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ABSOLUTE VERSUS RELATIVE ENTROPY PARAMETER
ESTIMATION IN A COARSE-GRAIN MODEL OF DNA∗

O. GONZALEZ† , M. PASI‡ , D. PETKEVIČIŪTĖ§ , J. GLOWACKI¶, AND

J. H. MADDOCKS¶

Abstract. Maximum entropy procedures for estimating coarse-grain parameters from molecular
dynamics (MD) simulation data are considered within the specific context of the sequence-dependent
cgDNA rigid-base model of DNA. We describe a quite general approach that exploits a maximum
absolute entropy principle to fit an observed matrix of covariances subject to the constraint of only al-
lowing a prescribed sparsity pattern of nearest-neighbor interactions in the free energy. We also allow
indefinite local stiffness-matrix parameter blocks that nevertheless always generate a positive-definite
model stiffness matrix. Beginning from a database of atomic-resolution MD simulations of a library
of short DNA oligomers in explicit solvent, these procedures deliver a complete parameter set for the
cgDNA model. Due to the intrinsic linear structure of DNA and the convergence characteristics of
the MD time series data, the maximum absolute entropy parameter set yields significantly improved
predictions of persistence lengths, when compared to a previous parameter set that was fit to the
same MD data, but using a maximum relative entropy fitting principle and local stiffness-matrix
parameter blocks that were constrained to be semidefinite.
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1. Introduction. An important problem in molecular biology is to understand
how the mechanical properties of DNA depend on the sequence of bases along its two
backbones. Properties that influence bending, twisting, shearing, and stretching in
different directions along and across the two strands are believed to be essential in
various biological processes such as DNA looping [34], nucleosome positioning [35],
and other DNA-protein interactions, and gene regulation [26], all of which depend on
the probability of DNA to adopt various three-dimensional configurations [4]. Con-
sequently models at differing length scales are needed to quantify how the mechan-
ical properties of DNA depend upon its sequence. The intermediate scales of a few
tens to a few hundreds of base pairs are of particular biological interest. The study
of sequence-dependent effects at such scales requires the development of specialized
coarse-grain models, because, with contemporary computational resources, all-atom
molecular dynamics (MD) simulations at these lengths remain intensive, particularly
given the large number of possible sequences, while sequence-dependent behavior is
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below the resolution of the standard, homogeneous, wormlike chain or uniform, elastic
rod coarse-grain models.

The cgDNA model, recently introduced in [13, 31], was developed to predict a
sequence-dependent free energy and associated equilibrium probability distribution
for an oligomer1 of B-form DNA of arbitrary sequence in solvent under prescribed
environmental conditions at these intermediate length scales. The model is of the
rigid-base type in which each base on each strand of the DNA is considered as a
rigid entity interacting with its nearest neighbors. The coarse-grain configuration
of a given DNA oligomer is described by an independent set of standard internal
helicoidal coordinates corresponding to the relative, three-dimensional rotation and
displacement between neighboring bases both along and across the two backbone
strands. The model is then completed by a parameter set, which depends only on
the local dinucleotide2 sequence along the oligomer, combined with a rule for con-
structing a shifted, quadratic approximation to the free energy for any oligomer from
its sequence. The stiffness, or coefficient, matrix in this quadratic form is banded,
reflecting the assumption of there being only nearest-neighbor interactions, and has
a local dependence on sequence. In contrast the shift, or ground-state configuration,
of the quadratic energy has a nonlocal sequence dependence due to the fact that
it arises from a completion-of-squares operation involving the inverse of the banded
stiffness matrix. This nonlocality of sequence-dependence is a unique feature of the
cgDNA model within coarse-grain descriptions of DNA. It encapsulates the frustra-
tion or pre-existing stress in an oligomer. As a consequence the cgDNA model has
been shown to successfully resolve observed sequence effects, both within and be-
tween DNA oligomers, down to the resolution of nonlocal changes in the ground-state
configuration due to a single point mutation in the sequence.

Once a cgDNA parameter set has been estimated, the construction of the cgDNA
free energy function for an oligomer of arbitrary sequence is an essentially trivial com-
putation, and the configurational statistics of that oligomer are then described by an
associated Gaussian equilibrium probability density on the space of internal coordi-
nates, for which efficient sampling techniques are available. Associated software and
examples are described in [27, 32]. In particular, the computational effort associated
with applying the cgDNA model to a new sequence is far less than that required in
an additional MD simulation for each sequence of interest, so that studies of much
larger ranges in both length scales and sequence variation become feasible.

Nevertheless the scientific utility of the cgDNA model depends upon the accuracy
of its parameter set. In this presentation we consider mathematical procedures for
estimating these sequence-dependent parameter sets. While we describe our results
within the specific context of the cgDNA model, the maximum entropy approach
to enforcing a prescribed sparsity pattern in the stiffness (or precision) matrix in a
Gaussian is potentially also of wider interest [3, 6, 10, 36, 38]. For example, in the
specific application fields of numerical weather prediction and data assimilation, both
sparse covariance and sparse inverse covariance (or precision) matrix estimates are
adopted using other techniques such as tapering [2, 5, 11, 33, 37].

As our starting point, we assume that a library of atomic-resolution MD simula-

1The standard molecular biology term oligomer is used here and throughout as a synonym for a
short fragment or molecule of DNA.

2A nucleotide is the basic structural unit of DNA, comprising a base, of one of four types T, A,
C, or G, together with its linked phosphate and sugar groups. The dinucleotide sequence context
then means the sequence step along one strand, such as TA, GG, etc.
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PARAMETER ESTIMATION IN A MODEL OF DNA 1075

tions of an ensemble of training oligomers in explicit solvent3 is available, and then we
seek to estimate coarse-grain parameters from this database. Although other types
of data, for example NMR data, could potentially be used, we focus on establishing
methods tailored to the particular case of data coming from a finer-grain MD simu-
lation due to both its easy availability and the continually improving state-of-the-art
in the field; see, e.g.. [1, 8, 24, 29]. In particular, by taking MD time series simulation
data for a library of sequences as our starting point, we have access to changes in
solvent condition, such as temperature and salt concentration and species, just by
running the appropriate MD simulation of the library; albeit we must rely on the ac-
curacy of the underlying MD simulation protocols and potentials. A (contemporary)
complete MD data set of time series for a single sequence library is of the order of
0.5 TB in size, from which an associated cgDNA parameter set is to be extracted,
which comprises a total of 1592 independent scalars (that, as described below, can be
naturally grouped into certain small independent vectors and symmetric matrices).
Consequently the current mathematical considerations could reasonably be described
as the development of efficient machine learning techniques for extracting model pa-
rameters from our particular structured MD simulation big data sets.

Our parameter estimation procedure comprises three steps. The first is the es-
timation of a coarse-grain configurational mean vector and covariance matrix from
a fine-grain MD time series for each oligomer in a training set, assuming that these
time series are stationary; for more details, see [13, 21]. The second is the fitting
of the observed mean and covariance of each training set oligomer by a descriptive
Gaussian model that is required to have the banded stiffness matrix that expresses
the nearest-neighbor interaction assumption. And the third and final step is the es-
timation of the locally sequence-dependent parameters (which allow the prediction
of cgDNA model free energies for oligomers of arbitrary sequence) by fitting to the
banded Gaussian description of each oligomer in the training library. In this paper
we focus on the second and third steps of the procedure and examine the impact of
various mathematical choices in the associated fits.

Regarding the second step of our procedure, we compare two fitting strategies
based on maximizing either an absolute or a relative entropy for the probability den-
sity function of the oligomer. Due to the linear structure of DNA, and the related
convergence characteristics of MD time series data, we here argue that the fit based
on maximum absolute entropy is more natural than the maximum relative entropy
fit that we adopted previously. Specifically, the approach based on absolute entropy
employs data from only a band about the diagonal of the estimated covariance matrix,
whereas the approach based on relative entropy employs data from the entire esti-
mated covariance matrix, and we present numerical evidence to suggest that the data
that is close to the diagonal has a smaller error with respect to its assumed equilibrium
or stationary value than the data that is far away. Moreover, the maximum absolute
entropy fit can be constructed using a simple, local inversion algorithm [12], whereas
the relative entropy fit requires numerical optimization techniques. We note that in
the absolute entropy case, the maximization problem reduces to a matrix completion
problem that has been previously studied [3, 6, 10, 14, 19, 22, 36, 38]. Furthermore,
although we only consider means and covariances in this work, higher-order moments
are also of interest, and it is understood that these could be accommodated in the
maximum absolute entropy approach in a natural way [16, 17, 18].

3The term explicit solvent refers to an explicit, fully atomistic representation of the water
molecules and ions making up the solvent within an MD simulation.
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1076 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

In the third step of the procedure, we seek to estimate the parameters in the
cgDNA model by fitting them against the banded Gaussian description of each train-
ing oligomer. To this end, we characterize a best-fit parameter set as one that max-
imizes a natural objective function on a space of parameter sets, and we examine
various assumptions on the choice of parameter space. As we will see, an impor-
tant requirement of the cgDNA model is that it produce a positive-definite stiffness
matrix, and hence a well-defined probability density function, for an oligomer of ar-
bitrary sequence above some minimal length. This requirement can be guaranteed
under various different restrictions on the parameter set, specifically on the parame-
ter stiffness matrices associated with the local base-pair and junction energies, which
are described in detail later. In previous work [13], these parameter matrices were
assumed to be positive-semidefinite, which complicates both the characterization and
numerical treatment of the parameter fitting problem. Although apparently natu-
ral, this positive-semidefinite restriction is not required by any physical consideration
associated with the model. And we show here that positivity of the cgDNA model
stiffness matrix for any sequence can be guaranteed with a class of parameter matri-
ces that are themselves indefinite. This generalization simplifies the parameter space
and allows for a faster and more efficient numerical treatment of the fitting problem.
Moreover, the admissible set of parameter matrices includes, but is strictly bigger
than, positive-semidefinite, so that the fit is by definition improved.

As an illustration of our results, we compare two different best-fit parameter
sets for the cgDNA model. One set, referred to as cgDNAparamset1, was described
in the prior work [13], while the other, cgDNAparamset2, is new. Whereas the set
cgDNAparamset1 was based on a maximum relative entropy description of each train-
ing oligomer, and was computed using a simple gradient flow method with positive-
semidefinite restrictions on the parameter stiffness matrices, the set cgDNAparamset2
is based on a maximum absolute entropy description, and was computed using a
Newton–Broyden method without any restrictions on the definiteness of the parame-
ter stiffness matrices. The set cgDNAparamset2 is also shown to be a locally unique
optimizer for our fitting procedure in the sense that it satisfies the requisite first-order
necessary, and second-order sufficient, conditions on the gradient and Hessian of the
objective function. cgDNAparamset2 contains indefinite parameter stiffness matri-
ces but satisfies a set of sufficient conditions for any cgDNA stiffness matrix to be
positive-definite.

Finally, we show that the predictive capabilities of cgDNA with cgDNAparamset2
are noticeably improved as compared to cgDNAparamset1. Specifically, while the
two parameter sets each predict the sequence-dependent variations in ground-state
shape within and between oligomers rather well, we find that cgDNAparamset2 is
significantly better than cgDNAparamset1 in predicting the stiffness properties of
oligomers in the sense of persistence length. We attribute this improvement to the
use of more natural choices in our parameter estimation procedure.

2. Maximum entropy estimation of coarse-grain equilibrium distribu-
tions. Before turning to a description of the specific application to modeling DNA, we
first describe the general class of problems that we treat and the general mathematical
approaches that we adopt.

2.1. Coarse-grain equilibrium distributions. Our assumed starting point
for modeling is that we are considering a system that can be described with coarse-
grain coordinates w ∈ Rm, and which is microscopic in the informal sense that the
problem is one of statistical mechanics, where the physical observables are expec-

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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PARAMETER ESTIMATION IN A MODEL OF DNA 1077

tations of an underlying equilibrium or stationary probability density function ρ(w)
defined with respect to the standard measure dw. Moreover, we assume that this
density can be expressed in the exponential, or Boltzmann, form

(1) ρ(w) =
1

Z
e−U(w),

where U(w) is the free energy of the problem (expressed in units of kBT ), and Z is
the normalizing constant (or partition function).

The expected, or average, value of any function φ over the equilibrium distribution
ρ is defined in the usual way as

(2) 〈φ〉ρ :=

∫
φ(w)ρ(w) dw,

where all integrals here and throughout are over the space Rm unless mentioned
otherwise. The mean µρ ∈ Rm and (centred) covariance Cρ ∈ Rm×m will play key
roles in our development, and are defined as usual to be

(3) µρ := 〈w〉ρ, Cρ := 〈∆w⊗∆w〉ρ,

where ∆w = w − µρ and ⊗ denotes the outer or tensor product of a vector, so that
in components we have [x⊗ x]pq = xpxq for any vector x. Whereas the vector µρ can
be arbitrary, the matrix Cρ is always symmetric positive-semidefinite, and we will
consider cases where it can be assumed to also be positive-definite.

Our first goal is to predict optimal approximations to the model equilibrium
probability density function ρ(w), or equivalently the energy U(w), from a finite set
of observed data. Our assumed starting point for model parameter estimation is
that we have an estimated mean µ and covariance C = CT > 0 for the problem.
These input data could in principle be obtained either from experiment, or, as in the
case of our DNA modeling application, from a time series generated by a finer-grain
simulation such as atomistic MD. We further assume that there is a banded index
set N, corresponding to the entries of a symmetric m × m matrix within specified
overlapping diagonal blocks (and containing all diagonal entries), for which all large
entries of C−1 have indices in N. Of course the precise characterization of which
entries of C−1 are large and which are small is ultimately a modeling decision. The
index set complementary to N will be denoted by Nc.

Because we assume that we have estimated values of only the mean and covariance
of the distribution ρ, we will be lead naturally to Gaussian models of the form

(4) ρ(w) =
1

Z
e−

1
2 (w−µ)·K(w−µ),

in which the free energy U(w) is a shifted quadratic form, and by well-known results for
Gaussian integrals, e.g., [15], the normalizing constant Z is known explicitly, the shift
µ is the mean, and the inverse of the stiffness matrix K is the covariance, i.e., K−1 = C.
If it is instead assumed that estimates of higher-order moments, or other non-quadratic
expectations, are available, we would instead be lead naturally to nonquadratic models
of the free energy [16, 17, 18].

2.2. Absolute and relative entropy. We will use the standard notions of
absolute and relative (Shannon) entropies in formulating our estimation strategies

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1078 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

and adopt the sign conventions employed in [25]. By the absolute entropy of a density
ρ(w) we mean

(5) Dabs(ρ) = −
∫
ρ(w) ln [ρ(w)] dw.

For the case of a bounded domain of unit measure, the absolute entropy satisfies
Dabs(ρ) ≤ 0 and Dabs(ρ) = 0 if and only if ρ is the uniform density. (These obser-
vations follow from the notion of relative entropy introduced below, with one density
being unity.) On unbounded domains, the existence and characterization of maximiz-
ing densities is more delicate. Intuitively, Dabs(ρ) can be interpreted as a measure of
uniformity; densities that maximize Dabs(ρ) within a prescribed class can be inter-
preted as the most uniform (least biased) in that class. In the special case when ρ is
a Gaussian, with a stiffness (or inverse covariance) matrix K, the integral in (5) can
be explicitly evaluated to obtain

(6) Dabs(ρ) =
1

2

[
ln (det(2πI)/detK) + I : I

]
,

where a colon denotes the standard Frobenius inner product for square matrices, and
I denotes the identity matrix of the same dimension m as K so that I : I = m.

By the relative entropy of a density ρ2(w) with respect to a density ρ1(w) we
mean

(7) Drel(ρ2, ρ1) = −
∫
ρ2(w) ln

[
ρ2(w)

ρ1(w)

]
dw.

This quantity is a nonsymmetric measure of the difference between ρ2 and ρ1; it
satisfies Drel(ρ2, ρ1) ≤ 0 for any ρ2 and ρ1, and Drel(ρ2, ρ1) = 0 if and only if ρ2 = ρ1.
More specifically, the functional −Drel(ρ2, ρ1) is referred to as the Kullback–Leibler
divergence [20]; it defines a premetric on the set of probability densities but is not a
metric since it is nonsymmetric and does not satisfy the triangle inequality. Following
[25], we prefer to work with Drel(ρ2, ρ1) rather than −Drel(ρ2, ρ1) purely for notational
consistency with (5). As in the absolute entropy case, the relative entropy can also
be interpreted as a measure of uniformity; densities ρ2 within a prescribed class that
maximize Drel(ρ2, ρ1) for given ρ1 can be interpreted as the most uniform with respect
to ρ1. In the special case when ρ2 and ρ1 are both Gaussian, with stiffnesses K2 and
K1, and means µ2 and µ1, the integral in (7) can be explicitly evaluated as before to
obtain

Drel(ρ2, ρ1) =
1

2

[
ln (detK1/detK2)− K−1

2 : K1 + I : I
]

− 1

2
(µ2 − µ1) · K1(µ2 − µ1).

(8)

2.3. Estimation via maximum absolute entropy. Both absolute and rela-
tive entropies have been widely employed in various parameter estimation methods
in statistics [3, 6, 10, 36, 38] and statistical mechanics [16, 17, 18]. For instance,
the maximization of the absolute entropy Dabs(ρm) over a class of model densities
ρm yields a best-fit density ρ� within the class; such a density is a best-fit in the
sense that it maximizes entropy, and can be understood as being a most uniform (or
least biased) density in the class. This approach is referred to as model fitting via
the maximum entropy principle, to which we will sometimes add the adjective abso-
lute to emphasize the distinction from the relative entropy case. Both the functional

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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PARAMETER ESTIMATION IN A MODEL OF DNA 1079

form and parameters of a best-fit density can be obtained from the maximum entropy
principle approach, and analytic solutions are known in some cases.

The simplest case of interest is when the admissible class is defined as all nor-
malized densities ρm whose mean is a prescribed vector µ, and whose covariances are
completely prescribed as a symmetric, positive-definite matrix C, so that a best-fit
density satisfies

(9) ρ� := argmax
ρm∈R

Dabs(ρm),

where R is a set of smooth, normalized model density functions given by

(10) R = {ρm | µρm = µ, Cρm = C}.

In this simple case, it is well known (see, e.g., [25]) that a best-fit density ρ� must
necessarily take the Gaussian form (4) for some vector µ� and symmetric, positive-
definite matrix K�. Moreover, the parameters µ� and K� are explicitly related to the
constraint data µ and C of the maximization; specifically,

(11) µ� = µ, K� = C−1.

If it is instead assumed a priori that the density to be approximated is Gaussian of
the form (4), then the same best-fit parameters (11) could instead be obtained from
the maximum likelihood principle applied to a finite ensemble of data with sample
mean µ and covariance C.

We remark that whether or not the best-fit model density ρ�(w) is a good ap-
proximation to the assumed underlying density ρ(w) is another matter entirely; it is
related to properties of the higher-order moments of ρ(w), and, if the data µ and C
were estimated from an associated time series, to properties of that time series, such
as stationarity and ergodicity.

2.4. Banded models via maximum relative entropy estimation. In con-
trast to absolute entropy, models can also be fit based on the notion of relative entropy.
For instance, whenever an observed density ρo is available as a prior, the maximiza-
tion of the relative entropy Drel(ρm, ρo) over a class of model densities ρm yields a
best-fit density, which has been termed model fitting via the maximum relative en-
tropy principle; see, e.g., [25]. Analytic solutions for best-fit densities defined using
the maximum relative entropy principle do not appear to be known for the classes
of model densities to be considered here; indeed, questions of existence and unique-
ness can be delicate, and we proceed only formally. However, we note that, at least
in the context of our applications, the development of robust numerical routines for
computing Gaussian, maximum relative entropy best-fit densities is straightforward
[13].

In general, the stiffness matrix K� = C−1 arising in (11) will be dense, but moti-
vated by the particular data C arising in our DNA application, we now introduce the
further assumption that there is a banded index set N for which all entries of K� with
indices in the complementary index set Nc are small. In order to simplify by reducing
the number of nonvanishing parameters in the model, it is then natural to seek a best-
fit Gaussian density whose associated stiffness matrix is constrained to be banded,
with a sparsity pattern corresponding to the index set N. In our previous work [13],
we obtained such best-fit densities using a Gaussian version of the maximum relative
entropy principle; specifically, we set

(12) ρrel := argmax
ρm∈R

Drel(ρm, ρo),

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1080 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

where R is a set of normalized Gaussian model density functions with symmetric,
positive-definite, banded stiffness matrices defined as

(13) R =

{
ρm | ρm =

1

Zm
e−

1
2 (w−µm)·Km(w−µm), KTm = Km > 0, [Km]Nc = 0

}
,

where we took the observed or prior density ρo to be the Gaussian ρo = ρ� with
positive-definite, dense stiffness matrix Ko = K�, arising from the maximum absolute
entropy fit (11). Since the (i, j) entry in the stiffness matrix being nonzero indicates
that the ith and jth entries in the configuration coordinate vector are coupled in
the free energy, we note that an assumption of only nearest-neighbor interactions is
equivalent to an appropriate choice of the index set N.

The maximization problem (12) can be simplified. Specifically, in view of the
explicit, decoupled expression in (8) for the relative entropy in the Gaussian case, we
can immediately conclude that the mean vector for any maximizing density must be
µrel = µo, which follows from the fact that Ko is positive-definite. As a result, the
stiffness matrix for any maximizing density must satisfy

(14) Krel = argmax
KTm=Km>0

[Km]Nc=0

1

2

[
ln (detKo/detKm)− K−1

m : Ko + I : I
]
.

As described in [13], and at least for our specific DNA application data, the char-
acterization (14) of Krel was found to be amenable to different iterative numerical
optimization algorithms, each of which converged to the same optimizer for various
different initial guesses. Hence for each set of input data (µ,C), we obtained a best-fit
Gaussian density ρrel(w) with mean vector µrel = µ and banded stiffness matrix Krel.
And we note that all entries of the observed covariance C enter into the characteriza-
tion (14).

2.5. Banded models via maximum absolute entropy estimation. We now
observe that a best-fit Gaussian density with a banded stiffness matrix can be char-
acterized in a different way, namely via an appropriate maximum absolute entropy
principle. Specifically, for input data (µ,C), we may consider a best-fit density defined
by

(15) ρabs := argmax
ρm∈R

Dabs(ρm),

where R is a set of smooth, normalized model density functions, whose functional
form and parameters are arbitrary, but whose mean and covariance are constrained
by the definition

(16) R = {ρm | µρm = µ, [Cρm ]N = [C]N}.

Thus the best-fit density is the one that maximizes the absolute entropy functional
over all model densities that are consistent with the estimated mean vector µ, and
the subset [C]N of the estimated covariance matrix associated with the index set N.
When the index set N corresponds to the entire matrix, then (15) and (16) reduce to
(9) and (10). However, whenever the index set N does not correspond to the entire
matrix, then the covariances outside the index set play no role in the fit, which is in
contrast to the relative entropy fit (14), which involves all entries of the estimated
covariance matrix C for all stencils N.
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PARAMETER ESTIMATION IN A MODEL OF DNA 1081

The maximization problem in (15) and (16) is well studied [3, 6, 10, 36, 38]. By
a slight generalization of a classic result [6], provided that the subset [C]N of the
estimated covariance includes all of the diagonal entries (variances) and is known to
be drawn from a symmetric, positive-definite matrix, both of which conditions are
satisfied in our case, a best-fit density ρabs(w) exists, is unique, and is a Gaussian
with mean vector µabs = µ and a symmetric, positive-definite stiffness matrix Kabs

which is banded according to the nearest-neighbor index set N; specifically, we have
[Kabs]Nc = 0, where Nc is the index set complementary to N. Moreover, the inverse
of the model stiffness (i.e., the model covariance) K−1

abs will in general be dense and,
as required, will exactly coincide with the estimated covariance C within N, that is,
[K−1

abs]N = [C]N, but with no equality necessary between any entries with indices in
Nc. In summary, an absolute entropy best-fit density ρabs as defined in (15) is known
to exist and to be a shifted Gaussian with a banded stiffness matrix with parameters
determined in terms of the prescribed data by

(17) µabs = µ, [Kabs]Nc = 0, [K−1
abs]N = [C]N.

It is simple to calculate that, analogously to the unbanded case, if it is instead
assumed a priori that the model density to be approximated is Gaussian with a
banded stiffness matrix, then the same conditions (17) for the best-fit parameters
could instead be obtained from the maximum likelihood principle applied to a finite
ensemble of data with sample mean µ and covariance C. Similarly, and as already
remarked in [13], if the model density is again assumed to be Gaussian with a banded
stiffness matrix, then the necessary conditions (17) can be obtained in a third way,
namely from the version of the relative entropy variational principle (12) in which the
order of the model ρm and observed ρo densities are switched in the two arguments
of the (nonsymmetric) functional Drel. Nevertheless we will continue to describe the
Gaussian parameters (µabs,Kabs) defined by (17) as the absolute entropy parameters.

Solving conditions (17) for the stiffness matrix is not entirely straightforward, and
for example iterative algorithms have been proposed [6, 36]. What is less well known
is that, in the case when the index set N corresponds to an overlapping diagonal block
structure (as is the case in our cgDNA application), there is a simple, explicit, and
local construction of the matrix Kabs satisfying (17) directly from the covariances [C]N.
There are two particularly simple special cases. First, and as previously remarked,
when N is the entire matrix, then Kabs = C−1. Second, in the uncoupled case where N

has nonoverlapping diagonal blocks (not necessarily all of the same size, but containing
all diagonal entries), then it is simple to verify that the full matrix case applies to
the decoupled blocks, and the nonvanishing blocks of Kabs are just the inverses of the
corresponding diagonal blocks of C, so that in addition [Kabs]Nc = 0 is satisfied. We
are interested in the general fully coupled case where the index set N corresponds to
b overlapping diagonal blocks, with (b − 1) nontrivial adjacent overlaps (the special
case where N corresponds to 18 × 18 diagonal blocks with 6 × 6 overlaps that arises
in our DNA application is illustrated in the rightmost image in Figure 8 below), for
which the construction is as follows. Each of the b diagonal (in our particular case
18 × 18) subblocks of the covariance is inverted and written to the corresponding
subblock in the stiffness matrix, with all contributions being added in overlap regions
between two or more blocks. Then the blocks corresponding to the (b − 1) (in our
particular case 6×6) overlaps between adjacent subblocks are inverted and subtracted
from the corresponding subblocks in the stiffness matrix. The stiffness matrix Kabs

so constructed is the unique matrix satisfying conditions (17). The proof of this
somewhat remarkable result relies on a recursive Schur complement factorization,
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1082 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

the essence of which appears in both [22, sec. 5.3] and [19], where in each case the
statement of the result is somewhat complicated by the fact that in the respective
application fields of graphical models and matrix completion, there is no intrinsic
ordering of the variables w so that block-bandedness is not a natural language in
which to state a hypothesis. An equivalent proof in purely linear algebra terms is
provided in [12]. We immediately obtain by this construction a best-fit Gaussian
density ρabs(w) with mean vector µabs and banded stiffness matrix Kabs.

3. Rigid-base coarse-grain oligomer models. We next apply the theory out-
lined in section 2 to obtain coarse-grain, banded-Gaussian models for each oligomer
in a library of DNA sequences {Sν}Nν=1 for which estimates of the means µ(Sν) and
covariances C(Sν) are available from fine-grain MD simulations.

3.1. Coarse-grain coordinates. We consider right-handed, double-helical DNA
in which the four possible bases T, A, C, and G are attached to two, oriented, anti-
parallel backbone strands and form only the standard Watson–Crick pairs (A, T) and
(C, G). Choosing one backbone strand as a reference, which we will refer to as the
Watson strand, a DNA oligomer comprising n base pairs is identified with a sequence
of bases S := X1X2 · · · Xn, listed in the 5′ to 3′ direction along the strand, where
Xa ∈ {T, A, C, G} for a = 1, . . . , n. The base pairs associated with this sequence are
denoted by (X, X)1, . . . , (X, X)n, where X is defined as the Watson–Crick complement of
X as illustrated in Figure 1. The notation (X, X)a for a base pair indicates that base X

is attached to the reference (or Watson) strand, while X is attached to the complemen-
tary (or Crick) strand, and there are four possible base pairs (X, X)a corresponding to
the choice Xa ∈ {T, A, C, G}. The length of a sequence S will mean the number n of
base pairs in the sequence, denoted |S| := n.

X { T, A, C, G }, 
X X X X

A = T,  T = A,  C = G,  G = C
X X X X

1 2 3 n

a
a = 1 ... n

1 2 3 n

Fig. 1. Labeling of DNA bases. X1X2 · · · Xn denote bases on the reference or Watson strand,
while X1X2 · · · Xn denote bases on the antiparallel complementary or Crick strand, with each strand
oriented according to its own 5′ → 3′ direction as set by the detailed chemistry of the sugar rings.

We adopt a coarse-grain description of DNA [7, 9, 21, 28] in which each base is
modeled as a rigid entity; the backbones themselves are not considered (or observed)
explicitly. Thus the configuration of an oligomer is equivalent to the configuration of
all of its constituent bases as illustrated in Figure 2. The configuration of an arbitrary
base is specified by giving the position of a reference point fixed in the base, and the
orientation of a right-handed, orthonormal frame attached to the base. We define the
reference point and frame for each base according to the Curves+ implementation [23]
of the Tsukuba convention [28]. In the model, the positions of the nonhydrogen atoms
in each base with respect to the associated reference point and frame are considered to
be constant. As a result, once the reference point and frame of each base are specified,
so too are the positions of all the nonhydrogen atoms.

The three-dimensional configuration of a DNA oligomer is defined by the relative
rotation and displacement between neighboring bases both across and along the two
backbone strands. To describe an arbitrary configuration, we first consider the refer-
ence point and frame for each base Xa and each complementary base Xa assigned by
the convention mentioned above. We then consider a reference frame for each base
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G
C

A
T

C
G

A
T

Fig. 2. Coarse-grain rigid-base model of DNA. Each base is modeled as a rigid entity, with
position and orientation determined by a reference point and frame (not shown) attached to the
base; the backbone strands are not explicitly included.

pair (X, X)a defined via an appropriate average of the two base frames, and we also
consider a reference frame for the junction between each pair of base pairs (X, X)a
and (X, X)a+1 defined via an appropriate average of the two base-pair frames, as illus-
trated in Figure 3. The relative rotation and displacement between the bases Xa and
Xa across the strands are then described in the associated base-pair frame by an intra-
base-pair (Cayley or Gibbs) coordinate vector ya ∈ R6 with entries comprising three
rotation coordinates (Buckle-Propeller-Opening) and three displacement coordinates
(Shear-Stretch-Stagger). Similarly, the relative rotation and displacement between
the base pairs (X, X)a and (X, X)a+1 along the strands is described in the associated
junction frame by an inter -base-pair (Cayley or Gibbs) coordinate vector za ∈ R6

with entries comprising three rotation coordinates (Tilt-Roll-Twist) and three dis-
placement coordinates (Shift-Slide-Rise), as illustrated in Figure 4. For an oligomer
of n base pairs, there are a total of n intra-base-pair coordinate vectors ya, and a total
of n− 1 inter-base-pair coordinate vectors za, and the collection of all coordinates is
denoted by

(18) w := (y1, z1, y2, z2, . . . , zn−1, yn) ∈ R12n−6.

Xa

Xa+1

Xa

Xa+1

5'

3'

Fig. 3. Reference frames arising in the rigid-base model of DNA. Shown is an arbitrary pair of
base pairs (X, X)a and (X, X)a+1: a frame is embedded in each base (four shown), a frame intermediate
to the pair of base frames is embedded in each base pair (two shown), and a frame intermediate to
the pair of base-pair frames is embedded in each junction or space between consecutive base pairs
(one shown).

We will use the specific nondimensional and scaled version of the above coordi-
nates that is fully described in either [13] or [32], which includes an energy scale such
that the Boltzmann factor kBT is equal to unity. Notice that the complete config-
uration of a DNA oligomer is specified by introducing a vector z0 of six additional
coordinates that specify the position and orientation of the oligomer with respect
to an external, lab-fixed frame. Ignoring these six degrees of freedom exactly cor-
responds to eliminating the overall symmetry of rigid-body motion that exists when

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/2

2/
17

 to
 9

2.
10

4.
39

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1084 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

z
y

z
y

z
y

y

z

1 1

2 2

X X

XX

X X

X X

3 3

n n

1

1

2

2

3

3

n-1

n

shear

stretch

stagger

buckle

propeller

opening

shift

slide

rise

tilt

roll

twist

intra-base-pair coordinates, ya inter-base-pair coordinates, za

Fig. 4. Configuration coordinates for the rigid-base model of DNA: labeling of intra- and inter-
base-pair coordinate vectors (left), illustration of intra-base-pair coordinates (center), illustration of
inter-base-pair coordinates (right).

there is no external potential field. Hence the coordinate vector w is a full set of
internal coordinates that completely characterizes the coarse-grain shape of a DNA
oligomer. One reason for employing rotational coordinates of the Cayley type is that
the configuration space for an oligomer can be taken as the entirety of R12n−6, which
is mathematically convenient for the evaluation of various integrals; this would not
be the case with some other types of rotational coordinates.

As described in section 2, we assume that all densities and related entropies are
defined with respect to the standard measure dw on the configuration space Rm. Due
to the presence of rotational coordinates, it would be more precise to adopt another
measure of the form J(w) dw that naturally arises, where J(w) is a Jacobian factor
[39] associated with the Haar measure on the rotation group SO(3). However, there is
increasing evidence that the effect of such a Jacobian factor on various configuration
space integrals is rather small [13, 21, 27] for the length scales considered here, which
is presumably due to the overall stiffness of DNA. Thus the Jacobian factor in our
singularity-free, Cayley, rotational coordinates can reasonably be approximated as
being constant as a simplifying assumption.

3.2. Symmetry and independence. In our later deliberations it will be im-
portant to consider the Watson–Crick symmetry associated with switching the back-
bone that is used as the reference strand for a given DNA oligomer. Specifically, if
the sequence along the Watson strand is S = X1X2 · · · Xn, then the sequence along
the antiparallel Crick strand is the complement S = XnXn−1 · · · X1. Moreover, for any
given configuration of the oligomer, the coordinates w defined with respect to the
Watson strand, and the coordinates w defined with respect to the antiparallel Crick
strand, are related by

(19) w = Enw,

where n is the length of the sequence S, and En ∈ R(12n−6)×(12n−6) is a block, trailing-
diagonal matrix formed by 2n − 1 copies of the constant, diagonal matrix given by
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PARAMETER ESTIMATION IN A MODEL OF DNA 1085

E := diag(−1, 1, 1,−1, 1, 1) ∈ R6×6. Specifically, we have

(20) En :=


E

E

. .
.

E

 with the properties En = ETn = E−1
n .

As discussed in [21], the above relations are a straightforward consequence of the
Watson–Crick symmetry of DNA. Their particularly simple form arises because of
the introduction of the junction frame (see Figure 3) and can be described as follows.
Characterize the twelve types of coordinates as being odd or even, where the odd
coordinates are Buckle, Shear, Tilt, and Shift (one each of intra- and inter-base-pair,
and one each of translation and rotation), and the remaining eight are all even. Then,
under a change of reference strand, the coordinate blocks are reversed in order, and
the odd coordinates of any configuration at any specific physical location along the
oligomer change sign, whereas the even coordinates remain unaltered.

The number of sequences of a given length that are independent can now be
explicitly counted. To begin, there are a total of 4n different sequences S of a given
length n. If n is odd, then it is always the case that S 6= S, and of the 4n total
sequences, only 4n/2 are independent. However, when n is even, the possibility of
palindromic, or self-symmetric, sequences with S = S arises, and the count is more
complicated. For a palindromic sequence we note that the first n/2 bases on the
Watson strand can be chosen arbitrarily, and then the remaining bases are determined
by the Watson–Crick pairing rules (see Figure 1). From this we deduce that of the
4n total sequences, there are 4n/2 = 2n that are palindromic, and 4n − 2n that are
nonpalindromic. And we note that all of the palindromic sequences, but only half
of the nonpalindromic sequences, are independent. Hence, when n is even, there are
2n + (4n − 2n)/2 = (2n + 4n)/2 independent sequences.

The case of dinucleotide sequences (n = 2) is very well known in the DNA litera-
ture: there are a total of 16 possible dinucleotides, only 10 of which are independent;
a complete group of independent dinucleotides consists of 4 palindromic and 6 non-
palindromic ones, where each nonpalindrome is a single representative from a pair
of complementary dinucleotides. The case of tetranucleotide sequences (n = 4) is
also of interest: there are a total of 256 possible tetranucleotides, only 136 of which
are independent, and a complete group of independent tetranucleotides comprises 16
palindromic and 120 nonpalindromic ones, where as before each nonpalindrome is a
single representative of a complementary pair of sequences.

Because of the Watson–Crick symmetry associated with the choice of reference
strand, the density ρ(w;S) for an arbitrary sequence S is related to the density ρ(w;S)
for the complementary sequence S through the change of variable formula in (19). As
a result, the corresponding means and covariances are necessarily related; specifically,
we have

(21) µρ(S) = Enµρ(S), Cρ(S) = EnCρ(S)En,

where n is the length of S. For nonpalindromic sequences, (21) specifies the mean
and covariance for the sequence S in terms of those for the complementary sequence
S, while for palindromes with S = S, (21) becomes the constraints

(22) µρ(S) = Enµρ(S), Cρ(S) = EnCρ(S)En
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1086 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

on the possible values of palindromic means and covariances. These constraints ex-
press the fact that for palindromic sequences the Watson and Crick strands are phys-
ically indistinguishable.

3.3. Training set data for oligomer models. The parameterization of our
coarse-grain model will require data to estimate the density ρ(w;S) for a variety of
sequences S. The type of data that we consider will be in the form of an ensemble
of observed coordinate vectors {w[j](Sν)}Mν

j=1 for each sequence in a given library of
sequences {Sν}Nν=1. The ensemble {w[j](Sν)} is assumed to sample the equilibrium
distribution described by ρ(w;Sν) for each sequence Sν . We note that the ensemble
size Mν and the sequence length |Sν | may in general vary with ν.

We generate the coordinate ensembles {w[j](Sν)} using extensive databases [24] of
atomic-resolution MD simulations of DNA oligomers in explicit solvent. This is mathe-
matically straightforward as the extraction of a coordinate vector at any time snapshot
of the MD simulation is a nonlinear projection or fit. As a practical matter, we also
filter the coordinate ensembles by eliminating outliers using various knowledge-based
methods. For example, for any sequence, we typically eliminate any MD snapshot
that has any inter-base hydrogen bond broken according to standard criteria [13]. In
principle, the coordinate ensembles could instead be generated directly from appro-
priate experiments such as NMR, but there are of course serious issues of resolution
in the available experimental data, and we have not yet pursued that avenue in any
detail.

Once a coordinate ensemble {w[j](Sν)} has been assembled, the estimated mean
µ(Sν) and covariance C(Sν) of the ensemble are defined in the standard way:

µ(Sν) :=
1

Mν

Mν∑
j=1

w[j](Sν),(23)

C(Sν) :=
1

Mν

Mν∑
j=1

(w[j](Sν)− µ(Sν))⊗ (w[j](Sν)− µ(Sν)).(24)

Notice that µ(Sν) and C(Sν) denote known, estimated values based on a finite en-
semble, whereas µρ(Sν) and Cρ(Sν) denote unknown, exact values corresponding to
the underlying density. As in the exact case, the vector µ(Sν) can be arbitrary, while
the matrix C(Sν) is symmetric, and can be verified to be positive-definite for each Sν
(essentially due to our large sample size).

Because of Watson–Crick symmetry, an ensemble of configurations {w[j](S)} for
an arbitrary sequence S on the Watson strand immediately generates an ensemble
{w[j](S)} for the complementary sequence S on the Crick strand, where each w[j](S)
and w[j](S) are related according to (19). For nonpalindromes with S 6= S, the esti-
mated means and covariances of the ensembles {w[j](S)} and {w[j](S)} will by con-
struction satisfy a corresponding version of the relation in (21); specifically,

(25) µ(S) = Enµ(S), C(S) = EnC(S)En.

However, in the case of palindromes with S = S there is no reason why the estimates
in (23) and (24) drawn from a finite ensemble of observations {w[j](S)} should satisfy
the conditions in (22). In fact there are two possibilities for palindromic sequences.
Either the ensemble {w[j](S)} can be doubled in size by appending the ensemble
{w[j](S)} of configurations read from the physically indistinguishable second strand, in
which case the symmetry conditions in (22) are automatically satisfied (or equivalently
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PARAMETER ESTIMATION IN A MODEL OF DNA 1087

the estimates are just appropriately symmetrized), or the original ensemble {w[j](S)}
is retained, and the degree to which the symmetry conditions in (22) are satisfied
provides an indication of the convergence of the estimates in (23) and (24) to the
underlying exact values.

The set of estimated means µ(Sν) ∈ Rmν and covariances C(Sν) ∈ Rmν×mν
for all sequences in the ensemble {Sν}Nν=1 will be referred to as our training data
set. In this work, we consider as an example a particular training data set based
on N = 53 distinct sequences Sν , each of length nν = 12 or 18 base pairs, with
corresponding configuration space of dimension mν = 138 or 210. The coordinate
ensemble {w[j](Sν)}Mν

j=1 for each sequence had a size Mν (after filtering) of the order
103–105. Our training data set was generated from a database of MD simulations of
the enhanced set of ABC [1, 8, 24] sequences as described in detail in [13]. The MD
simulations were performed using standard conditions and protocols, and were of 50
to 100 or more nanoseconds in duration for each sequence. The ABC sequences have
the feature that they contain multiple instances of all 136 distinct tetranucleotide
subsequences within their interiors, but they have only 5′-GC and GC-3′ ends. Our
enhancements to the sequences in the ensemble are to have access to data for a wider
set of end sequences. Specifically, with the additional sequences, all 16 possible 5′-
dinucleotide-step ends and all 16 possible dinucleotide-step-3′ ends are represented.
The sequence ensemble contains six palindromes, for which the estimates of the means
and covariances were not symmetrized. For a complete listing of all the sequences in
the ensemble {Sν}Nν=1, see [13].

It was first observed in [21] for one sequence, and later confirmed and quantified in
[13] for all the sequences in our training data set, that while our observed covariances
C(Sν) are dense, albeit with entries decaying with distance from the diagonal, the
corresponding stiffness matrices have rather small entries outside a stencil formed
by 18 × 18 diagonal blocks, each of which overlaps (away from the oligomer ends)
its two neighbors in the 6 × 6 diagonal blocks corresponding to every instance of
the intra-base-pair coordinates ya (cf. Figures 5 and 6). As detailed in [13, 21] and
sections 4.1 and 4.2, with our choice and ordering of configuration coordinates the
overlapping 18×18 block sparsity pattern in the stiffness matrices corresponds to each
base being directly coupled to only its five nearest neighbors, one upstream and one
downstream on the same backbone, along with the three corresponding paired base
partners. Accordingly, as empirically suggested by the observed data, and physically
motivated in terms of nearest-neighbor couplings between bases, we adopt the stencil
formed by the overlapping 18× 18 blocks as our index set N, refer to it as the rigid-
base nearest-neighbor index set, and enforce it in our oligomer-based banded Gaussian
models.

We remark that various other choices of coarse-grain models, such as a rigid-base-
pair description with nearest-neighbor couplings, are not similarly supported by the
data observed in our training set. For instance, as noted in [21], when the submatrix of
a covariance C(Sν) corresponding to only the (n−1) inter-base-pair coordinate vectors
za is inverted, the resulting rigid-base-pair stiffness matrix (which is also the stiffness
in the marginal of the Gaussian rigid-base model over the intra-coordinates) is very
far from having the 6×6 block diagonal structure corresponding to a nearest-neighbor
Gaussian model in the inter-base-pair coordinates.

3.4. Comparison of absolute and relative entropy banded models. Now
we may apply the maximum relative and absolute entropy fitting principles, as de-
scribed in sections 2.4 and 2.5, to obtain two different best-fit Gaussian models with
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1088 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

banded stiffness matrices for the specific rigid-base nearest-neighbor index set N, and
for each training set sequence Sν . In principle, other metrics or divergences between
distributions could be contemplated to generate other banded Gaussian approxima-
tions, but we will not pursue them here except to briefly consider a third, and most
direct, approach based on simply cutting or truncating the nonzero entries in the
stiffness matrix C(Sν)−1. Specifically, for each sequence Sν , we can define a Gaussian
density ρcut(w;Sν) by

(26) µcut(Sν) = µ(Sν), [Kcut(Sν)]N = [C(Sν)−1]N, [Kcut(Sν)]Nc = 0.

We will compare properties of these three different banded Gaussian approximations.
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Fig. 5. Comparisons between submatrices (corresponding to the central four of seventeen junc-
tions) of the estimated and three different fitted covariances for the sequence S3; see text. Top
left: C(S3). Top right: C(S3) − Krel(S3)−1. Bottom left: C(S3) − Kabs(S3)−1. Bottom right:
C(S3)− Kcut(S3)−1.

Figure 5 makes comparisons between the estimated covariance C(Sν) and the three
fitted covariances (inverse stiffnesses) Krel(Sν)−1, Kabs(Sν)−1, and Kcut(Sν)−1. Results
are shown for the specific training set sequence S3 = GCGCATGCATGCATGCGC; the results
are qualitatively similar for all other training set sequences Sν . The results show that
the three different banded-stiffness models generate significantly different covariance
matrices. By construction, the maximum absolute entropy model has a covariance
which exactly matches with the estimated covariance within the nearest-neighbor
index set N, but differs in the complementary set Nc. In contrast, the maximum
relative entropy model has a covariance that differs from the estimated covariance
over the entire matrix. Nevertheless we find that these two model covariances are
visually comparable over all entries. We note further that the truncation model has
a covariance that is a rather poor approximation of the estimated covariance. In
fact, for an overlapping stencil such as N, there is no guarantee that the truncation
operation leading to Kcut(Sν) will yield a positive-definite matrix. As it happens,
for the overlapping 18× 18 stencil, the truncation operation yields a positive-definite
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PARAMETER ESTIMATION IN A MODEL OF DNA 1089

stiffness matrix for all the training set sequences, but on the same data, a similar
truncation operation for an overlapping 30 × 30 stencil (corresponding to next-to-
nearest-neighbor interactions) yields indefinite stiffness matrices for all the training
set sequences. For both of these reasons we conclude that the fitting approach based
on truncation as described here is inferior to those based on maximum relative or
absolute entropy, and we consider it no further.

Figure 6 makes comparisons between the estimated stiffness (inverse covariance)
C(Sν)−1 and the fitted stiffnesses Krel(Sν) and Kabs(Sν) from the two best-fit models
based on entropy. Results are shown for the same sequence S3 as before, and again
the results are qualitatively similar for all other training set sequences Sν . The two
different best-fit models have noticeably different stiffness matrices. By construction,
both the relative and absolute entropy stiffness matrices are banded and hence vanish
outside the stencil N. Although not shown, the truncation model stiffness Kcut(S3)
is also banded and additionally agrees with C(S3)−1 inside N by construction, but
the associated covariance is rather poor as noted above. The largest entry-by-entry
absolute errors over the whole matrix are visually comparable between the relative
and absolute entropy stiffness matrices, and it is interesting to note that the majority,
but not all, of the eigenvalues of [Krel(S3)− Kabs(S3)] are positive.
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Fig. 6. Comparisons between submatrices (corresponding to the central four of seventeen junc-
tions) of the estimated stiffness and two stiffnesses based on absolute and relative entropy fits; see
text. Top left: C(S3)−1. Top right: C(S3)−1 − Krel(S3). Bottom left: C(S3)−1 − Kabs(S3). Bottom
right: Krel(S3)− Kabs(S3).

We conclude that each of the two fitting approaches based on entropy lead to
reasonable, yet noticeably different, results. However, we now describe some special
features which suggest that the approach based on absolute entropy is more natural for
our application. We note first that the ensembles of configurations used to estimate
the mean vector and covariance matrix for each sequence in our training set are
generated as MD time series, and it is therefore likely that the longer the duration
of the simulation, the smaller the error between the estimated and exact moments
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1090 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

of the assumed equilibrium distribution. Moreover, as DNA is a linear polymer, we
note that there is a natural ordering of the configuration variables in the covariance
matrix corresponding to their positions along the molecule, and distance from the
diagonal in the covariance matrix for this ordering of the variables has a physical
meaning. Specifically, entries in the matrix that are close to the diagonal correspond
to positions that are close together along the molecule, whereas entries far from the
diagonal correspond to positions that are far apart. Furthermore, as the largest
entries in the stiffness matrices are close to the diagonal, we might expect there
to be high frequency, localized oscillations, which might dominate the covariances
close to the diagonal, while the largest contributions to covariances far from the
diagonal could be generated by lower frequency delocalized oscillations. These, purely
heuristic, arguments lead us to examine the conjecture of whether for a finite time
series, the estimates of the covariances closer to the diagonal have smaller errors than
the estimates of the covariances further from the diagonal. The data shown in Table
1 support this conjecture.

For the specific palindromic, training-set sequence S3, we computed eleven MD
trajectories with identical simulation conditions: the original 100ns trajectory used
in the training set, its extension to 1µs, and nine other independent 50ns simulations
with different initial conditions for the system (including the solvent). To assess the
convergence of the estimated mean µ(S3) and the estimated covariance both within
[C(S3)]N and outside [C(S3)]Nc the nearest-neighbor index set N, we first considered
the relative errors presented in the first three rows of Table 1, where the estimates from
the 1µs simulation are used in place of the unknown exact values µρ(S3) and Cρ(S3), so
that ten relative errors can be approximated for the original 100ns simulation (column
0) and each of the additional nine independent 50ns simulations (columns 1-9).

Moreover, since the sequence S3 is a palindrome, and because the palindromic
symmetry conditions in (22) respect the stencil N, we can additionally independently
assess convergence based on the palindromic symmetry errors in µ(S3), [C(S3)]N, and
[C(S3)]Nc for each of the ten simulations. Notice that these palindromic symmetry
errors are intrinsic to the estimates in the sense that they are defined independently
of the unknown exact values of the quantities concerned. The palindromic symmetry
errors are shown in the last three rows of Table 1.

The data for both relative and palindromic errors strongly suggest that the es-
timate of the mean has the smallest error, the covariances within the stencil N have
the next smallest error, and the covariances outside N have the largest error. In this
context the fitting approach based on maximum absolute entropy can now be seen
to be more natural than the relative entropy fit: the absolute entropy fit is uniquely
determined by the blocks in the estimated covariance that are within the stencil N;
in contrast, the relative entropy fit takes information from all blocks, including those
in Nc that are far from the diagonal.

The data reported in Table 1 also suggest that longer MD time series would be
desirable, which is almost always the case in practice. Indeed, the difference between
estimated and exact moments of the assumed equilibrium distribution would presum-
ably be smaller for a longer time series. However, in the remainder of this presentation
we wish to focus on a better understanding of the consequences of adopting different
mathematical approaches to parameter estimation starting from a common ensemble
of MD data, so that we will not further discuss other MD data sets.

4. The cgDNA model. The oligomer-based coarse-grain models described in
the previous section are not predictive, in the sense that they can only estimate
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PARAMETER ESTIMATION IN A MODEL OF DNA 1091

Table 1
Assessments of convergence for the estimated mean vector µ(S3) and portions of the covariance

matrix within [C(S3)]N and outside [C(S3)]Nc the nearest-neighbor index set N. The data strongly
suggests that the mean has the smallest error, the covariance within N the next smallest error,
and the covariance outside N the largest error. Rows 1–3: Relative errors. Rows 4–6: Relative
palindromic symmetry errors. Column 0: Result for original 100ns simulation in training set.
Columns 1–9: Results for nine additional 50ns, independent simulations. || · || denotes a standard
Euclidean or Frobenius norm as determined by the context.

0 1 2 3 4 5 6 7 8 9
RE1 0.03 0.04 0.03 0.03 0.07 0.03 0.04 0.07 0.03 0.07
RE2 0.23 0.20 0.18 0.19 0.25 0.23 0.25 0.28 0.15 0.28
RE3 0.55 0.62 0.59 0.64 0.63 0.60 0.56 0.58 0.65 0.60
PE1 0.03 0.03 0.03 0.04 0.09 0.02 0.03 0.09 0.03 0.10
PE2 0.17 0.20 0.11 0.11 0.32 0.08 0.14 0.31 0.19 0.28
PE3 0.61 0.53 0.65 0.56 0.63 0.54 0.66 0.63 0.61 0.48

RE1 :=
||µ(S3)−µρ(S3)||
||µρ(S3)|| PE1 :=

||µ(S3)−Enµ(S3)||
||µ(S3)||

RE2 :=
||[C(S3)]N−[Cρ(S3)]N||

||[Cρ(S3)]N||
PE2 :=

||[C(S3)]N−En[C(S3)]NEn||
||[C(S3)]N||

RE3 :=
||[C(S3)]Nc−[Cρ(S3)]Nc ||

||[Cρ(S3)]Nc ||
PE3 :=

||[C(S3)]Nc−En[C(S3)]NcEn||
||[C(S3)]Nc ||

parameters for sequence-dependent banded Gaussian coarse-grain model of oligomers
for which an MD simulation is already available to give estimates for the inputs
µ(S) and C(S). In contrast, we now outline a model, recently introduced in [13], for
predicting the underlying density ρ(w;S) for an arbitrary sequence S. Assuming that
the density is of the form in (1), the model provides a direct prediction of the free
energy function U(w;S), which by design will yield a Gaussian density with banded
stiffness matrix as considered in sections 2.4 and 2.5. Later we will see how the
oligomer-based models from those sections can be used to parameterize the model
presented here. For more details see [13], and for descriptions of associated software
and various experimental verifications see [27, 32].

4.1. Free energy. The cgDNA model energy function for a given sequence S is

(27) Ucg(w;P,S) =
1

2
[w− µcg(P,S)] · Kcg(P,S) [w− µcg(P,S)] + ecg(P,S).

Here P denotes a finite set of model parameters to be described below, µcg(P,S) is
the model mean vector, and Kcg(P,S) is the model stiffness matrix which is sym-
metric, positive-definite, and banded, with a sparsity pattern corresponding to the
nearest-neighbor index set N as considered in sections 2.4 and 2.5, and ecg(P,S) is a
model constant. From the energetic point of view, the mean vector µcg(P,S) can be
understood as a vector of configuration or shape parameters that defines the ground
or minimum energy state of the sequence S, and consequently ecg(P,S) represents
the energy of this ground state compared to an unstressed state. Since our ultimate
attention will be focused on the corresponding model density ρcg(w;P,S), we note
that the constant ecg(P,S) is inconsequential for our present purposes; it cancels out
in the expression for the density. Nevertheless, the value of ecg(P,S) is of interest
because it reflects the energy of frustration inherent to the cgDNA model.

We note that the best-fit oligomer models defined using maximum relative and
absolute entropy in sections 2.4 and 2.5, with respective mean vectors and stiffness
matrices µrel(S), Krel(S) and µabs(S), Kabs(S), already provide a free energy of the
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1092 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

form (27) where the constant term is implicitly zero. As previously described, these
best-fit models can be found for any sequence S for which an ensemble of configuration
coordinate vectors {w[j](S)}, or more precisely, an estimated mean vector µ(S) and
covariance matrix C(S), are available. However, if the sequence S is modified in any
way, for example lengthened, shortened, or mutated by even one base pair, then it is
not possible to determine what the modified best-fit oligomer model will be without
generating an entirely new ensemble of configurations. This can be an intensive task
if one wishes to explore a large number of modifications of a sequence, or equivalently,
a large number of sequences. The cgDNA model finesses this limitation by assuming
a relatively simple, and physically natural, decomposition of the free energy (27) into
component parts such that the free energy of an arbitrary sequence S can be predicted
from a finite, and comparatively small, parameter set P.

In the cgDNA model, the free energy of an oligomer is based on a superposition
of local energies that describe physically distinct interactions. Specifically, given an
oligomer with sequence S = X1X2 · · · Xn, there are two types of local energies that are
considered. The first type is associated with each base pair (X, X)a, a = 1, . . . , n, along
the oligomer; it is referred to as a base-pair or mononucleotide energy. The second
type is associated with each pair of base pairs (X, X)a and (X, X)a+1, a = 1, . . . , n− 1,
along the oligomer; it is referred to as a junction or dinucleotide energy. The local
energy associated with each base pair, with label Xa on the reference strand, is

(28) UXa(ya) =
1

2

[
ya − µXa

]
· KXa

[
ya − µXa

]
,

where ya ∈ R6 is the vector of intra-base-pair coordinates that fully describes the
relative translation and rotation between the two bases in the pair (see section 3.1),
µXa ∈ R6 is a vector of local shape parameters, and KXa ∈ R6×6 is a symmetric matrix
of local stiffness parameters. The energy UXa(ya) is to be interpreted as a model for
the intra-base-pair interactions between the two bases of (X, X)a, as illustrated in the
left panel of Figure 7.

Xa a
y
a

X X

X

a a
ya

za

ya+1
a+1 a+1

X

X

UXa(ya) UXaXa+1(xa)

Fig. 7. Schematic of local energies in the cgDNA model: The base-pair energy is a model for
all the base-base interactions within a base pair (left), the junction energy is a model for all the
base-base interactions across a junction (right).

Similarly, the local energy associated with each junction or pair of base pairs,
with label XaXa+1 on the reference strand, is

(29) UXaXa+1(xa) =
1

2

[
xa − µXaXa+1

]
· KXaXa+1

[
xa − µXaXa+1

]
,

where xa := (ya, za, ya+1) ∈ R18 is the vector of coordinates that fully describes the
relative translations and rotations between all four bases in the pair of base pairs,
µXaXa+1 ∈ R18 is a vector of local shape parameters, and KXaXa+1 ∈ R18×18 is a sym-
metric matrix of local stiffness parameters analogous to those mentioned before. The

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/2

2/
17

 to
 9

2.
10

4.
39

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PARAMETER ESTIMATION IN A MODEL OF DNA 1093

energy UXaXa+1(xa) is to be interpreted as a model for all the inter-base-pair interac-
tions involving a base of (X, X)a and a base of (X, X)a+1, in other words any nearest-
neighbor, base-base interaction across the junction between the base pairs (X, X)a and
(X, X)a+1, as illustrated in the right panel of Figure 7. The fact that the coordinate
vector ya appears in the expressions for UXa(ya), UXaXa+1(xa), and UXa−1Xa(xa−1) is
physically pertinent; it is associated with the phenomenon of frustration.

Notice that the number of different local energy parameters is determined by the
number of different sequence composition labels. Specifically, there are four different
types of base-pair energy parameters µXa ∈ R6 and KXa ∈ R6×6 corresponding to
the labels Xa ∈ {T, A, C, G}, and there are sixteen different junction energy parameters
µXaXa+1 ∈ R18 and KXaXa+1 ∈ R18×18 corresponding to the labels Xa, Xa+1 ∈ {T, A, C, G}.
Hence a complete set of local energy parameters is a collection of vectors and matrices
of the form

(30) P =
{
µα,Kα, µαβ ,Kαβ

}
α,β∈{T,A,C,G}

.

Throughout this section we shall make various changes to this collection and exploit
Watson–Crick symmetry to reduce its size. For notational simplicity, we shall continue
to use the notation P after each change.

The overall cgDNA model can now be described. Specifically, given a parameter
set P, the total free energy for an oligomer with arbitrary sequence S = X1X2 · · · Xn is
defined by superposing all the local energies, namely

(31) Ucg(w;P,S) =

n∑
a=1

UXa(ya) +

n−1∑
a=1

UXaXa+1(xa).

Notice that the total free energy is based only on nearest-neighbor interactions be-
tween neighboring bases both across and along the two backbone strands of the
oligomer. Moreover, notice that this energy makes two additional and logically inde-
pendent assumptions of locality in sequence, and independence of location along the
oligomer, for example proximity to an end. In principle, larger parameter sets could
be adopted with, for example, tetranucleotide sequence dependence of the junction
energy parameters, but the examples presented in [13, 32] suggest that the level of
generality outlined above already provides a rather good approximation. One could
also simplify to a sequence-independent model in which the parameters µα, Kα, µαβ ,
and Kαβ are independent of the labels α, β ∈ {T, A, C, G}.

4.2. Bandedness and local sequence dependence of Kcg(P, S). The ex-
pressions in (27) and (31) are each ultimately a quadratic expression in the oligomer
coordinate vector w so that the coefficients in one expression can be related to the
coefficients in the other. To make these relations explicit, we proceed as follows. Let
y = (y1, . . . , yn) ∈ R6n denote the collection of all base-pair coordinate vectors ya, and
let x = (x1, . . . , xn−1) ∈ R18(n−1) denote the collection of all junction coordinate vec-
tors xa. Then the vectors y and x are related to the vector w according to y = Pyw and

x = Pxw, where Py ∈ R6n×(12n−6) and Px ∈ R18(n−1)×(12n−6) are constant matrices
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1094 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

given by

(32) Py =


I 0 0 0 0 . . . 0
0 0 I 0 0 0
0 0 0 0 I 0
...

...
0 0 0 0 0 . . . I

 , Px =



I 0 0 0 0 . . . 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
...

...
0 0 0 0 0 . . . I


and where 0 ∈ R6×6 and I ∈ R6×6 denote the zero and identity matrix blocks.

With the above notation, we can now write the free energy in (31) in a more con-
venient matrix form as the sum of two shifted quadratic forms of different dimensions,
namely

Ucg(w;P,S) =
1

2
(Pyw− µy) · Ky(Pyw− µy)

+
1

2
(Pxw− µx) · Kx(Pxw− µx).

(33)

Here µy = (µX1 , . . . , µXn) and µx = (µX1X2 , . . . , µXn−1Xn) are vectors containing all the
base-pair and junction shape parameters for the given sequence, and similarly Ky =
diag(KX1 , . . . ,KXn) and Kx = diag(KX1X2 , . . . ,KXn−1Xn) are block-diagonal matrices
containing all the base-pair and junction stiffness matrices as their blocks. Notice
that µy ∈ R6n and Ky ∈ R6n×6n, whereas µx ∈ R18(n−1) and Kx ∈ R18(n−1)×18(n−1).

By separately comparing the coefficients of the quadratic, linear and constant
terms in w, we find that the coefficients in (27) can be expressed in terms of the
coefficients in (33). Specifically, from the quadratic and linear terms we get

(34)
Kcg(P,S) = PTyKyPy + PTxKxPx,

µcg(P,S) = Kcg(P,S)−1σcg(P,S),

where σcg(P,S) is an auxiliary vector given by

(35)
σcg(P,S) := PTyσy + PTxσx,

σy := Kyµy, σx := Kxµx.

Moreover, from the constant terms we get

ecg(P,S) =
1

2
(Pyµcg − µy) · Ky(Pyµcg − µy)

+
1

2
(Pxµcg − µx) · Kx(Pxµcg − µx).

(36)

We remark that σy and σx are parameter combinations that arise naturally in
the algebraic manipulations. In our later developments, it will be convenient to work
with weighted shape parameters defined as

(37) σα := Kαµα ∈ R6, σαβ := Kαβµαβ ∈ R18,

and to replace the parameter set in (30) by

(38) P =
{
σα,Kα, σαβ ,Kαβ

}
α,β∈{T,A,C,G}

.
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PARAMETER ESTIMATION IN A MODEL OF DNA 1095

Given the above parameter set P, the predicted stiffness matrix Kcg(P,S) and shape
vector µcg(P,S) for any sequence S is then given by (34)1,2 and (35)1, where σy
and σx are vectors of weighted shape parameters given by σy = (σX1 , . . . , σXn) and
σx = (σX1X2 , . . . , σXn−1Xn). Notice that the unweighted shape parameters in µy and
µx are needed explicitly only when either the oligomer frustration energy ecg(P,S) or
the local energy terms in (31) need to be evaluated explicitly.

The simple and local dependence of each subblock of the model stiffness matrix
Kcg(P,S) on the oligomer sequence S = X1 · · · Xn is illustrated in Figure 8. On the
left-hand side, each single number in a block denotes a dependence on the base-pair
or mononucleotide composition Xa, while each pair of numbers in a block denotes a
dependence on the junction or dinucleotide composition XaXa+1. On the right-hand
side, the double and triple overlapping blocks denote sums; notice that the shaded
blocks with triple overlaps exhibit an effective dependence on the trinucleotide compo-
sition Xa−1XaXa+1 corresponding to the union of the two adjacent dinucleotides steps
and their common mononucleotide. By design, notice that Kcg(P,S) has a banded
sparsity structure corresponding to the nearest-neighbor index set N as considered in
sections 2.4 and 2.5. Moreover, it is straightforward to show that the auxiliary vector
σcg(P,S) will have an analogous dependence on sequence.

1

2

3

4

n

 +


2  3

1  2

3  4

n−1  n

 =



1

1  2

2

2  3

3

3  4

4

n−1  n

n

n−1


PTyKyPy PTxKxPx Kcg(P,S)

Fig. 8. Illustration of the sequence dependence and the nearest-neighbor sparsity structure of
the model stiffness matrix Kcg(P,S).

4.3. Nonlocal sequence dependence of Kcg(P, S)−1 and µcg(P, S). In con-
trast to the cgDNA model stiffness Kcg(P,S), the model covariance matrix Kcg(P,S)−1

is dense and its entries have a nonlocal dependence on sequence. These properties
follow from two simple facts from linear algebra: first, the inverse of a banded, non-
block-diagonal matrix as considered here is dense; and second, the blocks in the dense
inverse have a nonlocal dependence on the blocks of the banded matrix. Consequently,
the model covariance has the stated properties. It is interesting to note that, if the
covariance were given a priori, then the process of inversion would yield the banded
and locally sequence dependent stiffness, so that the dense structure and nonlocal
sequence dependence in the covariance is rather special. More remarkably, because
Kcg(P,S) is banded according to the index set N, we note that it could be constructed
from knowledge of only the subset of the covariance inside N, namely [Kcg(P,S)−1]N,
via the local inversion algorithm described in section 2.5.

The entries of the model shape vector µcg(P,S) also have a nonlocal dependence
on sequence. Indeed, from (34)2 we see that the shape vector is given by the product
of the covariance matrix Kcg(P,S)−1 and the auxiliary vector σcg(P,S). This relation
contains two sources of nonlocality: first, due to the denseness of Kcg(P,S)−1, each
entry of µcg(P,S) is a sum over all the entries of σcg(P,S) which collectively depend on
the entire sequence; and second, the entries of Kcg(P,S)−1 have themselves a nonlocal
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1096 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

dependence on sequence. We remark that such nonlocal dependence has been observed
in various MD simulations (see, for example, [29]), where the strong dependence
of the average dinucleotide configuration on the flanking tetranucleotide sequence
context has been documented. This observation has sometimes been interpreted as
implying that an accurate coarse-grain model must have a parameter set that is
at least tetranucleotide dependent (which is a very large number of parameters).
However, such a parameter set is not necessary. Indeed, the cgDNA model, which
employs a parameter set P that is only dinucleotide dependent, can predict shape
vectors µcg(P,S) with a nonlocal dependence on the sequence S that closely agree
with averages observed in MD simulation [13, 32].

We remark that the expression for the frustration energy ecg(P,S) in (36) follows
directly from setting w = µcg(P,S) in (27) and (33); it can also be obtained from
a completion-of-squares argument. Assuming the model stiffness matrix Kcg(P,S) is
positive-definite, a condition that will be discussed later, we see that ecg(P,S) is the
minimal accessible free energy achieved by the ground state configuration µcg(P,S)
of the oligomer. The expression for ecg(P,S) is a reflection of the fact that, in gen-
eral, each base cannot simultaneously minimize the local base-pair and the two local
junction energies in which it is involved. Instead, each base must find a compromise,
and the ground state configuration of the oligomer is frustrated, which provides the
physical explanation for the nonlocal sequence dependence of µcg(P,S).

4.4. Watson–Crick symmetries of Kcg(P, S) and µcg(P, S). When applied
to the cgDNA model density ρcg(w;P,S), defined by the free energy Ucg(w;P,S), we
find that the Watson–Crick symmetry relations in (21) are equivalent to

(39) µcg(P,S) = Enµcg(P,S), Kcg(P,S) = EnKcg(P,S)En,

where n is the length of S, and En is defined in (20). These relations must hold for
any sequence S and its complement S read from the two possible choices of reference
strand for an oligomer. Moreover, in the case of a palindromic sequence with S = S,
we note that the above relations imply constraints that are equivalent to (22).

For the cgDNA model as described, there is no a priori reason to expect that the
relations in (39) will hold for an arbitrary sequence S and its complement S. Hence
further conditions on the model are necessary to guarantee consistency with Watson–
Crick symmetry. One set of simple, sufficient conditions can be deduced from the
model relations in (34) and (35), and the parameter set in (38). Specifically, in order
for (39) to hold for arbitrary sequences, it is sufficient for the parameters in P to
satisfy analogous local versions of the symmetry relations, namely

(40)
σα = E1σ

α, Kα = E1K
αE1,

σαβ = E2σ
βα, Kαβ = E2K

βαE2

∀α, β ∈ {T, A, C, G},

where α denotes the complementary base to α in the sense that T = A and so on.
Since α = α, E−1

1 = E1, and E−1
2 = E2, we note that not all of the above conditions

are independent.
The conditions in (40) can be used to reduce the size of the parameter set P. For

instance, there are four parameters σα, and the conditions σα = E1σ
α provide two

independent equations; hence two of the parameters can be taken as independent,
for example σA and σG, and the other two are then determined by Watson–Crick
symmetry, namely σT = E1σ

A and σC = E1σ
G. Similarly, there are sixteen parame-

ters σαβ , and the conditions σαβ = E2σ
βα provide six independent equations when
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PARAMETER ESTIMATION IN A MODEL OF DNA 1097

αβ 6= βα, and four independent equations when αβ = βα. For the twelve parameters
σαβ with αβ 6= βα, we can take six as independent, and the other six are determined
by Watson–Crick symmetry. And for the four parameters σαβ with αβ = βα, we have
four independent equations which restrict their values. Similar considerations apply
to Kα and Kαβ . Proceeding in this way, we arrive at a reduced parameter set of the
form

P =
{
{σα,Kα, σγβ ,Kγβ}α∈M,γβ∈D

∣∣ σγβ = E2σ
γβ ,

Kγβ = E2K
γβE2 ∀γβ ∈ D′

}
.

(41)

Here M denotes any set of two independent mononucleotides, for example M = {A, G},
and D denotes any set of ten independent dinucleotides, for example D = {AT, GC, TA,
CG, GT, TC, CA, TT, CC, CT}, and D′ denotes the set of four self-symmetric dinucleotides,
which must necessarily be contained in D, namely D′ = {AT, GC, TA, CG}.

4.5. Positivity of Kcg(P, S). A natural requirement for the cgDNA model
is that the predicted stiffness matrix Kcg(P,S) be positive-definite for arbitrary se-
quences S above some minimal length n0; that is,

(42) Kcg(P,S) > 0 ∀S such that |S| ≥ n0.

This requirement is natural for any model that employs a quadratic approximation
of the free energy and guarantees that the corresponding density ρcg(w;P,S) on the
configuration space of the oligomer is well defined, with a positive-definite covariance
matrix, as has been observed for all the sequences in our training set. The requirement
is also physical in the sense that short double-stranded sequences, such as an individual
base pair (monomer), or pair (dimer), or triplet (trimer) of base pairs, are not expected
to be stable in a solvent environment, whereas longer sequences are expected to be
stable in the sense of exhibiting approximately stationary statistics.

For the cgDNA model as described, there is no reason to expect that the positivity
condition in (42) will hold for arbitrary sequences. Hence further conditions on the
model, specifically the parameter set P, are necessary to guarantee positivity. In
view of the model relations in (34)1, we note that a rather strong set of conditions
can be readily identified: namely, it is sufficient that each of the parameter matrices
Kα and Kαβ be positive-definite. Alternatively, as described in [13], a weaker set
of conditions is also sufficient: namely, each of the matrices Kα and Kαβ need only
be positive-semidefinite, provided that a small number of overlapping sums of these
matrices are positive-definite. The parameter set cgDNAparamset1 published as part
of [13, 32], which was obtained via a numerical fit to our relative entropy training
data, was seen to satisfy the weaker set of conditions, but not the stronger within
numerical error, which suggests that the semidefinite conditions might be natural for
fitting our data. However, the numerical procedure that delivered cgDNAparamset1
did not allow any of the matrices Kα and Kαβ to cross the semidefinite boundary,
which raises the possibility that a better numerical fit might be possible with even
weaker conditions on these matrices. Indeed, there is no physical reason for these
matrices to be even semidefinite.

Motivated by the above observations, we now suppose that each of the parameter
matrices Kα and Kαβ is merely symmetric, but otherwise general, and seek sufficient
conditions for (42) to hold. Such sufficient conditions can be constructed as follows.
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1098 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

Consider auxiliary matrices Kαβ5′ , Kαβ3′ , and Kαβ1
2

defined for all α, β ∈ {A, T, C, G} by

(43)

Kαβ5′ := Kαβ +

 Kα 0 0
0 0 0

0 0 1
2K

β

 , Kαβ3′ := Kαβ +

 1
2K

α 0 0
0 0 0

0 0 Kβ

 ,

Kαβ1
2

:= Kαβ +

 1
2K

α 0 0
0 0 0

0 0 1
2K

β

 ,

where 0 ∈ R6×6 is the zero matrix. We notice that, if the parameter matrices Kα and
Kαβ satisfy the Watson–Crick symmetry relations, then the above auxiliary matrices
will satisfy analogous relations of the form

(44) Kαβ3′ = E2K
βα
5′ E2, Kαβ1

2

= E2K
βα
1
2

E2 ∀α, β ∈ {A, T, C, G}.

As a consequence, the sixteen matrices Kαβ5′ for all α, β ∈ {A, T, C, G}, and the ten
matrices Kαβ1

2

for all αβ ∈ D, may be regarded as independent; the remaining auxiliary
matrices are then determined by Watson–Crick symmetry.

A simple set of sufficient conditions for the positivity of the cgDNA model, which
allows the parameter matrices Kα and Kαβ to be indefinite, can now be stated. Specif-
ically, in order for (42) to hold for arbitrary sequences S with lengths |S| ≥ 3, it is
sufficient that

(45)
Kαβ5′ > 0 ∀α, β ∈ {A, T, C, G},
Kαβ1

2

> 0 ∀αβ ∈ D.

The proof of sufficiency is straightforward. Indeed, since the matrix E2 is invertible,
the conditions in (45) together with the symmetry relations in (44) imply that all the
auxiliary matrices Kαβ5′ , Kαβ3′ , and Kαβ1

2

are positive-definite for all α, β ∈ {A, T, C, G}.
The result then follows from the fact that, for an arbitrary sequence S with |S| ≥ 3,
the model stiffness matrix Kcg(P,S) can be written as an overlapping sum of these
auxiliary matrices, specifically a matrix of type Kαβ5′ at the leading end, a matrix of
type Kαβ3′ at the trailing end, and matrices of type Kαβ1

2

along the interior; see Figure 8.
Below we report an updated parameter set, cgDNAparamset2, with enhanced

properties, which is a locally unique optimizer for our fitting procedure, contains in-
definite stiffness matrices, and satisfies the sufficient conditions in (45). As we will see,
the predictive capabilities of the cgDNA model with cgDNAparamset2 are noticeably
improved as compared with cgDNAparamset1. We note that the above considera-
tions raise the possibility of using the matrices Kαβ5′ , Kαβ3′ , and Kαβ1

2

as a basis for our
space of stiffness parameters, but the choice is not evident. For example, because of
the structure of the overlapping sums in the model stiffness matrix Kcg(P,S), it is
not possible to estimate a unique set of matrices of type Kαβ5′ , Kαβ3′ , and Kαβ1

2

from
observing only the oligomer covariance matrix.

5. cgDNA parameter set estimation. Here we use our training data set to
estimate the cgDNA model parameter set P in (41). Specifically, for each sequence
in our ensemble {Sν}Nν=1, we have an observed density ρo(w;Sν) that is provided
by a maximum relative or absolute entropy fit to the training data. We now seek
a parameter set P for which the predicted density ρcg(w;P,Sν) will fit, as closely
as possible, the observed density for each sequence Sν . Presumably, if the training
set is sufficiently rich, such a best-fit parameter set should not only provide a good
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PARAMETER ESTIMATION IN A MODEL OF DNA 1099

description of the training set sequences, but also any other sequence of arbitrary
length, which is the goal of our predictive model.

5.1. Parameter space. In view of (41), a parameter set is a collection of vectors
and matrices that corresponds to an element of the Euclidean space

(46) H = [R6]2 × [S6]2 × [R18]10 × [S18]10,

where Sk is the set of symmetric k × k matrices. A generic element of H is denoted
by h = {σα,Kα, σγβ ,Kγβ}α∈M,γβ∈D. Due to the Watson–Crick symmetry relations
associated with γβ ∈ D′, a parameter set P is actually an element of a linear subspace
Hself defined by

(47) Hself = {h ∈ H | σγβ = E2σ
γβ , Kγβ = E2K

γβE2 ∀γβ ∈ D′}.

The spaces H and Hself are large, with dimensions dim(H) = 1944 and dim(Hself) =
1592, which makes the parameter fitting problem rather challenging. Whereas a
simple canonical basis is readily available for H, the construction of a basis for Hself

is somewhat tedious.
Other subsets of H naturally arise in our developments. For example, given the

training ensemble {Sν}Nν=1, it is natural to consider the subset for which the predicted
stiffness matrices over the ensemble are all positive-definite, namely

(48) Htrain = {h ∈ H | Kcg(h,Sν) > 0 ∀ν = 1, . . . , N},

where Kcg(h,Sν) is defined in (34)1. Thus Hself ∩Htrain is the set of all parameter
sets for which the predicted densities are well defined for each sequence in the training
ensemble; this is our largest possible parameter space. For purposes of discussion, the
following subset corresponding to positive-semidefinite stiffness parameter matrices is
also of interest:

(49) Hpsd = {h ∈ H | Kα ≥ 0, Kγβ ≥ 0 ∀α ∈ M, ∀γβ ∈ D}.

5.2. Objective function. Given an observed density ρo(w;Sν) for each se-
quence in the ensemble {Sν}Nν=1, we consider an objective function F : Hself∩Htrain →
R defined as a weighted sum of relative entropies over the ensemble, namely

(50) F(h) =

N∑
ν=1

ωνDrel(ρcg(w;h,Sν), ρo(w;Sν)),

where ων ≥ 0 are specified weights. Notice that F(h) ≤ 0 and, when all weights are
positive, F(h) = 0 if and only if ρcg(w;h,Sν) ≡ ρo(w;Sν) for all ν = 1, . . . , N . Hence in
seeking a best-fit parameter set it is natural to maximize this function. The weights
ων can be chosen to reflect the relative importance or confidence in the observed
densities ρo(w;Sν), or more appropriately, the data from which these densities were
derived. In the case when all densities are Gaussian, as considered here, we can use
the relation in (8) to obtain the explicit expression

F(h) =

N∑
ν=1

ων
2

[
ln
(

detKo(Sν)/detKcg(h,Sν)
)

− Kcg(h,Sν)−1 : Ko(Sν) + I : I

− [µcg(h,Sν)− µo(Sν)] · Ko(Sν)[µcg(h,Sν)− µo(Sν)]
]
,

(51)

where µcg(h,Sν) = Kcg(h,Sν)−1σcg(h,Sν) in accordance with (34)2. For each se-
quence Sν , the quantities Ko(Sν) and µo(Sν) are given, and the quantities Kcg(h,Sν)
and σcg(h,Sν) are functions of h ∈ Hself ∩Htrain via the relations in (34)1 and (35)1.
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1100 GONZALEZ, PASI, PETKEVIČIŪTĖ, GLOWACKI, MADDOCKS

5.3. Fitting problem. We will seek a best-fit parameter set P for the cgDNA
model via the optimization problem

(52) P = argmax
h∈Hself∩Htrain

F(h).

Thus a best-fit parameter set is one that maximizes and hence comes closest to achiev-
ing the upper bound for the function F(h) as outlined above. In view of (51), we note
that any maximizers do not likely admit explicit characterizations, and a purely nu-
merical approach is necessary.

Some insight into the maximization problem can be obtained by viewing the
objective function F(h) as a composition:

(53) h
A−→ {Kcg(h,Sν), σcg(h,Sν)}ν=1,...,N

B−→ F(h).

Here A is the linear map defined by the matrix and vector assembly operations defined
in (34)1 and (35)1, and B is the nonlinear map defined in (51). In the maximization
problem it is desirable that any maximizer or best-fit parameter set be, at the very
least, locally unique. A simple necessary condition for such local uniqueness is that
the assembly map A be injective. In view of the structure of overlaps illustrated in
Figure 8, the injectivity of A is dependent upon the diversity of sequences Sν in the
training set. Although sharp conditions can be derived, for brevity we note that it
is sufficient for all sequences Sν in the training set to have a length |Sν | ≥ 4, and
that every possible dinucleotide appear in the interior of some Sν , the end of some
Sν , and the beginning of some Sν . The training set employed in this study has this
property when data from both the reference and complementary strands is included,
so that the injectivity of A can be guaranteed. On the other hand, if the training
set lacks sufficient diversity, then the maximization problem will be degenerate and
any maximizers will necessarily be nonisolated. For more details on properties of the
training set, see [13].

Briefly, in order to establish injectivity, we show that the trivial parameter set (in
which all parameters vanish) is the only solution of the homogeneous equation for the
linear map A. To this end, let X denote the last 6× 6 diagonal block of an arbitrary
parameter matrix Kαβ , let Y denote an arbitrary 6 × 6 parameter matrix Kβ , and
let Z denote the first 6 × 6 diagonal block of an arbitrary parameter matrix Kβγ .
Then due to the structure of overlaps in the oligomer matrix Kcg(h,Sν) illustrated
in Figure 8, and the previously mentioned conditions on the training set sequences
Sν , ν = 1, . . . , N , the homogeneous equation for A implies that X + Y + Z = 0,
X + Y = 0, and Y + Z = 0, from which we deduce that X = 0, Y = 0, and Z = 0.
Moreover, the 6 × 6 blocks of the parameter matrices Kαβ not involved in overlaps
must also necessarily vanish. The condition that |Sν | ≥ 4 guarantees that the overlaps
follow the generic pattern in Figure 8, with a full set of leading, interior, and trailing
types of overlaps for each of the parameter matrices. Similar conclusions hold for the
parameter vectors σαβ and σβ . Hence the only solution of the homogeneous equation
is trivial, and the linear map A is injective under the stated conditions.

Using exact expressions for the gradient and Hessian of the function F(h), we
developed a numerical procedure for the maximization problem in (52). For any given
set of training sequences Sν , observed (Gaussian) densities ρo(w;Sν), and weights
ων , the procedure uses an iterative Newton–Broyden method to solve the first-order
necessary conditions on the gradient and thereby find critical points, which can then
be classified using the second-order sufficient conditions on the Hessian. Since the
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PARAMETER ESTIMATION IN A MODEL OF DNA 1101

conditions in Htrain are open, we note that these first- and second-order conditions
are equivalent to those for unconstrained optimization in the linear subspace Hself .
Moreover, since the construction of an explicit basis for this subspace is somewhat
tedious, we note that all conditions can be expressed in terms of the coordinates of the
ambient space H together with the orthogonal projection map onto Hself . Beginning
from an initial guess in the set Hself∩Htrain, the numerical procedure yields a sequence
of iterates that remain in this set until either a critical point is found or the procedure
is halted. As with any iterative method, the success of the procedure in the sense
of converging to a critical point depends on the initial guess. Only those critical
points that satisfy the sufficient conditions in (45) for model positivity are of interest,
and these conditions can be checked a posteriori. In particular, since the positivity
conditions are open, they do not affect the optimality conditions for a critical point.

5.4. Best-fit parameter sets. Two different best-fit parameter sets P have
been computed for the cgDNA model, referred to as cgDNAparamset1 and cgDNA-
paramset2 (both available for download from http://lcvmwww.epfl.ch/cgDNA/).
These sets correspond to different choices for the observed densities ρo(w;Sν) and
different assumptions about the stiffness parameter matrices Kα and Kγβ .

cgDNAparamset1 is a previously computed set as detailed in [13]. This set was
computed using the oligomer model density ρrel(w;Sν), based on maximum relative
entropy, as the observed density for each sequence Sν . Moreover, the maximization
problem in (52) was considered on the more restricted space Hself ∩ Htrain ∩ Hpsd

corresponding to positive-semidefinite stiffness parameter matrices, and employed unit
weights for all sequences in the training ensemble. As already discussed, various
matrices Kα and Kγβ in cgDNAparamset1 were on the semidefinite boundary within
our numerical resolution, which suggests that a better fit may be possible with a larger
parameter space, and moreover, there is no physical reason for demanding that the
matrices Kα and Kγβ be semidefinite.

cgDNAparamset2 is a newly computed set. In contrast to the previous case, this
set was computed using the oligomer model density ρabs(w;Sν), based on maximum
absolute entropy, as the observed density for each sequence Sν . And moreover, the
maximization problem in (52) was considered on the parameter space Hself ∩Htrain,
which allows the stiffness parameter matrices to be indefinite. As before, unit weights
were used for all sequences in the training ensemble. This set was computed using a
Newton–Broyden method as described above and was found to satisfy the first-order
necessary and second-order sufficient conditions for an isolated local maximum of the
function F(h) on the space Hself ∩Htrain. We remark that various parameter matri-
ces Kα and Kγβ in cgDNAparamset2 are noticeably indefinite, and nevertheless the
sufficient conditions in (45) are robustly satisfied for positivity of the model stiffness
matrix for arbitrary sequences.

6. Results. Here we compare results for the parameter sets cgDNAparamset1
and cgDNAparamset2. As we will see, the predictive capabilities of the cgDNA model
with the second set are noticeably improved as compared with the first.

6.1. Shapes, stiffnesses. The capabilities of the cgDNA model with cgDNA-
paramset1 to quantitatively predict the sequence-dependent, ground-state properties
of various different oligomers have been discussed in [13], and also in [32] where com-
parisons to various experimental data and results from other works are made. Here
we illustrate the effect of the parameter set on such predictions.

Figure 9 contains comparisons of the predicted ground-state configuration or
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shape vector µcg(P,Sν) and stiffness matrix Kcg(P,Sν) obtained with the two dif-
ferent parameter sets P; for brevity we use the notation P1 and P2 to denote the sets
cgDNAparamset1 and cgDNAparamset2. For each sequence in the training ensemble
{Sν}Nν=1, the plot shows the relative differences

RDShape :=
||µcg(P1,Sν)− µcg(P2,Sν)||

||µcg(P1,Sν)||
,

RDStiff :=
||Kcg(P1,Sν)− Kcg(P2,Sν)||

||Kcg(P1,Sν)||
,

where || · || denotes a standard Euclidean or Frobenius norm as determined by the
context. To avoid end effects, the entries in µcg(P,Sν) and Kcg(P,Sν) correspond-
ing to the first and last three base pairs of each sequence Sν are clipped, so that
only differences in shape and stiffness corresponding to the interior portion of Sν are
compared.
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Fig. 9. Relative differences in the cgDNA model shape vector µcg(P, Sν) and stiffness matrix
Kcg(P,Sν) due to parameter sets P1 and P2 over all sequences Sν in the training ensemble; the
change in unstressed shape is only 1% or so, while the change in stiffnesses is around 10%; see text
for further details. Left: RDShape versus ν. Right: RDStiff versus ν.

Our results show that cgDNAparamset1 and cgDNAparamset2 yield predictions of
ground-state shapes that closely agree, but yield predictions of ground-state stiffnesses
that differ more significantly. Indeed, the relative difference is about 1% for the shape
vector, and about 10% for the stiffness matrix, over all the sequences in the training
ensemble. Hence the different choices for the observed densities and parameter space
in the fitting problem associated with cgDNAparamset1 or cgDNAparamset2 have
a significant and systematic effect on the predicted stiffnesses, but a comparatively
smaller effect on the predicted shapes. Further numerical experiments reveal that
about half of the difference in the predicted stiffnesses is attributable to the change of
observed density (from a maximum relative entropy to a maximum absolute entropy fit
at the oligomer level), whereas the other half is attributable to the change in parameter
space (from positive-semidefinite to indefinite stiffness parameter matrices). As we
will see below, the stiffness predictions from cgDNAparamset2 are significantly better
than those from cgDNAparamset1 when compared against an accepted quantitative
estimate from the literature.
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6.2. Persistence lengths. One of the frequently mentioned standard statistical
properties of DNA is its persistence length. There are in fact several related, but
distinct, precise definitions of persistence length, and it is often not entirely clear
which experimental data is being used to estimate persistence length in precisely
what sense. And persistence length is believed to depend on solvent conditions and
ion concentration, among other things. Nevertheless, there is a consensus in the
literature that the sequence-averaged persistence length of DNA is around 150 base
pairs (or bp), but with a quite large variation, as estimates between 140–180bp also
appear.

We will consider here only one notion of persistence length, namely as a fit to
ensemble averages of the form

(54) 〈ti · t0〉,

where 〈 · 〉 denotes expectation with respect to a given ensemble of configurations, t0

is a unit vector associated with a specific base pair labeled with index 0 (usually taken
to be away from the physical end of the DNA to avoid any possible end effect), and ti
is the analogous unit vector at the ith base pair along the DNA. Usually ti is taken as
some approximation to a unit tangent to the DNA, so that (54) is often described as
a tangent-tangent correlation function. We will in fact take ti to be the unit normal
to each base pair. In simple polymer models the expectations (54) can be proven to
decay exponentially with the index i and the characteristic length of this exponential
decay (in number of base pairs) is one notion of persistence length `p. Here we use
this notion to further illustrate the differences between our parameter sets.

A direct Monte Carlo sampling code has recently been written [27] to generate
ensembles of configurations corresponding to the cgDNA model density ρcg(w;P,S) for
any given sequence S, and the expectation 〈ti ·t0〉 over this ensemble can be efficiently
evaluated for each base pair index i along S. To illustrate the effect of the parameter
set P on predictions of persistence length we performed two numerical experiments.
We first generated an ensemble {Sk}1000

k=1 of random sequences, each of length 220bp,
with equal probability of each base composition at each base pair. Then for each
sequence Sk we generated two different ensembles of configurations (each with one
million members): one ensemble was sampled from the density ρcg(P1,Sk,w), and
the other from ρcg(P2,Sk,w), where as before P1 and P2 denote the parameter sets
cgDNAparamset1 and cgDNAparamset2. From the ensemble of configurations gener-
ated using P1 we can compute a persistence length `p(P1,Sk) for sequence Sk, and
similarly from the ensemble generated using P2 we can compute `p(P2,Sk). In each
case, the persistence length is computed from a plot of ln〈ti · t0〉 versus i; specifically,
it is given by the negative of the slope of the best linear fit through the origin. (In
fact we took i = 0 to be the 11th base pair from one end, and then sampled ti · t0

until i = 200 in order to avoid end effects.)
Figure 10 shows the results of our persistence length experiments. The left panel

shows the normalized histogram of the persistence length values `p(P1,Sk) for k =
1, . . . , 1000 obtained with cgDNAparamset1, while the right panel is the analogous
normalized histogram of `p(P2,Sk) obtained with cgDNAparamset2. We refer the
reader to [27] for a discussion of the reasons underlying the rather wide spread of
values in these histograms in each case. Here we merely observe that the apparently
mathematically abstruse changes from the semidefinite, relative entropy parameters
cgDNAparamset1 to the indefinite, maximum entropy parameters cgDNAparamset2,
both extracted from the same MD training set data, implies a drop in the physically
important sequence-averaged persistence length from 188bp to 161bp, with the latter
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estimate being really rather close to the consensus experimental value of 150bp. Hence
the stiffness predictions from cgDNAparamset2 are significantly better than those from
cgDNAparamset1 in this sense of sequence-averaged persistence length.

100 120 140 160 180 200 220
0

0.02

0.04

0.06

0.08

0.1

100 120 140 160 180 200 220
0

0.02

0.04

0.06

0.08

0.1

Fig. 10. Normalized histograms of persistence length values `p(P, Sk) for k = 1, . . . , 1000 in
units of base pair (bp) obtained with the two parameter sets P1 and P2; see text. Left: Histogram of
`p(P1, Sk) with average at 188bp. Right: Histogram of `p(P2, Sk) with average at 161bp.

7. Summary and conclusions. We have described a procedure for estimating
the material parameters in a coarse-grain rigid-base model of DNA, with sequence-
dependent nearest-neighbor interactions, referred to as the cgDNA model. Beginning
from an extensive database of atomic-resolution MD simulations of a set of training
oligomers in explicit solvent, the procedure delivers a complete parameter set for the
cgDNA model, which can then be used to predict the ground-state configuration,
stiffness, and other properties of arbitrary oligomers.

In the central step of our procedure, an estimated configurational mean vector and
covariance matrix for each training oligomer is fit by a descriptive Gaussian model with
an assumed banded structure in the stiffness matrix that expresses a nearest-neighbor
interaction assumption. For this step, we compared two fitting strategies based on
maximizing either an absolute or relative entropy. Due to the chain-like structure
of DNA and the convergence characteristics of MD time series data, we argued that
a fit based on maximum absolute entropy was more natural than maximum relative
entropy for a model with nearest-neighbor type interactions. Specifically, the approach
based on absolute entropy employs data from only a band about the diagonal of
the estimated covariance matrix, whereas the approach based on relative entropy
employs data from the entire estimated covariance matrix, and there is numerical
evidence to suggest that the data that is close to the diagonal has a smaller error with
respect to its assumed equilibrium or stationary value than the data that is far away.
Moreover, the maximum absolute entropy fit can be constructed using a simple, local
inversion algorithm, whereas the relative entropy fit requires numerical optimization
techniques. And furthermore, the approach based on maximum absolute entropy can
be adapted to fit higher-order, beyond-Gaussian models in a natural way that may
be more convenient than an approach based on relative entropy.

In the final step of our procedure, we estimated parameters for the cgDNA model
by fitting the Gaussian description of each training oligomer. In this step, we exam-
ined various assumptions on the choice of parameter space. An important requirement
on the cgDNA model is that it produce a positive-definite stiffness matrix for any
arbitrary oligomer. This requirement can be guaranteed under various different re-
strictions on the stiffness parameter matrices. In previous work [13], these parameter
matrices were assumed to be positive-semidefinite, which complicates the parame-
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PARAMETER ESTIMATION IN A MODEL OF DNA 1105

ter space and the associated numerical treatment of the parameter fitting problem.
In contrast, here we showed that the positivity condition on the cgDNA model can
be achieved with parameter matrices that are indefinite. The lifting of the positive-
semidefinite restriction simplifies the parameter space and allows for a faster and more
efficient numerical treatment of the fitting problem.

We compared two best-fit parameter sets for the cgDNA model referred to as
cgDNAparamset1 and cgDNAparamset2. Whereas cgDNAparamset1 is a previously
computed set [13] based on a maximum relative entropy description of each training
oligomer and positive-semidefinite restrictions on the parameter stiffness matrices,
cgDNAparamset2 is a newly computed set based on a maximum absolute entropy
description without any such restrictions on definiteness. The set cgDNAparamset2
is a locally unique optimizer for our fitting procedure, contains indefinite stiffness
matrices, and satisfies the sufficient conditions for model positivity. The predictive
capabilities of the cgDNA model with cgDNAparamset2 are noticeably improved as
compared with cgDNAparamset1. Specifically, while the two parameter sets can each
predict the sequence-dependent variations in shape within and between oligomers
rather well, we find that cgDNAparamset2 is a significant improvement over cgDNA-
paramset1 in predicting the stiffness properties of oligomers in the sense of persistence
length.

With the improved parameter estimation procedure outlined here it becomes prac-
tical to pursue various types of studies, which in turn give rise to further mathematical
problems to be resolved. For instance, the impact of different MD force fields, or dif-
ferent solvent and ion conditions, on the coarse-grain model parameters could be
studied; it is just necessary to run the appropriate set of MD simulations, thereby
modify the training data set, and reapply the parameter estimation procedure de-
scribed here. Similarly, if a coarse-grain model of methylated bases is desired, this
can be done provided that an appropriate set of MD simulations is available, as has
already been carried out for a rigid-base-pair model [30]; in this case there will be a
larger parameter set to allow for methylated and unmethylated bases. In addition to a
richer alphabet of bases, it would also be of interest to extend the coarse-grain model
and its parameterization to explicitly include information from the two backbones,
such as the phosphate groups. In each of these types of studies, the coarse-grain pa-
rameters would be estimated from a training data set generated by MD simulation.
In view of the computational expense associated with MD simulations, it would also
be of interest to mathematically characterize the smallest possible training data set
from which a complete set of coarse-grain parameters could be robustly estimated in
a locally unique way.

Acknowledgments. It is a pleasure for the authors to thank G. Strang and
C. Uhler for stimulating discussions on maximum entropy estimation.
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