudes 0 ≤ |η| < ∞. The advantages of the above Cayley parameterization over the axis-angle
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parameterization are now apparent: it is well-defined for all rotations with angles ϕ ∈ [0, π) and
parameter vectors η ∈ R

3, and the problematic case of rotations with angle ϕ = π occurs only at
|η| = ∞. We remark that one way to interpret the non-dimensionalization described in Section
II.D of the main article is as a simple re-scaling of the form f(ϕ) = 10 tan(ϕ/2).
Different choices can certainly be made for the function f , which lead to different types of Cay-

ley parameterizations. For example, the choice f(ϕ) = 180ϕ/π (the value of ϕ in degrees) is used
in Curves+ [S10]. The choice f(ϕ) = sin(ϕ/2) gives the vector part of a unit quaternion (or three
of the four scalar Euler parameters) with cos(ϕ/2) being the scalar part of the quaternion (or the
fourth Euler parameter). Geometrically this choice can be regarded as a stereographic projection
of the Cayley parameter vector in R

3 onto the upper unit hemisphere in four dimensions with the
singularity for rotations through π, or the point at infinity, mapped to the equator. Adding the
lower hemisphere in the appropriate way then leads to the classic quaternion, or Euler parameter,
singularity-free, double covering of the rotation group, which can be useful for smoothly tracking
the large absolute orientations of basepair frames that can arise for a long oligomer. However, in
this article we are only concerned with internal oligomer coordinates, or relative rotations, where
rotations through π are unimportant. Consequently, the Cayley parameter vector η ∈ R

3 is for us
a more convenient choice of internal rotational coordinates.

Cayley parameters and mid-frames

In our application to B-form DNA, we consider reference frames attached to each base of an
oligomer, so that it is necessary to describe the rotation that transforms the basis vectors of one
frame to those of another. In particular we want a description that transforms simply under the
Watson-Crick symmetry of reversing the roles of the reference X and complementary backbone X.
To this end we will be interested in constructing an intermediate, or middle frame, between any
given two frames. If the matrix of components (or direction cosine matrix) of a right-handed, or-
thonormal frame isD = [d1 d2 d3] ∈ R

3×3, where the di ∈ R
3 (column vectors) are the components

of the three basis vectors of that frame, and D = [d1 d2 d3] ∈ R
3×3 is the matrix of components

of another right-handed, orthonormal frame, then there exists a unique proper rotation matrix
Q ∈ R

3×3 with the property that di = Qdi. Specifically, in matrix notation we have

D = QD where Q = DD
T
. (S8)

By the middle frame G = [g1 g2 g3] ∈ R
3×3 betweenD and D we mean the frame defined by

G =
√

QD, (S9)

where
√

Q is the half-rotation matrix from D to D, i.e. the rotation about the same axis k, but by
the half-angle ϕ/2, so that Q =

√
Q
√

Q. In this way, we have G =
√

QD and D =
√

QG.
The relation in (S8) can be expressed in an alternative form. Specifically, it can be written as

D = DΛ =

[
3∑

i=1

Λi1di

3∑

i=1

Λi2di

3∑

i=1

Λi3di

]

, (S10)

where Λ ∈ R
3×3 is a rotation matrix defined by

Λ = D
T
D = D

T
QD = DT QD. (S11)
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If Λ has a unique rotation axis kΛ, which by definition satisfies ΛkΛ = kΛ, and Q has a unique
rotation axis kQ, which by definition satisfiesQkQ = kQ, then from the above relations we deduce
that

kΛ = D
T
kQ = DT kQ, (S12)

which shows that kΛ and kQ are the components of the same geometric vector k, but expressed in

different frames. Indeed, whereas kQ are the components of k in the lab frame {ei}, DT
kQ are the

components of k in the frame {di}, and DT kQ are the components of k in the frame {di}. Notice
that, since Q rotates the frame {di} onto the frame {di} about the axis defined by k, it follows that
the components of k in these two frames are the same, as expressed in (S12). Moreover, because
the matrices Λ and Q are related through a similarity transformation, their eigenvalues are also
the same. From these considerations we deduce that the two matrices Λ andQ represent the same
geometric rotation, but expressed in different frames. We call Λ the relative rotation matrix and Q
the absolute rotation matrix from D toD. In this work, we use relative rotation matrices to define
the internal coordinates for our rigid-base model of B-form DNA.

Explicit formulæ for the rigid-base double-chain topology

The intra-basepair relative rotation and displacement between Xa and Xa are defined in (S2). From
(S2) and (S1) we have Λa = (D

a
)T Da, and from this rotation matrix we extract an intra-basepair

rotation vector ϑa = cay−1(Λa) ∈ R
3 and an intra-basepair rotation angle ϕa = f−1(|ϑa|) using

the Cayley parameterization described in (S7). From these quantities, and with the notation that
the frame {ga

i } has component matrix Ga ∈ R
3×3 where Ga

ij = ei · ga
j , we can construct the half-

rotation matrix
√

Λa, and then the basepair frame matrix is given by Ga = D
a√

Λa. In view of (S2)
and (S1), the intra-basepair translation components are then given by ξa = (Ga)T (ra − ra). An
illustration of intra-basepair rotational and translational parameters is shown in Figure S2.
To describe the relative rotation and displacement betweenneighboring bases along the strands

we consider the basepair frame {ga
i } and basepair reference point qa = (ra +ra)/2 associated with

(X,X)a, and the analogous frame {ga+1
i } and point qa+1 associated with (X,X)a+1. The relative

rotation and displacement between (X,X)a and (X,X)a+1 along the strands is described in (S3).
The frame {ha

i } has component matrix Ha ∈ R
3×3 where Ha

ij = ei · ha
j , and the points qa and

qa+1 have component vectors qa, qa+1 ∈ R
3 where qa = (ra + ra)/2 and qa+1 = (ra+1 + ra+1)/2.

Similar to before, we have La = (Ga)T Ga+1, and from this rotation matrix we extract an inter-
basepair rotation vector θa = cay−1(La) ∈ R

3 and an inter-basepair rotation angle φa = f−1(|θa|)
using the Cayley parameterization described in (S7). From these quantities, we can construct the
half-rotation matrix

√
La, and then the junction frame matrix is given by Ha = Ga

√
La. Similar

to before, the inter-basepair translation components are then given by ζa = (Ha)T (qa+1 − qa). An
illustration of the inter-basepair rotational and translational parameters is shown in Figure S3.
The choice of writing intra- and inter-basepair rotational and translational parameters with re-

spect to coordinates in the mid (respectively basepair and junction) frames, when combined with
the additional half-turn about d

a
1 in the definition of the frame {d

a
i }, implies that the transforma-

tion of the coordinates under the Watson-Crick symmetry of exchange of roles of the reference
and complementary backbones is particularly simple. Specifically the four 1-components of each
set of intra- and inter-basepair translational and rotational coordinates, i.e. Buckle, Shear, Tilt and
Shift, all change sign, while the remaining eight other components are all unchanged. The particu-
larly simple manifestation of the Watson-Crick symmetry implies the simple transformation rules
between complementary parameter sets that are discussed in the main article, and the symmetry
that must arise in oligomers with palindromic sequences.
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The above formulas give the intra-basepair coordinates ya = (ϑ, ξ)a in terms of the relative
rotation and displacement between bases Xa and Xa across the strands, whereas the inter-basepair
coordinates za = (θ, ζ)a are given by the relative rotation and displacement between the pairs
(X,X)a and (X,X)a+1 along the strands. Contrariwise, the origins and frames in a complete rigid-
base description of the configuration of a DNA oligomer can be constructed from the intra- and
inter-basepair coordinates provided that six, additional, external coordinates z0 = (θ, ζ)0 ∈ R

6 for
the first basepair frame and reference point with respect to the lab frame {ei} are provided. Explic-
itly, all the frames and reference points for the bases Xa and Xa (a = 1, . . . , n) can be constructed
using the recursive formulas

ga
j =

3∑

i=1

La−1
ij gi

a−1, qa = qa−1 +
3∑

i=1

ζi
a−1hi

a−1, (S13)

d
a
j =

3∑

i=1

(
√

Λa)jig
a
i , r

a = q
a − 1

2

3∑

i=1

ξa
i g

a
i , (S14)

d
a
j =

3∑

i=1

(
√

Λa)ijg
a
i , r

a = q
a +

1

2

3∑

i=1

ξa
i g

a
i . (S15)

Here Λa = cay[ϑa] is the rotation matrix corresponding to ϑa, La = cay[θa] is the rotation matrix
corresponding to θa, {ha

i } is the junction frame with component matrix Ha = Ga
√

La described
above, z0 = (θ, ζ)0 are the external coordinates of the first basepair frame, and we adopt the
convention that {g0

i } = {ei} and q0 = 0.

Cayley vectors and statistical mechanics on the proper rotation group

0 1 2 3
0

1 J ⋅ <1/J>

Figure S4: Histogram of the scaled Jaco-
bian factor J〈1/J〉 along the time series
for the training set oligomer S1.

The proper rotation group is compact and so has a nat-
ural, associated Haar measure, which is unique up to
an unimportant constant. Moreover, as discussed for
example in [S17, S18], the statistical mechanics of rigid
bodies naturally leads to equilibrium distributions that
are Boltzmann, or pure exponential, with respect to this
Haar measure. Consequently, for any particular pa-
rameterization of the rotation group, equilibrium dis-
tributions of the form of equation (6) in the main article
arise, namely a Boltzmann term with an additional co-
ordinate dependent Jacobian factor. In this regard, the
particular choice of the Cayley parameterization of ro-
tations has two associated and desirable features. First,
the domain of definition of each Cayley parameter vec-
tor is the whole of R

3 which is convenient for the ex-
plicit evaluation of Gaussian integrals. Second, the Ja-
cobian for the Cayley parameterization has the rather
simple explicit form detailed in equation (7) of themain

article. In contrast, we are unaware of the analogous expression for the Jacobian associated with
the 3DNA [S12] rotational coordinates.
Even with the simple explicit expression for the Jacobian of the Cayley parameterization, our

parameter extraction methodology approximates the Jacobian factor to be constant in order to be
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able to benefit from various closed-form expressions for Gaussian integrals. A previous analysis
[S11] of MD simulation data for one oligomer under similar conditions and using a Cayley param-
eterization as considered here indicates that the error associated with this approximation is rather
small: various averages computed with and without the Jacobian factor differed by less than 3%.
For reference, Figure S4 shows a histogram of the Jacobian factor (scaled by the average of its re-
ciprocal) along the time series for one oligomer in our training set. Although the precise nature
of the error associated with the constant approximation remains an open question, we notice that
the distribution of the scaled Jacobian is rather peaked, which further suggests that the constant
approximation should be reasonable. We remark that the locality of the distribution of the Jaco-
bian depends both on the physical property of the DNA oligomer being relatively stiff, so that
the high probability (or low energy) regions of configuration space are relatively localized, and on
the singularity of the rotational coordinate system being far from the high probability regions. In
particular, for other coordinate systems, the distribution of the associated Jacobian could be rather
different.

Supplement to Section II.F: The Kullback-Leibler divergence

In probability theory, a divergenceD(p, q) is a function that measures the difference between two
normalized probability density functions p(x) and q(x), which for our purposes are assumed to
be smooth, positive functions of a variable x ∈ R

d. By definition, a divergence is non-negative in
the sense thatD(p, q) ≥ 0 for all density functions p(x) and q(x), and non-degenerate in the sense
that D(p, q) = 0 if and only if p(x) = q(x) for all x ∈ R

d. Because it need not satisfy the symmetry
condition D(p, q) = D(q, p), nor the triangle inequality D(p, q) ≤ D(p, r) + D(r, q), for all density
functions p(x), q(x) and r(x), a divergence is more general than a distance or metric on the set
of normalized probability densities. In this work, we employ the Kullback-Leibler divergence
function defined as

D(p, q) :=

∫

Rd

p(x) ln

[
p(x)

q(x)

]
dx =

〈
p(x)

q(x)
ln

[
p(x)

q(x)

]〉

q

, (S16)

where 〈·〉q denotes expectation with respect to q(x). This function, which originated in the work of
Kullback and Leibler [S8, S9], provides a convenient measure of the difference between probability
densities and has been employed in a number of different applications [S2, S3, S13]. It is intimately
related to the notion of (relative) entropy in statistical mechanics and information theory, and
provides the basis for the maximum entropy principle of statistical inference [S5, S6, S7].

The case of one-dimensional distributions

The divergence D(p, q) can be illustrated simply in the case when d = 1, where p(x) and q(x)
are functions of a single variable x ∈ R. In this case, the divergence D(p, q) provides a measure
of the (unsigned) area A between the two densities as shown: D(p, q) > 0 if and only if A > 0,

x

p , q
and D(p, q) = 0 if and only if A = 0. Although the area A itself also
provides a measure of the difference between p(x) and q(x), the di-
vergence has various more desirable properties due to its connection
with the notion of entropy; in general, there is no simple, closed-form
relation between the divergenceD and the area A. Further insight can
be gained in the special case when the densities are Gaussian. Specif-
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ically, consider

p(x) =
1

σp

√
2π

e−(x−µp)2/2σ2
p , q(x) =

1

σq

√
2π

e−(x−µq)2/2σ2
q , (S17)

where µp and µq are the means and σp > 0 and σq > 0 are the standard deviations of the two den-
sities. In the case when the two densities have arbitrary means but the same standard deviation,
so that σp = σq = σ, we find by direct integration that

D(p, q) =
(µp − µq)

2

2σ2
. (S18)

Hence in this case the divergence provides a measure of the difference between means, which
vanishes only when they coincide. In the case when the two densities have arbitrary standard
deviations but the same mean, so that µp = µq = µ, we find by direct integration that

D(p, q) =
1

2

(
σ2

p

σ2
q

− ln

[
σ2

p

σ2
q

]

− 1

)

. (S19)

Hence in this case the divergence provides a measure of the difference between the standard de-
viations, which vanishes only when they coincide. More generally, in the case when the two
densities have arbitrary means and standard deviations we find

D(p, q) =
1

2

(
σ2

p

σ2
q

− ln

[
σ2

p

σ2
q

]
− 1

)
+

(µp − µq)
2

2σ2
q

. (S20)

The case of multivariate Gaussian distributions

The expression (S20) for the divergence between two scalar Gaussian distributions generalizes
straightforwardly to the multivariate case. As given in equation (17) of the main article, the
Kullback-Leibler divergence between two Gaussian densities ρm and ρo can be evaluated to be

D(ρm, ρo) =
1

2

[
K

−1
m : Ko − ln(detKo/detKm) − I : I

]
+

1

2
(ŵm − ŵo) · Ko(ŵm − ŵo), (S21)

where a colon denotes the standard Euclidean inner product for square matrices and I denotes
the identity matrix of the same dimension as Km and Ko. Here ŵm and ŵo are the means and Km

and Ko are the stiffness (or inverse covariance) matrices of the multivariate densities ρm and ρo.
The term in brackets involves only the two stiffness matrices, and can be rewritten in the form

D†(Km,Ko) :=
1

2

[
K

−1
m : Ko − ln(detKo/detKm) − I : I

]

=
1

2

12n−6∑

i=1

(µi − lnµi − 1),
(S22)

where µi are the eigenvalues of the symmetric, positive-definite, generalized eigenvalue problem

Kovi = µiKmvi, i = 1, . . . , 12n − 6. (S23)

It is evident thatD†(Km,Ko) defined in (S22) is non-negative and vanishes only when µi = 1 for all
i, which implies that Ko = Km, so that it is an appropriate measure of the difference between two
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symmetric, positive-definite matrices [S14]. Similarly, it is evident that the eigenvalues defined in
(S23) are dimensionless and so independent of the choice of length, rotation and energy scales,
and that

D†(Km,Ko) = D†(K−1
o ,K−1

m ). (S24)

Analogously, the second term in (S21) is non-negative and vanishes only when the means ŵm and
ŵo coincide. It is also independent of the length and rotation scales, but depends on the energy
scale (which was absorbed into the stiffness matrix in the non-dimensionalization procedure).
Thus the divergence in (S21) is a linear combination of the differences in the stiffnesses and means
of two Gaussians, with the relative weighting dependent on the energy scale, or equivalently
temperature.
Combining equation (41)2 of the main article with equation (S22) above we find that the stiff-

ness matrix K
∗
µ,M must satisfy the optimization problem

K
∗
µ,M = argmin

Kµ,M

1

2

[
K

−1
µ,M : Kµ,o − ln(detKµ,o/detKµ,M) − I : I

]

= argmin
Kµ,M

D†(Kµ,M,Kµ,o),
(S25)

where the minimum is taken over the set of symmetric matrices of the specified sparsity. Equiva-
lently, in view of equation (S24) above, we have

K
∗
µ,M = argmin

Kµ,M

D†(K−1
µ,o,K

−1
µ,M). (S26)

Hence the matrix optimization problem can also be regarded as that of finding a stiffness matrix
Kµ,M of specified sparsity such that the associated (and in general dense) model covariance matrix
K

−1
µ,M has a minimum distance, in an appropriate sense, to the observed covariance matrix K

−1
µ,o.

A scale for the Kullback-Leibler divergence

The Kullback-Leibler divergence is a non-dimensional and natural measure of the difference be-
tween probability densities. However, to address the question of whether the divergence between
any two probability densities is large or small we need to set a scale. As described in the main
article, we introduce a Kullback-Leibler divergence scale Do for 18-mers by

Do = avg
nµ=18

µ1 6=µ2

D(ρµ1,o, ρµ2,o). (S27)
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Figure S5: A histogram (frequencies
versus bins) of the symmetrized
Kullback-Leibler divergence
Dsym(ρµ1,o, ρµ2,o) over all distinct
pairs of 18-mer sequences Sµ1

and
Sµ2
in the data set of Table SI.

BecauseD(ρµ1,o, ρµ2,o) andD(ρµ2,o, ρµ1,o) are both counted,
the above average is actually determined by a sym-
metrized version of the divergence defined as

Dsym(ρµ1,o, ρµ2,o) =
1

2
[D(ρµ1,o, ρµ2,o) + D(ρµ2,o, ρµ1,o)].

(S28)
Specifically, the average in (S27) is equivalent to

Do = avg
nµ=18

µ1 6=µ2

Dsym(ρµ1,o, ρµ2,o). (S29)
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The scale Do is characteristic of the differences between
the probability densities in our training data set, which
we attribute to differences in sequence composition. It is
therefore reasonable to accept modeling errors in our re-
construction rules, as measured by divergences, that are
small compared to this scale, as we then expect to still be
able to resolve sequence variation within our model. Fig-

ure S5 is a distribution, or histogram, of Dsym(ρµ1,o, ρµ2,o) over all distinct pairs of 18-mers Sµ in
the training set detailed in Table SI. A direct computation of the average of this distribution gives
the value Do

.
= 85.

µ Sµ Sµ µ
1 GCTATATATATATATAGC GCTAGATAGATAGATAGC 29
2 GCATTAATTAATTAATGC GCGCGGGCGGGCGGGCGC 30
3 GCGCATGCATGCATGCGC GCGTGGGTGGGTGGGTGC 31
4 GCCTAGCTAGCTAGCTGC GCACTAACTAACTAACGC 32
5 GCCGCGCGCGCGCGCGGC GCGCTGGCTGGCTGGCGC 33
6 GCGCCGGCCGGCCGGCGC GCTATGTATGTATGTAGC 34
7 GCTACGTACGTACGTAGC GCTGTGTGTGTGTGTGGC 35
8 GCGATCGATCGATCGAGC GCGTTGGTTGGTTGGTGC 36
9 GCAAAAAAAAAAAAAAGC AAACAATAAGAA 37
10 GCCGAGCGAGCGAGCGGC AAAGAACAATAA 38
11 GCGAAGGAAGGAAGGAGC AAATAACAAGAA 39
12 GCGTAGGTAGGTAGGTGC GGGAGGTGGCGG 40
13 GCTGAGTGAGTGAGTGGC GGGCGGAGGTGG 41
14 GCAGCAAGCAAGCAAGGC GGGCGGTGGAGG 42
15 GCAAGAAAGAAAGAAAGC GGGTGGAGGCGG 43
16 GCGAGGGAGGGAGGGAGC GGGTGGCGGAGG 44
17 GCGGGGGGGGGGGGGGGC AAATAAAAATAAGAACAA 45
18 GCAGTAAGTAAGTAAGGC AAATAACAATAAGAACAA 46
19 GCGATGGATGGATGGAGC GGGAGGGGGAGGCGGTGG 47
20 GCTCTGTCTGTCTGTCGC GACATGGTACAG 48
21 GCACAAACAAACAAACGC ACGATCCTAGCA 49
22 GCAGAGAGAGAGAGAGGC ATGCTAATCGTA 50
23 GCGCAGGCAGGCAGGCGC AGCTGAAGTCGA 51
24 GCTCAGTCAGTCAGTCGC CGAACTTCAAGC 52
25 GCATCAATCAATCAATGC GTCTACCATCTG 53
26 GCGTCGGTCGGTCGGTGC GCATAAATAAATAAATGC 54
27 GCTGCGTGCGTGCGTGGC GCATGAATGAATGAATGC 55
28 GCACGAACGAACGAACGC GCGACGGACGGACGGAGC 56

Table SI: Sequences Sµ contained in the MD data set. For the reasons described in the main text,
the last three sequences were dropped from the training set.

Supplement to Section IV.B: Filtering data on disrupted hydrogen bonds

In some of our simulations, especially for oligomers ending with AT basepairs, intra-basepair
hydrogen bonds at the oligomer ends were broken and the basepairs were open for a signif-
icant portion of the simulation time. Since such open basepairs are outside the scope of our
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quadratic model, we decided not to use any snapshot with a broken hydrogen bond in our train-
ing data set. Following previous work [S11, S12], we considered a hydrogen bond to be bro-
ken if the distance between donor and acceptor was greater than 4 Å. To motivate and justify
this choice, we plotted histograms of distances between atoms connected by intra-basepair hy-
drogen bonds in each simulation. One example is provided in Figure S6, with analogous plots
for each intra-basepair hydrogen bond within each oligomer in our training data set online at
http://lcvmwww.epfl.ch/cgDNA. One can notice that the distributions of the distances be-
tween pairs of atoms forming a hydrogen bond are close to Gaussians centered around 3 Å and
their standard deviation is around 0.1-0.2 Å for most of the oligomers. Therefore setting a thresh-
old for filtering the outliers at 4 Å (or around 5 standard deviations away from the mean) gives
robust statistics in the remaining data, and structures that are significantly outside the scope of
our quadratic model are explicitly excluded.

Figure S6: Histograms of the two hydrogen bond lengths at sequence position X7 = T during the
MD simulation of the sequence S1 of the training data set.

Supplement to Section V.B: Analysis of the least-squares system

To generate an initial approximation for a maximal relative entropy best-fit parameter set, we seek
to construct a least-squares solution to the over-determined system of linear equations

Kµ,m = K
∗
µ,M

σµ,m = σ∗
µ,M

}
, µ = 1, . . . , 53. (S30)

It is the unknown parameter set P = {σα
1 ,Kα

1 , σαβ
2 ,Kαβ

2 } that is to be estimated from this system.
As detailed in equations (32)–(33) of the main article, the matrices Kµ,m on the left-hand side of
the above equation are explicitly-known, linear functions of only the stiffnesses in the parameter
set, while the vectors σµ,m are explicitly-known, linear functions of only the weighted shape pa-
rameters. The matrices K∗

µ,M on the right-hand side of the above equation are observed data from
the training set, as determined in the initial prescribed-sparsity, oligomer-based fit. Similarly, the
vectors σ∗

µ,M = K
∗
µ,Mŵ

∗
µ,M on the right-hand side are most simply defined as a matrix-vector prod-

uct computed between the oligomer-based quantities fit to observed data. However, due to the
decoupled nature of the system, we observe that there is some freedom in how to compute a least-
squares solution. Specifically, we found that the following approach gave an initial approximation
of the parameter set that yielded noticeably better reconstructions. The system (S30)1 can first be
solved in the least-squares sense for only the stiffness parameters, which yields specific values
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K
#
µ,m for the functions Kµ,m. Then in the remaining least-squares system (S30)2 for the weighted
shape parameters, we used the right-hand side data σ∗

µ,M := K
#
µ,mŵ

∗
µ,M.

Several considerations arise in the least-squares treatment of (S30). Further details of the as-
sociated normal equations and their explicit solution can be found in §7 of [S16]. First, in view of
(32)–(33), we see that each non-zero 6× 6 block of each matrix Kµ,m depends on either one, two or
three of the parameters {Kα

1 ,Kαβ
2 }, and each 6×1 block of each vector σµ,m depends on either one,

two or three of the parameters {σα
1 , σαβ

2 }. Moreover, in view of (S30), we see that the equations for
the entries of each such block are decoupled and of a similar form. Hence the equations in (S30)
can be reduced to a collection of sparse, independent equations for each entry of the unknown pa-
rameter matrices {Kα

1 ,Kαβ
2 } and the unknown parameter vectors {σα

1 , σαβ
2 }. This entry-by-entry

decoupling greatly reduces the computational effort required to solve the system. Second, in seek-
ing a least-squares solution of (S30), we are free to consider only a subset of all blocks that appear,
or to assign different weights to different blocks, reflecting differences in either importance of the
fit or confidence in the data. For both reasons, it is quite natural to first consider only the subset of
blocks associated with the interior of each oligomer and thereby ignore the data at the ends. If all
blocks associated with ends are ignored, then the resulting interior system has a simple, explicit
least-squares solution involving table averages over all instances of dimer and trimer sequences.
However, due to the overlapping structure illustrated in (34)–(35), the least-squares solution of
this interior system is not unique; in fact, the associated normal equations have a rather high-
dimensional nullspace. On the other hand, if the blocks associated with ends are included, then
the resulting system can be expected to have a unique least-squares solution provided that the
training data set contains all possible dimer ends. This was why the original ABC set of oligomers
was extended as described in Section IV.B. In the extended set of oligomers, considering both the
reference and complementary strands, there are many instances of each of the 5′-GC and GC-3′

ends, but only one instance for most of the other 5′-dimer and dimer-3′ ends. Hence the different
dimer ends are not equally represented in our training set, and the ability to control the weighting
of the least-squares system at the ends is convenient.
In view of the considerations above, we adopted the following approach in our least-squares

treatment of (S30). We assigned a unit weight to all interior 6×6 and 6×1 blocks, and a small, vari-
able end-weight to all blocks associated with the leading and trailing ends of each oligomer. Since
all dimer ends are included in the training set, we can obtain a unique least-squares solution for
any positive end-weight. We then consider the limit in which the end-weight vanishes, and choose
this as our least-squares solution. This choice is justified by the fact that all possible dimer ends
are not equally represented in our training set and hence it is desirable to attempt to minimize any
biases at the ends. Moreover, the vanishing-end-weight solution is rather simple and is available
in closed-form in terms of table averages; it merely selects a unique element in the nullspace of
the interior system in which all blocks associated with the ends are ignored. While other choices
of a least-squares solution could be made, we prefer the rationale for the choice described here,
although it is not crucial.
The procedure described above takes no account of the admissibility constraint on the stiff-

ness parameter matrices {Kα
1 ,Kαβ

2 } described in Section III.B.2. Specifically, it appears natural to
require that each of these parameter matrices should be at least semi-positive-definite, and that the
constructed oligomer matrices for any ten independent sequences of length two (physical dimers)
should be positive-definite. The vanishing-end-weight, least-squares procedure described above
gave an inadmissible parameter set according to these criteria: some of the stiffness parameter
matrices had some negative eigenvalues, although they did give reasonable constructions of some
oligomers away from the ends. Curiously, we considered a variety of intuitive choices for se-
lecting a particular least-squares solution within the null-space of all such solutions, but found
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that all choices were inadmissible due to the presence of some negative eigenvalues. For this
reason, we developed a numerical procedure to explore the high-dimensional nullspace associ-
ated with the interior system described above and search for an admissible least-squares solution.
Working with (S30)1 and its vanishing-end-weight solution, the procedure incrementally adjusted
the free variables in the corresponding nullspace so as to increase the negative eigenvalues in
the stiffness matrices. In this way, we obtained an admissible least-squares solution of (S30)1 in
which the stiffness matrices were all at least semi-positive-definite. Actually, the matrices were all
positive-definite, but some had some extremely small eigenvalues. We then considered (S30)2 and
its vanishing-end-weight solution, and adjusted the free variables in the corresponding nullspace
so as to obtain a least-squares solution of (S30)2 in which the weighted shape parameter vectors
were orthogonal to the eigenspaces of the small eigenvalues of the associated stiffness parameter
matrices. This orthogonality condition was imposed to avoid potential ill-conditioning problems
associated with these eigenvalues.
Our least-squares treatment of the linear system in (S30) thus provided a rational, admissible

parameter set P = {σα
1 ,Kα

1 , σαβ
2 ,Kαβ

2 } to be used as an initial guess in our numerical minimization
of the nonlinear, Kullback-Leibler objective functional defined in (43) of the main article.

Supplement to Section V.C: Properties of the P
∗ parameter set

Visualization of the parameter set

The data in Figures S7, S8 and S9 provide a visual illustration of the entire best-fit parameter set
P∗ = {σα

1 ,Kα
1 , σαβ

2 ,Kαβ
2 }. Figure S7 provides color plots related to the 1-mer stiffness parameter

matrices Kα
1 ∈ R

6×6 and weighted shape parameter vectors σα
1 ∈ R

6. For the stiffness parameters,
we plot the Euclidean averageKavg

1 and the standard deviation K
dev
1 over all 4 possible monomers

α = T, A, C and G, along with the differences K∆α
1 = K

α
1 − K

avg
1 for the 2 independent monomers

α = A and G. Analogous plots are also presented for the weighted shape parameters. As can
be seen, there are marked sequence-dependent variations among the stiffness and the weighted
shape parameters, which suggests that they are successfully capturing differences in the intra-
basepair interactions within the 2 independent monomers shown here, and hence by objectivity
between all 4 possible monomers.
Analogous plots are made for the 2-mer stiffness parameter matrices K

αβ
2 ∈ R

18×18 in Figure
S8, and for the 2-mer weighted shape parameter vectors σαβ

2 ∈ R
18 in Figure S9. For the stiffness

parameters, we plot the Euclidean average K
avg
2 and the standard deviation K

dev
2 over all 16 pos-

sible dimers αβ, along with in column one the differences from the average K
∆αβ
2 = K

αβ
2 − K

avg
2

for the 3 independent purine-pyrimidine dimers αβ = AT, GC and GT, and analogously in column
two for the 3 independent pyrimidine-purine dimers αβ = TA, CG and TG, and in column three
for the 4 independent purine-purine dimers αβ = AA, GG, AG and GA, with the same groupings of
results for the weighted shape parameters in Figure S9. While there is some sequence-dependent
variation within the columns for both the stiffness and the weighted shape parameters, as there
should be, there are more striking patterns that are common within, and distinct between, each
column. As before, this observation suggests that the parameter set is successfully capturing dif-
ferences in the inter-basepair or stacking interactions within the 10 independent dimers shown
here, and hence by objectivity all 16 possible dimers.
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Eigenvalues of the parameter set stiffness matrices

Figure S10 shows the logarithm of the eigenvalues of a) the 1-mer stiffness parameter matrices Kα
1

for 2 independent monomers α, b) the 2-mer stiffness parameter matrices Kαβ
2 for 10 independent

dimers αβ, and c) the constructed oligomer stiffness matrices K
∗
µ,m for the same 10 independent

oligomers Sµ of length two (i.e. physical dimers); these short oligomers are not part of the training
data set, but we retain the notation for convenience. While all the eigenvalues, denoted by the
black symbols, of the stiffness parameter matrices K

α
1 and K

αβ
2 are positive, some are extremely

small, of the order 10−6 or less. Consequently, some of the stiffness parameter matrices could be
reasonably approximated by lower-rank matrices with some eigenvalues set exactly equal to zero.
For instance, both 1-mer stiffness parameter matrices K

α
1 could be approximated by lower-rank

matrices with 2, 3 or 4 eigenvalues equal to zero, and some of the 2-mer stiffness parameter matri-
ces Kαβ

2 could be approximated by lower-rank matrices with 1 or 2 eigenvalues equal to zero. We
remark that the matrices and hence the eigenvalues presented here are expressed in dimension-
less units according to the scales introduced in Section II.D. Precisely the same magnitudes and
conclusions would be obtained in dimensional units when lengths are expressed in units of Å, an-
gles are expressed in units of 1/5-radians (approximately 11-degrees), and energies are expressed
in units of kBT . Specifically, the eigenvalues of small magnitudes shown here are not artifacts of
the non-dimensionalization, but are characteristic properties of the 1-mer and 2-mer interaction
energy models at these scales. When the parameter matrices K

α
1 and K

αβ
2 are combined, as illus-

trated in (34), to form the model stiffness matrices K∗
µ,m for the oligomers of length two described

above, the resulting matrices K
∗
µ,m, without exception, have all eigenvalues greater than 10−1 or

so; these eigenvalues are denoted by the red symbols. Hence the individual 1-mer and 2-mer in-
teraction energies, with rather soft modes, stabilize each other when superposed to yield a dimer
(or length two oligomer) energy that is appropriately stiff.

End effects in the reconstruction of a homogeneous, sequence-averaged oligomer

As discussed in the main article, it is of interest to consider the sequence-averaged, best-fit param-
eter set P∗,avg = {σavg

1 ,Kavg
1 , σavg

2 ,Kavg
2 }, where σavg

1 ,K
avg
1 and so on denote the Euclidean averages

illustrated in Figures S7, S8 and S9. The set P∗,avg can be interpreted as providing a homogeneous,
nearest-neighbor model of DNA in which the occurrence of each of the four possible basepairs is
assumed to be equally likely at each position in an oligomer. Using this parameter set, a model
shape vector ŵ∗

h,m and stiffness matrix K
∗
h,m can then be constructed for a homogeneous oligomer

of arbitrary length. Figure S11 below shows entries of the constructed shape vector ŵ
∗
h,m and

stiffness matrix K
∗
h,m as a function of position along a homogeneous, 18-basepair oligomer. The

top four panels of the figure show the different entries of the shape vector ŵ∗
h,m versus oligomer

position, with discrete point values visualized using linear interpolation. Each of the four panels
contains plots of three of the twelve types of parameters, grouped by intra- and inter-basepair
types, and by translational and rotational types; the numerical scale on the ordinate is different
in each panel to suit the pertinent data. Despite the fact that the oligomer is homogeneous, with
a uniform parameter set, significant end effects are visible: the constant value of each parame-
ter in the interior of the oligomer is only approached sufficiently far from the ends. For some
parameters, for example Propeller, the end effects are visible on the scale of the plot to a depth
of penetration of 4 basepairs. Such nonlocal end effects are typical of all the shape parameters:
the magnitude and depth are similar for both intra- and inter-basepair parameters, but are more
evident in the former because of differences in the scales between the panels. Even with end ef-
fects, the required palindromic symmetry of the homogeneous model is evident, with oddness of
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Buckle, Shear, Tilt and Shift (all plotted in black), and evenness of the remaining parameters.
The bottom four panels of Figure S11 are analogous and show the different diagonal entries

of the stiffness matrix K
∗
h,m. Although the stiffness matrix has many non-zero entries, we choose

to plot only the diagonal entries for brevity. In contrast to the nonlocal end effects in the shape
vector ŵ∗

h,m, it is a consequence of our nearest-neighbor model that the end effects in the stiffness
matrix K

∗
h,m are localized precisely to the first and last 6 × 6, intra-basepair blocks as reflected in

the left two panels, while the inter-basepair stiffnesses do not change at all as reflected in the right
two panels. Notice that the localized end effects in the intra-basepair stiffnesses are significant:
some parameters change by approximately 50% at the oligomer ends. The palindromic symmetry
of the homogeneous model is again evident: palindromy implies that all the diagonal stiffness
parameters should be even functions of position about the middle of the oligomer, as is visible in
each panel.

Interior values of shape parameters in homogeneous, sequence-averaged oligomers

Figure S11 illustrates that, sufficiently far from the ends, the shape parameters of a homogeneous
oligomer approach the constant values ŵ

∗
h,m that are reported in Table II of the main text in both

Curves+ and 3DNA coordinates. The computation of a 3DNA version of our homogeneous shapes
ŵ

∗
h,m is not entirely straightforward, and involves various choices. We adopted the following pro-
cedure: we first reconstructed absolute coordinates (reference points and frames) of a sequence-
averaged rigid-base DNA configuration, using the parameter set P∗,avg. Then for this coarse-grain
configuration, we reconstructed 5 sets of absolute coordinates of all the non-hydrogen atoms in
an idealized base using the sequences Sµ of Table SI for µ = 1, 3, 5, 9, 17 and the Curves+ base
embedding rules [S10]. We then ran the program 3DNA [S12] with these 5 sets of reconstructed
atomic coordinates as inputs, and averaged the corresponding intra- and inter-basepair 3DNA
coarse-grain parameter outputs over all basepairs and junctions of all the five sequences, com-
puted along both strands while staying three basepairs away from the ends.

Supplement to Section VI: Further comparisons of constructed models

Here we extend the discussion of the main article and compare results for the four training set
oligomers Sµ with µ = 1, 3, 8, 42 as detailed in Table SI. Although oligomers S1 and S8 are also
discussed in the main article, here we provide additional information on these oligomers. Regard-
ing sequence composition, we note that S1 is a palindromic 18-mer with a period two sequence
in its interior, S3 is a palindromic 18-mer with a period four sequence in its interior, S8 is a non-
palindromic 18-mer also with a period four sequence in its interior, and S42 is a non-palindromic
12-mer with a non-periodic sequence in its interior. The three oligomers S1, S3 and S8 all have
5′-GC and GC-3′ dimer ends, whereas S42 has 5′-GG and GG-3′ dimer ends.

Divergences between different oligomers

Table SII shows various relative divergences between the observed internal configuration density
ρµ,o, the oligomer-based model density ρ∗µ,M, and the constructed dimer-based model density ρ∗µ,m

for the 18-mers Sµ, µ = 1, 3, 8, 1′ . Here the oligomer S1′ has a single point mutation from the se-
quence of S1 as discussed in SectionVII.With the Kullback-Leibler scaleDo for 18-mers introduced
in Section IV.E, the diagonal cells of the table report the relative divergence D(ρ∗µ,M, ρµ,o)/Do be-
tween the observed and oligomer-based model densities of oligomer Sµ in the top entry of the
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S1 S3 S8 S1′

S1 0.087 0.676 0.567 0.116
0.076 0.619 0.407 0.053

S3 0.616 0.095 0.541 0.621
0.489 0.075 0.297 0.466

S8 0.423 0.422 0.091 0.418
0.310 0.314 0.088 0.286

S1′ 0.139 0.679 0.588 0.089

0.040 0.574 0.364 0.082

Table SII: Relative pairwise Kullback-Leibler divergences between the internal configuration den-
sities ρµ,o, ρ∗µ,M, and ρ∗µ,m for the 18-mers Sµ, µ = 1, 3, 8, 1′ , where S1′ is a single point mu-
tation of S1. Diagonal cells top: D(ρ∗µ,M, ρµ,o)/Do for oligomer Sµ. Diagonal cells bottom:
D(ρ∗µ,m, ρ∗µ,M)/Do for oligomer Sµ. Off-diagonal cells top: D(ρµ,o, ρν,o)/Do for distinct oligomers
Sµ and Sν . Off-diagonal cells bottom: D(ρ∗µ,m, ρ∗ν,m)/Do for distinct oligomers Sµ and Sν .

cell, and the relative divergence D(ρ∗µ,m, ρ∗µ,M)/Do between the oligomer-based and dimer-based
model densities of Sµ in the bottom entry. The off-diagonal cells of the table show the relative
divergenceD(ρµ,o, ρν,o)/Do between the observed densities of the distinct oligomers Sµ and Sν in
the top entry of the cell, and the relative divergence D(ρ∗µ,m, ρ∗ν,m)/Do in the dimer-based model
densities of Sµ and Sν in the bottom entry. In the diagonal cells, the fact that each entry is less
than 10% indicates that the error incurred at each stage of modeling, from the observed to the
oligomer-based to the dimer-based model, is less than 10% for each of the four oligomers Sµ. In
the off-diagonal cells, the top entries quantify differences in the observed densities due to differ-
ences in sequence, whereas the bottom entries quantify the same sequence dependence but for
the dimer-based model densities. With the exception of the outermost off-diagonal cells, we see
that the bottom entries are of the same order as the top, which indicates that the dimer-based
model is reasonably capturing the variation in density due to the variation in sequence. In the
outermost off-diagonal cells, the oligomers S1 and S1′ differ by just a single point mutation. While
the dimer-based model can still capture the variation in density in this case, it gives a variation
that is noticeably smaller than observed. Thus the dimer-based model can resolve differences in
the probability density on the 210-dimensional internal configuration space of an 18-mer due to
differences in sequence, even when the difference in sequence is in a single basepair.

Quality of shape and stiffness reconstructions

Figures S12, S13, S14 and S15 show entries of the shape vector and stiffness matrix as a function
of position for the four training set oligomers S1, S3, S8 and S42. The figures illustrate pointwise
comparisons between the observed and constructed dimer-based model parameters along the dif-
ferent oligomers. Figures S12 and S14 are identical to Figures 4 and 5, and are repeated here for
convenience. The data in Figures S12–S15 illustrate the quality of the dimer-based model con-
structions. As noted in the main article, the differences between the observed and the constructed
quantities are rather small, and with very few exceptions, the pointwise differences in the quan-
tities are less than the variation with sequence. There is a tendency for the constructed quantities
to exhibit larger errors at the ends, particularly for the oligomer S42, which may indicate a lack of
sampling of GG dimer ends in the training data set. Visually, the errors in the intra-basepair shape
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and stiffness parameters appear larger, but the scales in the plots of the intra- and inter-basepair
parameters are different. For both intra- and inter-basepair shape parameters, and away from the
ends, rather few errors are larger than 0.1Å in translational variables and 2◦ in rotational vari-
ables. All constructed parameters shown for oligomers S1, S3 and S8 are clearly consistent with
the periodicity of their interior sequences. By design, the constructed parameters exactly satisfy
the requisite symmetry conditions for the palindromic oligomers S1 and S3. The observed param-
eters computed directly from the MD time series data, and shown in the solid lines, for the most
part also closely satisfy the requisite symmetries, but errors can arise from a lack of convergence
of the MD simulation of the relevant oligomer. For example, the breaking of evenness in the plot
of the observed shape parameter Stagger and the observed stiffness parameter Twist-Twist in Fig-
ure S12 violates the palindromic symmetry of oligomer S1, and must reflect a lack of convergence
of the MD time series.

Comparison of marginals

Figures S16, S17, S18, S19 and S20 show various one-dimensional marginal distributions (or his-
tograms) for each type of intra- and inter-basepair coordinate at each location along the four train-
ing set oligomers S1, S3, S8 and S42. These marginal distributions provide a way to assess the
quality of the Gaussian assumption in our modeling approach and further illustrate sequence and
end effects. For each type of coordinate, at each location, along each oligomer Sµ, we compare
four different marginal distributions as described in the main article. Figures S16, S17 and S19
are identical to Figures 6, 7 and 8 and are repeated here for convenience. Figure S16 shows the
marginal distributions for the intra-basepair coordinates along oligomer S8. As noted in the main
article, the four distributions for each coordinate at each position are practically indistinguishable.
Similar results hold for the distributions of intra-basepair coordinates along oligomers S1, S3 and
S42; the four distributions at each position on each of these oligomers are even closer than those
for oligomer S8. Figures S17–S20 provide analogous plots for the inter-basepair coordinates. Now
it can be seen that there are cases where the actual marginal distribution obtained from the MD
data is noticeably non-Gaussian. For example, see themarginals of Slide for the various TA dimers
in Figure S17, the marginals of Twist for the various CG dimers in Figures S18, S19 and S20, and
the marginals of Slide, Shift and Twist for the various GG dimers in Figure S20. The marginal of
Slide in the 5′-GG dimer end in Figure S20 is particularly far from Gaussian. While such bi-modal
and otherwise non-Gaussian behavior is beyond the scope of the Gaussian approach considered
here, the results show that the dimer-based model with the best-fit parameter set can capture the
dominant features of sequence variation in a satisfactory way. Specifically, when comparing the
dimer-based model construction to the MD data, the error in the mean and width of the con-
structed marginal of any coordinate is almost always qualitatively smaller than the variation in
these quantities due to sequence.

Further comparisons

Plots analogous to those presented in Figures S12–S15, and Figures S16–S20, but for all the oligomers
in our training data set are available online at http://lcvmwww.epfl.ch/cgDNA.
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Figure S7: Averages, standard deviations and differences in dimensionless units of the 1-mer pa-
rametersKα

1 and σα
1 of the best-fit parameter set P

∗ of the dimer-based model. The indices 1, . . . , 6
correspond to the variables Buckle, Propeller, Opening, Shear, Stretch, Stagger. Top row: plot of
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avg
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dev
1 , K
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1 = K

α
1 − K

avg
1 for the two independent monomers α = A and G. Bottom row: plot
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Figure S11: Entries of the shape vector ŵ
∗
h,m and stiffness matrix K

∗
h,m, constructed from the

sequence-averaged, best-fit parameter set P∗,avg, in dimensionless units as a function of position
along a homogeneous, 18-basepair oligomer. Values at successive positions are joined by a piece-
wise linear curve. Top four panels: each of the twelve types of entries of ŵ∗

h,m versus position.
Bottom four panels: each of the twelve types of diagonal entries of K∗

h,m versus position. Both
intra- and inter-basepair shape parameters exhibit nonlocal end effects, whereas the intra-basepair
stiffnesses exhibit only local end effects, and the inter-basepair stiffnesses exhibit no end effects.
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Figure S12: Entries of shape vectors and stiffness matrices in dimensionless units for the palin-
dromic, interior period two, 18-mer S1 from the training set. Top four panels: entries of observed
vector ŵ1,o (solid) and constructed dimer-based model vector ŵ

∗
1,m (dashed). Bottom four pan-

els: diagonal entries of observed matrix K1,o (solid), constructed dimer-based model matrix K
∗
1,m

(dashed) and nearest-neighbor oligomer-based model matrix K
∗
1,M (dash-dot).
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Figure S13: Entries of shape vectors and stiffness matrices in dimensionless units for the palin-
dromic, interior period four, 18-mer S3 from the training set. Top four panels: entries of observed
vector ŵ3,o (solid) and constructed dimer-based model vector ŵ

∗
3,m (dashed). Bottom four pan-

els: diagonal entries of observed matrix K3,o (solid), constructed dimer-based model matrix K
∗
3,m

(dashed) and nearest-neighbor oligomer-based model matrix K
∗
3,M (dash-dot).

26



G C G A T C G A T C G A T C G A G C
−2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 buckle

propeller

opening

    G    C    G    A    T    C    G    A    T    C    G    A    T    C    G    A    G    C
−1

0

1

2

3

4

 

 

tilt

roll

twist

G C G A T C G A T C G A T C G A G C

−0.2

−0.1

0

0.1

0.2

0.3

 

 

shear

stretch

stagger

    G    C    G    A    T    C    G    A    T    C    G    A    T    C    G    A    G    C
−1

0

1

2

3

4

 

 

shift

slide

rise

G C G A T C G A T C G A T C G A G C
0

5

10

15

20

25

30

35

 

 
buckle−buckle

propeller−propeller

opening−opening

    G    C    G    A    T    C    G    A    T    C    G    A    T    C    G    A    G    C
0

10

20

30

40

50

60

 

 
tilt−tilt

roll−roll

twist−twist

G C G A T C G A T C G A T C G A G C
0

20

40

60

80

100

120

140

 

 

shear−shear

stretch−stretch

stagger−stagger

    G    C    G    A    T    C    G    A    T    C    G    A    T    C    G    A    G    C
0

10

20

30

40

50

60

70

80

90

 

 

shift−shift

slide−slide

rise−rise

Figure S14: Entries of shape vectors and stiffness matrices in dimensionless units for the non-
palindromic, interior period four, 18-mer S8 from the training set. Top four panels: entries of
observed vector ŵ8,o (solid) and constructed dimer-based model vector ŵ

∗
8,m (dashed). Bottom

four panels: diagonal entries of observed matrix K8,o (solid), constructed dimer-based model ma-
trix K

∗
8,m (dashed) and nearest-neighbor oligomer-based model matrix K

∗
8,M (dash-dot).
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Figure S15: Entries of shape vectors and stiffness matrices in dimensionless units for the non-
palindromic, interior non-periodic, 12-mer S42 from the training set. Top four panels: entries of
observed vector ŵ42,o (solid) and constructed dimer-based model vector ŵ

∗
42,m (dashed). Bottom

four panels: diagonal entries of observed matrix K42,o (solid), constructed dimer-based model
matrix K

∗
42,m (dashed) and nearest-neighbor oligomer-based model matrix K

∗
42,M (dash-dot).
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Figure S16: Normalized marginal distributions for intra-basepair coordinates at each position
along oligomer S8. Positions are ordered left-to-right beginning at top-left in each of the two
groups. The panel for each position shows themonomer on the reference strand and themarginals
from each of four sources (MD data, solid; density ρ8,o, dotted; density ρ∗8,M, dashed-dotted; den-
sity ρ∗8,m, dashed) for each of three coordinates (black, blue, red) in dimensionless units. The
marginals from the different sources are virtually indistinguishable.
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Figure S17: Normalized marginal distributions for inter-basepair coordinates at each junction
along oligomer S1. Junctions are ordered left-to-right beginning at top-left in each of the two
groups. The panel for each junction shows the dimer on the reference strand and the marginals
from each of four sources (MD data, solid; density ρ1,o, dotted; density ρ∗1,M, dashed-dotted; den-
sity ρ∗1,m, dashed) for each of three coordinates (black, blue, red) in dimensionless units.
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Figure S18: Normalized marginal distributions for inter-basepair coordinates at each junction
along oligomer S3. Junctions are ordered left-to-right beginning at top-left in each of the two
groups. The panel for each junction shows the dimer on the reference strand and the marginals
from each of four sources (MD data, solid; density ρ3,o, dotted; density ρ∗3,M, dashed-dotted; den-
sity ρ∗3,m, dashed) for each of three coordinates (black, blue, red) in dimensionless units.
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Figure S19: Normalized marginal distributions for inter-basepair coordinates at each junction
along oligomer S8. Junctions are ordered left-to-right beginning at top-left in each of the two
groups. The panel for each junction shows the dimer on the reference strand and the marginals
from each of four sources (MD data, solid; density ρ8,o, dotted; density ρ∗8,M, dashed-dotted; den-
sity ρ∗8,m, dashed) for each of three coordinates (black, blue, red) in dimensionless units.
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Figure S20: Normalized marginal distributions for inter-basepair coordinates at each junction
along oligomer S42. Junctions are ordered left-to-right beginning at top-left in each of the two
groups. The panel for each junction shows the dimer on the reference strand and the marginals
from each of four sources (MD data, solid; density ρ42,o, dotted; density ρ∗42,M, dashed-dotted;
density ρ∗42,m, dashed) for each of three coordinates (black, blue, red) in dimensionless units.
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