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Summary. This paper develops a formalism for the design of conserving time-integration 
schemes for Hamiltonian systems with symmetry. The main result is that, through the in- 
troduction of a discrete directional derivative, implicit second-order conserving schemes 
can be constructed for general systems which preserve the Hamiltonian along with a 
certain class of other first integrals arising from affine symmetries. Discrete Hamiltonian 
systems are introduced as formal abstractions of conserving schemes and are analyzed 
within the context of discrete dynamical systems; in particular, various symmetry and 
stability properties are investigated. 

1. Background and Motivation 

First integrals or conservation laws for Hamiltonian systems with symmetry are typi- 
cally lost under numerical integration in time. In some cases, failure to maintain certain 
conservation laws can lead to physically impossible solutions [3], and in other cases 
to numerical instability [7], [21]-[24]. For Hamiltonian systems with symmetry it is 
thus generally desirable that numerical time-integration schemes preserve physically 
meaningful integrals from the underlying system. These types of integrators are usually 
referred to as conserving integrators and are the subject of this investigation. 

This paper develops a formalism for the design of conserving time-integration schemes 
for Hamiltonian systems with symmetry. The main result is that, through the introduc- 
tion of a discrete directional derivative, implicit second-order conserving schemes can 
be constructed for general systems which preserve the Hamiltonian along with quadratic 
integrals arising from affine symmetries. Discrete Hamiltonian systems are introduced 
as formal abstractions of conserving schemes and are analyzed within the context of 
discrete dynamical systems; in particular, various symmetry and stability properties are 

1 This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan C. Simo. 
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investigated. It is shown that the proposed class of  schemes inherit equilibria and relative 
equilibria from the underlying system along with various notions of  stability. 

Only finite-dimensional Hamiltonian systems defined in open sets of  Euclidean space 
are considered in this paper. However, the framework presented herein easily extends 
to infinite-dimensional systems on linear manifolds [6], [8], and can be extended to 
canonical systems with holonomic constraints [5]. For other treatments of conserving 
schemes, particularly within the context of specific applications, see [2]-[4], [9]-[15], 
[17], [19]-[24]. 

2. Preliminaries 

In this section we recall some standard terminology and concepts to be used in the 
developments that follow. We refer to Abraham & Marsden [ 1 ], Olver [ 18] or Marsden 
& Ratiu [ 16] for further details not explained here. 

2.1. Hamiltonian Differential Equations and First Integrals 

Let (P ,  [2) denote a symplectic space with P open in m-dimensional  Euclidean space 
A m with points denoted by z = (z I . . . . .  zm), and symplectic structure P 9 z --+ f2z 
Am • where each f2 z is viewed as a bilinear form in Tz P -~ •". For any z c P we recall 
that f2 z is skew-symmetric in the sense that ~z(v ,  w) = -[2z(W, v) for all v, w E A m. 

To any smooth function H:  P ~ R we associate a Hamiltonian vectorfield XH: P --+ 
A m defined by 

f2:z(XH(z)) = DH(z) ,  (2.1) 

where DH(z )  E T[P -~ R m denotes the derivative of H at z. If  we denote the com- 

ponents of  g2 z c R m• by (~-2z)ij (i, j = 1 . . . . .  m), then f2'~z: R m ---> R m is defined 

in components by ( ~ ( v ) ) k  = (f2z)jkvJ where summation on repeated indices is im- 
plied. Nondegeneracy conditions on the symplectic structure require that m be even, say 
m = 2n, and for each z ~ P we define f2~: R m --+ R "  to be the inverse of  f2~. 

Given a Hamiltonian system (P,  f2, H)  we will be concerned with the associated 
Hamiltonian differential equations 

= X/4 (z) (2.2) 

where the Hamiltonian vector field X~/ is assumed to be smooth. For any z 6 P we 
note that (2.2) generates a local evolution semigroup F:  B • [0, T] --+ P,  where B is a 
neighborhood o f z  and T > 0. For any z0 ~ B the curve ~p(t) = F(z0,  t) = Ft(zo) is a 
solution to (2.2), defined for all t c [0, T], with initial condition ~o(0) = z0. 

By a (time-independent)first integral for the system (P,  ~2, H) ,  we mean a smooth 
function f :  P ~ R which is constant along any solution ~ :  [0, T] -+  P of (2.2), i.e., 

f ( ~ ( t ) )  = / ( ~ ( 0 ) ) ,  Vt E [0, T]. (2.3) 

Using straightforward arguments it can be shown that f is an integral if and only if  the 
following orthogonality condition is satisfied: 

D f ( z )  �9 X/4(z) = 0, Vz E P. (2.4) 
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Note that the skewness of  ~2 z implies that the Hamiltonian H:  P --+ R is a first integral 
for (P,  S2, H) .  

2.2. Symplectic Actions of Lie Groups and Momentum Maps 

Let G be a Lie group with tangent space at the identity denoted by TeG, and let q~: G • 
P --~ P denote a regular symplectic action of  G on P.  (See, e.g., Olver [18, p. 22] 
for the definition of  a regular action.) Given ~ c TeG the infinitesimal generator of the 
G-act ion corresponding to s e is a vector field ~p : P -+ R m defined by the relation 

d s=o ~p(z) = dss q~(exp(s~), z), (2.5) 

where exp: T~G --+ G is the exponential map. For any z 6 P we denote by G �9 z the 
orbit of  z under the action of  G, and we denote by Ad*: G • Te* G --+ Te* G the coadjoint 
action of G on T* G. 

By a momentum map for the action of G on P we mean a mapping of  the form 
J :  P --+ T*G satisfying 

DJ~(z) = S2bz(~e(z)) V~ ~ TeG, (2.6) 

where J~: P --+ R is defined by the relation J~(z) = J(z )  �9 ~. We say that J is Ad*- 
equivariant if 

J ( ~ ( g ,  z)) = Ad*(g - l ,  J(z ) )  (2.7) 

for a l l g 6 G a n d z E  P. 
Given/~ ~ T]G we denote by G u C G the isotropy group for # under the coadjoint 

action, and we call the quotient space P~, = j - I  ( [ z ) / G t ~  ' induced by the action of G ,  
on J - J  (#),  the reduced phase space for the momentum value/z .  Note that Pv has the 
structure of a smooth manifold provided that /~ is a regular value for J and G u acts 
regularly on J l (/~). In what follows we will assume that the symplectic structure f l  on 
P induces a well-defined symplectic structure f2 u in Pu, and we will use 7r~ to denote 
the natural projection from J -  1 (/x) onto Pu. 

2.3. Symmetry, Conservation Laws and Relative Equilibria 

Let (P,  S2) be a symplectic space as described above and let ~ denote the symplectic 
action of  a Lie group G on P.  Given a G-invariant function H:  P --~ JR, i.e., 

H ( ~ ( g ,  z)) = H(z) ,  Vg ~ G, z c P, (2.8) 

we call the system (P,  ~ ,  G, H)  a Hamiltonian system with symmetry. This system has 
the property that if~p: [0, T] --+ P is a maximal trajectory for the Hamiltonian vector field 
X H , then so is ~ go~o for any g E G. Here we employ the notation ~ = qb(g, .): p --+ p .  

Suppose the action of  G possesses a momentum map J:  P ~ T TG. Then J is 
conserved along trajectories of  XH in the sense that, for any ~ E TeG, the function 
J~ = J - ~: P --+ IR is an integral for (2.2). To see this result use (2.1) and (2.6) to write 

D J~ (z) �9 XH (Z) = -- D H (z ) .  ~n (z). (2.9) 
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The result then follows from the G-invariance of  H,  which implies D H ( z )  �9 ~e (z) = 0 
for any ~ c Te G and z c P. 

For any regular value/z of  J we recall that the G-invariance of  H implies the ex- 
istence of  a well-defined function H ,  on the reduced phase space P , ,  which we call 
the reduced Hamiltonian associated with H and #.  Thus, given a Hamiltonian system 
with symmetry as discussed above, and a regular value/z for J ,  we have a well-defined 
reduced Hamiltonian system (P , ,  f2~, Hu). 

Finally, we recall the notion of  a relative equilibria for a Hamiltonian system with 
symmetry. In particular, a point Ze ~ P is a relative equilibrium if the maximal trajectory 
of  XH with initial condition ze, denoted by ~p(t), satisfies 

qg(t) = q~(exp(t~), z~) (2.10) 

for some ~ 6 TeG. It is well known that, for any regular value/z of  J ,  a point Ze 

j - I  (/z) C P is a relative equilibrium if 7ru(Ze) ~ Pu is a critical point of  the reduced 
Hamiltonian Hu. 

3. Conserving Time Integration 

In this section we present a framework for the design and analysis of numerical schemes 
for (2.2). Our attention will be focused on schemes which inherit underlying integrals. 
Rather than view an algorithm as a discrete system which approximates a continuous 
one, we take the point of view that an algorithm defines a discrete system worthy of  
study in its own right. Hence, we introduce the notion of  a discrete Hamiltonian system 
as a formal abstraction of  a conserving scheme. 

3.1. A Point o f  Departure 

Given a Hamiltonian system (P,  f2, H)  possessing an integral f :  P --+ R, our goal is 
to construct a numerical approximation scheme for (2.2) which inherits f as an integral. 

As a point of departure, we consider approximating solutions to (2.2) by numerical 
schemes of  the form 

Zn+l -- Z,, = hXH(zn, Zn+l), (3.1) 

where h > 0 is a parameter interpreted as the time step and XH: P x P --+ ]I~ m is a given 
smooth map which is viewed as a two-point approximation to the exact vector field X/4, 
e.g., XH(z,,, l zn+l) ~ X H ( z , + •  zn+• = ~(zn + z,,+l). 

2 . 2 

For any z E P we assume the numerical scheme generates a local evolution semigroup 
in the sense that there exists a neighborhood B of z, real numbers h~, T > 0, and a 
mapping F: B x [0, h~] --+ P such that, for any z0 E B and h e [0, he], the sequence 
(z,~) generated by F"(z0, h) = F~(z0) satisfies (3.1) for all nh ~ [0, T]. Note that a 
function f :  P --+ R is an integral for (3.1) if for any z0 e P we have f ( z n )  = f ( z o )  

for all nh c [0, T]. 
The following observations illustrate how (3.1) may be constructed so that it inherits 

an arbitrary integral from the underlying system. To begin, let f be an integral for (2.2) 
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and assume that, for any x, y 6 P, there exists a vector D f  (x, y) 6 R"  with the property 
that D f ( x ,  y) ~ D f ( - ~ )  and 

D f (x, y) . (y - x) = f (y) - f (x). (3.2) 

Along any solution sequence of  (3.1) we could thus write 

f (z , ,+,)  - f ( zn )  = D/(z, , ,  zn+j) �9 (z,+l - z,,) 

= hDf(z , , ,  z,,+l) �9 XH(Z,,, Zn+l). (3.3) 

Now note that if the approximate vector field XH satisfied the discrete orthogonality 
condition 

D f ( x ,  y) �9 XH(X, y) : 0, Vx, y C P, (3.4) 

then f would be an integral for (3.1). 
The preceding arguments suggest that a formalism for constructing conserving schemes 

can be based on both a discrete derivative operator "D" which allows one to write (3.2) 
and the discrete orthogonality condition (3.4). 

In principle, by projecting XH (x, y) onto the orthogonal complement of the linear 
space span{Df(x,  y)}, we could arrange for (3.1) to inherit an arbitrary integral from 
the underlying system (2.2). For multiple integrals such a projection would likely be 
inefficient and thus we are interested in simpler ways to satisfy the discrete orthogonality 
condition. As we will see below, a simplification can be achieved when the integrals 
of interest are the Hamiltonian and quadratic momentum maps associated with affine 
symmetries. The preceding ideas are formalized in the next few subsections. 

3.2. Definitions 

Consider a symplectic space (P,  f2) where the phase space P is an open subset of ~m 
and f2 denotes a symplectic structure on P. Motivated by the preceding developments 
we make the following definition. 

Definition 3.1. A discrete derivative for a smooth function f :  P -+ R is a mapping 
D f :  P • P -+ ~m with the following properties: 

(1) Directionality. D f (x, y) . Vxy = f (y) - f (x) for anyx,  y 6 P where Vxy = y - x. 

(2) Consistency. D f ( x ,  y) -- D f ( - ~ )  + O(l[y - xll) for all x, y 6 P with Ily - xll 
sufficiently small. (Here II �9 II denotes the standard Euclidean norm in •m.) 

For any smooth function H:  P --+ ~ we call the system (P,  ~2, D, H) a discrete 

Hamiltonian system. We associate with this system a difference equation of  the form 

Zn+l -- Zn = hXH(Zn, Zn+l), (3.5) 

where h 6 ~+  is a parameter and XH is a discrete Hamiltonian vector field defined by 
the relation 

XH (x, y) = f2~x+y)/2(DH(x, y)) (3.6) 

z N for all x, y E P. Any sequence ( n)n=0 in P satisfying (3.5), if it exists, will be called a 
trajectory or solution sequence for the discrete system. 
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We now give some constructive examples of  discrete derivatives for functions defined 
on general inner-product spaces. 

3.3. Discrete Derivative: Examples 

We begin by considering the general case of  functions defined on m-dimensional  Eu- 
clidean space R m. 

P ropos i t ion  3.1. Let f :  R m ~ N be a smooth function and for  any two points x, y c 

R m let z = (x + y ) /2  and v = y - x. Then a discrete derivative for  f is defined by the 

relation 

f (y) - f (x) - D f  (z) . v 
D f (x, y) = O f ( z )  + v, (3.7) 

IlvJl 2 

where II " II denotes the standard Euclidean norm in R m. 

Proof The result follows by direct verification of  the directionality and consistency 

properties. 
(1) To verify the directionality condition we apply D f ( x ,  y) to v and get 

f ( y )  - f ( x )  - O f ( z ) .  v 
D f (x, y) . v = D f  (z) . v + v . v 

Ilvll 2 

= f ( y )  - f ( x ) .  (3.8) 

(2) To verify the consistency condition we examine what happens to (3.7) as v ap- 
proaches zero. As a first step, given v = y - x, we use Taylor 's  Theorem to write 

ID2 1 3 ( v , v , v )  f ( y )  = f ( z ) + � 8 9  f ( z ) ' ( v , v ) + g D  f ( z ) "  

+ I D 4 f ( z ) .  (v, v, v, v) q- O(llvllS), (3.9) 

f ( x )  = f ( z ) - -  � 8 9  l o 2 f ( z ) ' ( v , v ) - -  8 O 3 f ( z )  . ( v , v , v )  

-t- I D 4 f ( z )  �9 (v, v, v, v) q- O(llvl15), (3.10) 

which implies 

ID3 v) + O(llvllS). (3.11) f ( y )  -- f ( x )  -- D f ( z )  �9 v = ~ f ( z ) "  (v, v, 

Let v = y - x = otw where c~ > 0 and w c R m is a unit vector. Then the last expression 

can be written as 

f ( y )  - f ( x )  - D f ( z )  �9 v = �88 �9 (w, w, w) + O(~5). (3.12) 

Using the above result in (3.7) gives the relation 

D f ( x ,  y) = D f ( z )  + ( lo t2D3f ( z )"  (w, w, to) -t- 0(0/4)) It), (3.13) 

which shows that D f ( x ,  y) is well defined as c~ = LlY - xll ~ 0. In particular, the 
expression for D f ( x ,  y) given in (3.7) satisfies the consistency requirement. [] 
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Here we note that, for any x, y c R ' ,  the construction above yields a discrete deriva- 
tive which, in the classical sense, is a second-order approximation to the exact derivative 
at the midpoint z = �89 (x + y). For reference, we now list some (second-order) discrete 
derivatives for more general situations: 

(1) General case. Let (U, (., ' )u) be an inner-product space. Then, for any smooth 
function f :  U --+ R, a second-order discrete derivative is given by 

f ( y )  - f ( x )  -- ( D f ( z ) ,  Vxy)u 
D / ( x ,  y) = DU(z)  + (vxy, Vxy)u Vxy, (3.14) 

where Vxy = y - x .  

(2) Partitioned case. Let (U, (., .) u) be an inner-product space where U = Uj •  x Uk 
for some k _> 1, and suppose each Ui (i = 1 . . . . .  k) is endowed with an inner- 
product (., ")vi. Here we would like a discrete derivative which respects the product 
structure of  U. To this end, for any smooth function f :  U ---> R a second-order 
discrete derivative is defined by the relation 

k 

Df(x, y).u = Z �89 (Dfiy (xi' yi) + DJ~{x(Xi, yi)) 'ui  (3.15) 
i=1 

for all u ---- (b t  I . . . . .  Uk) C U, where x : (Xl . . . . .  xk) E U, y : (Yl . . . . .  Yk) 6 U, 

and f/y,  3~{x: Ui --+ ~ are defined by the relations 

f i : . (w)  = f ( x l ,  x2 . . . . .  x i - l ,  w,  Yi+l . . . . .  Yk), (3.16) 

J~{x(W) : f ( Y l ,  Y2 . . . . .  Yi J, w,  Xi+l . . . . .  xk). (3.17) 

3.4. The A lgor i thmic  Viewpoint  

The interpretation of the above developments within an algorithmic framework should 
be clear; in particular, we may view the Hamiltonian difference equation (3.5), together 
with (3.14) or (3.15), as defining an algorithm for the approximation of (2.2). More- 
over, the approximation is formally second-order since X/4 (zn, zn+j) is a second-order 
approximation to X~ (zn+,), where z~_~, = ~ (zn + zn+l). 

To develop the theory for discrete Hamiltonian systems we assume that the algorithm 
defined by (3.5) generates an evolution semigroup so that, for any z0 c P,  n sufficiently 

Z N small, we may speak of  unique solution sequences ( n)n=0' With this in mind, we may 
then view a discrete trajectory as being generated by a mapping Fh, defined at least locally, 

n n such that zn = F h (z0). In particular, F h has the semigroup properties "h[2n+ . . . .  = F h o F h 

and F ~ = id.  Also, we note that for all fixed n the mapping F~ is continuous in h in 
n i the sense that zn = Fh (z0) and any zi = F h (zo) for i = 0 . . . . .  n - 1 can be forced to 

remain in a neighborhood of  z0 for h sufficiently small. 

3.5. Discrete Brackets and First  In tegrals  

We next introduce the concept of a discrete bracket which we will use to define integrals 
for discrete Hamiltonian systems. 
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Let (P,  f2, D) be a symplectic space with a discrete derivative and, for any smooth 
function H:  P ~ R, let XH denote the associated discrete Hamiltonian vector field. 
For any z0 c P let N (Zn),,=0 be the trajectory generated by XH for some h > 0. We say 
that a smooth function f :  P ~ R is an integral for the discrete system (P,  f2, D, H)  
if it is constant along trajectories. That is, f is an integral for XH if, for any trajectory 
(zn)f=0, we have f ( zn )  = f (zo)  for all n = 0 . . . . .  N. 

The condition that f be an integral for XH may be expressed locally by the condition 
{f, H} = 0 where the discrete bracket {f, H}: P x P --+ R is defined as 

{f,  H}(x,  y) = D f (x, y) �9 XH(X, y) = --{H, f l ( x ,  y). (3.18) 

This is the essence of  the following proposition. 

Proposition 3.2. A smooth function f :  P --+ IR is an integral for a discrete Hamiltonian 
system (P,  f2, D, H) if the discrete bracket o f f  and H vanishes, i.e., 

{f ,  H}(x,  y) = O, Vx, y c P. (3.19) 

Proof For any z0 c P let N (Z,,)n= 0 denote the trajectory generated by XH for some 
h > 0. By the definitions of  the discrete bracket, discrete Hamiltonian vector field and 
discrete derivative we have 

I f ,  HI(z,,, Zn+l) ---- Df(z , , ,  z,,+l) " XH(Z,,, Z,,+j) 

= Df(z, , ,z , ,+j)" (z,,+l - Z n ) / h  

= ( f ( z , , + l )  -- f ( z , , ) ) / h .  (3.20) 

The result follows. [] 

Proposition 3.3 follows from the skew-symmetry property of  the discrete bracket. 

Proposition 3.3. The Hamiltonian H: P ~ II{ is an integral for the discrete Hamilto- 
nian system ( P, f2, D, H). 

Remark 3.1. The discrete brackets defined above are motivated by the discrete orthog- 
onality condition (3.4). As defined, these brackets do not satisfy the Jacobi identity and 
hence are not Poisson brackets. The difficulty lies in the fact that the discrete brackets 
are defined for functions on P ,  while the discrete bracket of  two functions is a function 
o n P x P .  [] 

3.6. S y m m e t r y  and Conservation L a w s  

In this section we define a discrete derivative for G-invariant functions and use it to 
introduce the concept of  a discrete Hamiltonian system with symmetry. In what follows 
we let P be an open set in m-dimensional  Euclidean space N m and we denote by q~ the 
symplectic action of a group G on P.  
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Definition 3.2. A G-equivariant discrete derivative for a smooth G-invariant function 
f :  P -+ ~ is a mapping De f :  P • P --+ ]~m satisfying the requirements for a discrete 
derivative together with the following properties: 

(1) Equivariance. DCf(qb~(x), qbg(y)) = [ D q b g ( ~ ) ]  -T . DGf(x ,  y) for all g c G 
andx ,  y c P. (For any z ~ P note that D ~ g ( z )  c ~m• 

(2) Orthogonality Condition. DCf(x ,  y) �9 ~p(-~-~) = 0 for all ~ c TeG and x, y ~ P.  

For any smooth G-invariant function H we call the system (P, g2, G, D c, H)  a dis- 
crete Hamiltonian system with symmetry. As before, we associate with this system a 
difference equation of  the form 

Zn+l - zn -- hXH(zn, an+l), (3.21) 

where h 6 R+ is a parameter and • is a discrete Hamiltonian vector field defined by 
the relation 

y) = ~2~x+y)/z(DGH(x, y))  (3.22) X/4(x, 

for all x, y c P.  

Remark 3.2. The equivariance and orthogonality conditions stated above are motivated 
by properties of  the derivatives of G-invariant functions. [] 

Before giving some constructive examples of  G-equivariant discrete derivatives, we 
first summarize some properties of discrete Hamiltonian systems with symmetry. 

Proposi t ion 3.4. Let (P,  f2, G, D c', H) be a discrete Hamiltonian system with symme- 
try and let r denote an affine symplectic action o f  G on P. Then solution sequences 
satisfying (3.21) are invariant under G. That is, " N tf (Z,,),,= 0 is a solution sequence, then 
so is (dPg(Z,,))X=ofOr any g C G. 

Proof For arbitrary z0 E P let N (Z,,),,=0 be the trajectory for XH defined by (3.21) for 
some h > 0. For any g E G consider the transformed sequence X (~g(Z,,)),,=O. Since by 
assumption q~g is affine, we may write 

CI)g(Zn+l)  - -  (~g(Z , , )  = DCbg(Z,,+�89 �9 (z,,+l - Z,,) 

---- hDeP~(z,,+~) �9 XH(Z,,, Z,,+I). (3.23) 

The above statement implies that the transformed sequence (q~g (Zn))n=0N is a trajectory 
of H if and only if the discrete vector field XH satisfies the equivariance relation 

XH (~g (Z,,), ~g (Z,,+i)) = D ~g (z,,+ �89 ) . XI4 (z,,, z,,+l). (3.24) 

The result follows from the fact that (3.24) is equivalent to the equivariance condition 
on D c H. [] 
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Recall that, under certain circumstances, the action of  a group G on a phase space P 
possesses a momentum map J: P --~ T*G. Furthermore, if a momentum map exists, it 
is conserved by the system (P,  f2, G, H)  in the sense that the function J~ = J �9 ~ is an 
integral for any ~ 6 TeG. We now state a similar result for the discrete case. 

Proposition 3.5. Let (P,  f2, G, D c, H)  be a discrete Hamiltonian system with symme- 

try and denote by dp a symplectic action o f  G on P. Suppose this action possesses a 

momentum map J: P -+ Te* G. I f  J is at most quadratic in z ~ P, then J is conserved 

by the discrete system in the sense that the function J~ = J �9 ~ is an integral f o r  any 

~ C T e G .  

Proof  To begin, note that if the map J: P ~ T*G is at most quadratic, then for any 
x, y c  P w e h a v e  

J~(y) - J~(x) = DJ~ (.~2.) . (y _ x) .  (3.25) 

g N Now let ( n)n=0 be any trajectory generated by the discrete system (3.21). For any 
~ TeG we use (3.25), (3.21) and (2.6) to write 

J~(z.+l) - J~(z~) = DJ~(z .+~)  �9 (z.+j  - z . )  

---- hDJ~(zn++) �9 XM(zn, Zn+l) 

= h~2~,,+~ (~p(z,,+�89 XH(Z.,  Z~+I) 

= --h~bz , (XH(z~. Zn+~)) �9 ~p(Z.+~) 

= - h D C H ( z , , ,  z,,+j) " ~p(zn+�89 (3.26) 

which vanishes in view of  the orthogonality condition on DCH. [] 

We next give some constructive examples of G-equivariant discrete derivatives. 

3. 7. Discrete Derivative: G-Equivariant  Case 

Let (P,  f2, G) be a phase space with symmetry where P is an open set in m-dimensional  
Euclidean space R ' ,  and denote by �9 a regular affine symplectic action of G on P.  
Assume the action of  G has orbits of  dimension s, so that the quotient or orbit space P / G  
can be identified locally with R m-'~. In particular, let zri: P --+ R (i = 1 . . . . .  m - s) 
be invariants of G (assumed to be globally defined, for simplicity) so that P / G  ~- 
zr(P)  C II~ m-s where n :  P --+ IR m-'~ is defined by zr = (zrl . . . . .  22"m_s). With this setup 
a G-equivariant discrete derivative is contained in the following proposition. 

Proposition 3.6. Let f :  P --+ R be a smooth G-invariant .function and denote by 
f :  re(P) C IIU n-~ --+ R the associated reduced function, defined by the expression 
jg(er (z)) = f (z) f o r  all z ~ P. Consider any two points x ,  y E P and let z = (x + y) /2  
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and v = y - x. I f  the invariants 7ri : P --+ R are at most quadratic, then a G-equivariant 
discrete derivative for  f is defined by the relation 

DCf (x ,  y) = D f ( : r ( x ) ,  Jr(y)) o DJr(z) 

= [DJr(z)] T. D f ( : r ( x ) ,  r r (y)) ,  (3.27) 

where on the right-hand side D represents a discrete derivative for  functions on R m s. 
(For any z ~ P note that DTr(z) E R (m-s) .... .) 

Proof  The result follows by direct verification of  the defining conditions. 
(1) To verify the directionality condition we apply DCf(x ,  y) to v and obtain 

DCf(x ,  y ) -  v = Df(Tr(x) ,  7r (y)) .  (DTr(z) - v). (3.28) 

Since by assumption Jr is at most quadratic we have that DTr(z) - v = 7r(y) - 7r(x). 
Hence 

DCf(x ,  y ) .  v = Df(Tr(x) ,  7r(y)) �9 (Tr(y) - n '(x))  

= f ( : r ( y ) )  - f ( ~ ( x ) )  

= f ( y )  - f ( x ) .  (3.29) 

(2) Consistency follows from the consistency of the discrete derivative for functions 
defined on R m - c  

(3) To verify the equivariance condition we note that, since :r is invariant, i.e., 
Jr(~g(Z)) = 7r(z) for all z E P and g e G, we have 

OTg(C~g(Z)) = DTr(z) o [D~g(Z)] -I . (3.30) 

Since q~g: P --+ P is affine we have �89 + ~ g ( y ) )  = ~g(Z) ,  and thus 

Da f ( ~ g ( X ) ,  ~g(y ) )  = Df(Tr(C~g(X)), 7r(~pg(y))) o DTr(~g(Z)) 

= D r ( J r ( x ) ,  : r ( y ) )  o D : r ( % ( z ) )  

= Df( r r (x ) ,  rr(y)) o Dzr(z) o [DCI)g(Z)] -1 

= [DOg(Z)] -T. DCf(x, y). (3.31) 

(4) To verify the orthogonality condition we again exploit  the invariance of  the map- 
ping 7r" P --4 R m-s. In particular, we have D ~ ( z )  �9 ~p(z) = 0 for all ~ e TeG. So 

DCf(x ,  y )"  ~p(z) = D f Q r ( x ) ,  ~ ( y ) )  - (DTr(z)- ~p(z))  = 0, (3.32) 

for all ~ r TeG. [] 

We next give an example to clarify the above ideas. 
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Example 3.1. Let P be an open set in N 3 x 1t{ 3 of the form 

P = { ( q , p )  E R  3 x l R  3 Iq  x p • 0 } ,  (3.33) 

and let f2 denote the canonical symplectic structure on P.  Let H:  P --+ R be a smooth 
function of the form 

H(q, p) = V(q) + K(p),  (3.34) 

where V(q) = g ( l l q l [ ) f o r  some function 9 :  IR+ --+ R and K(p)  = /<(Hpll) = 
]lpll2/2m for some m > 0. 

Clearly, the above Hamiltonian system (P,  f2, H)  has symmetry under the regular 
affine action of  G = SO(3)  on P defined as ~ ( A ,  (q, p))  = (Aq,  Ap) ,  i.e., the 
Hamiltonian is invariant under this action. Moreover, this action is symplectic with 
momentum map J: P -+ T~*G -~ IR 3 given by J(q, p) = q x p, which is called the 
angular momentum for the system. 

To construct an associated discrete system with symmetry we need to construct a 
G-equivariant discrete derivative for G-invariant functions on P.  To do this, we need to 
find a set of  independent invariants of G which are at most quadratic. In particular, since 
P is of  dimension k = 6 and the action of G has orbits of dimension s = 3, we need to 
find k - s = 3 independent invariants of  G. By inspection, we have that 

7rl (q, p)  = IIq I[ 2 = q - q | 

7r2(q, p) = q �9 P i (3.35) 
7r3(q, P )  : Hp[l 2 = p . p  

are a set of  independent invariants which are quadratic. Hence we have P / G -~ zr (P)  C 
R 3 where 

Jr(P) = {(Xl,X2, X3) C ~3  i x  I > 0, x 3 > 0, Ix21 < xlx3}, (3.36) 

and the associated reduced function H:  r r (P)  C R 3 -+ R for H is 

/~(~rl, Jr2, ~3) = 9(JYT) + R(# -~ )  
= 9(jr1) + g(jr3), (3.37) 

where l~(rrl) = l ~ ( ~ )  and/~(Jr3) = / < ( ~ - 3 )  = rc3/2m. 
Now, for any x, y c P let z = (x + y)/2. Then, using a partitioned discrete derivative 

fo r /~ ,  a G-equivariant discrete derivative for H is 

Dell(x,  y) = DI?(rr l (x) ,  Jrl(y))  o Djr l (z )  + D/<(jr3(x), Jr3(Y)) o Djr3(z). (3.38) 

Since 17: 1R+ --+ IR we have 

9(0 - 9 ( r )  - ~ ' ( ~ - ~ ) ( t  - r )  
DV(r,  t) : 9 ' ( ~  -Z) + 

I t - r l  2 

l~ ( t )  - I ~ ( r )  

t - - r  

(t - -  r )  

(3.39) 



Time Integration and Discrete Hamiltonian Systems 461 

Similarly, 

So 

D/ ( ( r ,  t) - 
R ( t )  - R ( r )  ] 

t - r 2m 

17(~ 1 (y)) - IT(zrl (x)) 1 
DCH(x'  Y) = 7rl (y) - zrl (x) DJrl (z) q- ~m Dzr3(z). 

If  we let x = (qn, P , )  and y = (q,+l,  P~+~) then z = (%+�89 p~++), and we get 

DCH((q,,, P~), (qn+l, Pn+l ) )  

9( l l qn+ l  II 2) - 1~ ( l lq,  II 2) 

l lq,+l  II 2 - tlq, II 2 

_ { l ~ ( l l q , , + l l l )  - g ( l l q . l l )  
Ilqn+~ II Ilqnll 

1 
(2%+�89 O) + ~m (0, 2Pn+�89 

i q n + � 8 9  m_lPn+�89 
(llqn+l II + IIq, II)' 

(3.40) 

(3.41) 

(3.42) 

With the canonical symplectic structure, we obtain the difference equations for our 
discrete system with symmetry as 

(3.43) 
qn+l -- q,, = hm l p,,+�89 

Pn+l -- P,, = - h  9(llq,,+~ll)-V(l[q,,ll) 
[ [q , ,+ J II-IIq,, II 

[] where h > 0 is a parameter. 

q"+�89 }' 
1 (Plq,,+l II+l[q,, II) 

Remarks 3.3. 

(1) Within an algorithmic framework the above system is a second-order, implicit, one- 
step approximation to the underlying Hamiltonian differential equation which pre- 
serves the Hamiltonian and the angular momentum. This scheme is studied in detail 
in [7]. For an n-body generalization of the above scheme, together with a numerical 
assessment of  performance, see [24]. 

(2) Generally speaking, the idea of replacing the derivative of a potential with a finite- 
difference quotient in order to achieve energy and momentum conservation goes 
back to the work of Greenspan [9] and LaBudde & Greenspan [12]-[14]. [] 

3.8. Reduced Trajectories 

Given a discrete system with symmetry possessing a momentum map J ,  we can introduce 
the notion of reduced trajectories as is done for the underlying system. The existence of 
these reduced trajectories will be crucial when we consider questions of  stability in later 
sections. 

Let (P,  ~ ,  G, D c, H)  be a discrete Hamiltonian system with symmetry and let qo 
denote a regular affine symplectic action of G on P. Assume this action possesses an 
Ad*-equivariant momentum map J: P -+ T~*G which is an integral for the discrete 
system, and let # ~ T~*G be a regular value for J so that the preimage j - l ( # )  is 
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a smooth manifold in P. Since J is an integral for the system, any trajectory which 
starts in j -1  (#) remains there. Hence, given any z0 ~ j -1  (Iz), there is a well-defined 
trajectory z U j - I  ( n)~=0 in (#), which implies the existence of a well-defined discrete 
system on j - i  (/z). 

As before, let G~ denote the isotropy subgroup of/x under the coadjoint action of G 
on T~*G, i.e., G u = {g c G I Adg_~ (/z) =/z}. Then j - I  (/z) is invariant under the action 
of Gu. Since Gu is a subgroup of G, we have, by Proposition 3.4, that any trajectory maps 
to a trajectory under the action of G~,. In particular, the action of G~ maps trajectories in 
j - i  (tz) to trajectories in j - l  (/z). Hence, the restriction of the discrete system to j -1  (#) 
is a well-defined system with symmetry. 

Since by assumption the action of G~ is regular, there is a well-defined reduced 
= Z N phase space P~ j - I  (Iz)/G~ and a natural projection zr~: j - l ( # )  __~ p~. If ( ~)n=0 

is a trajectory for the original system lying in j - l ( # ) ,  then N (7L,(Z.))n= 0 is a well- 
defined trajectory in the reduced space. In particular, trajectories in j -1  (/z) and P.  
differ by some sequence of transformations under the action. More importantly, since 
the reduced Hamiltonian H.:  P.  ~ II{ depends only on the original Hamiltonian H 
and the momentum value #, it follows that H .  is an integral for the reduced trajectory, 
i.e., H~(Tr~(zn)) = H~(zr~(zo)) for all n = 0 . . . . .  N. 

3.9. Fixed Points 

Consider a discrete Hamiltonian system (P, ~2, D, H) where P is open in m-dimensional 
Euclidean space ~m. An equilibrium point or equilibria of the system is a point z0 6 P 
for which the constant sequence (z0)n~__0 satisfies the associated Hamiltonian difference 
equation (3.5). In terms of the discrete vector field, it follows by induction that zo is an 
equilibrium point if and only if XH (z0, z0) = 0. 

We can characterize equilibria of general discrete Hamiltonian systems with the fol- 
lowing proposition. 

Proposition 3.7. Let (P, f2, D, H) be a discrete Hamiltonian system. Then a point 
zo E P is an equilibrium point if and only if zo is a critical point of the Hamiltonian H, 
i.e., Dz,)H =- O. 

Proof A point z0 is an equilibria if and only if XH(Z0, z0) = 0. Since XH(z0, z0) = 
f2~,, (D(z0,z0)H), and ~z,, is nondegenerate, z0 is an equilibria if and only if D(zo,z0 ) H = 0. 
The result follows from the fact that D(zo,z0 ) H = Dzo H. [] 

Comparing the discrete system with the underlying system (P, ~2, H) we see that 
both possess equilibrium points which are critical points of the Hamiltonian function 
H. In particular, the trajectory (z0)n~__0 is a discrete analog of the equilibrium solution 
~0(t) = z0 for all t 6 IR of the underlying system. 

We next consider discrete Hamiltonian systems with symmetry and determine whether 
they inherit discrete analogs of relative equilibria. 
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3.10. Relative Equilibria 

Let (P,  ~ ,  G, D c, H)  be a discrete Hamiltonian system with symmetry and denote by 
a regular affine symplectic action of  G on P.  Suppose the action has a momentum 

map J: P -+ T*G which is conserved along trajectories of  this system. We say a point 
Ze C P is a relative equilibria of the discrete system with symmetry if, for given h > 0, 
the local trajectory X (Z,)n= 0 through Ze is of the form 

z,  = ~ ( g ' ,  ze), (3.44) 

for some g E G where gn denotes n products of  g. Note that this definition is just  a 
discrete analog of  the definition for the underlying system, and is motivated from that 
definition by considering z ( t , )  where tn = hn. Regarding relative equilibria for discrete 
systems with symmetry, we have the following proposition. 

P ropos i t ion  3.8. Let (P,  ~ ,  G, D c, H)  be a discrete Hamiltonian system with symme- 

try and denote by �9 a regular affine symplectic action o f  G on P. Assume this action 
possesses an Ad*-equivariant momentum map J: P -+ T~* G which is an integral f o r  
the discrete system. Then, f o r  any regular momentum value #, a point Ze E J-1  (lz) C P 
is a relative equilibria i f  and only if, f o r  given h > O, the local trajectory at z~ projects 
to a constant trajectory (i.e., f ixed point) in the reduced space Pu. 

Proof  Consider a point ze E J 1 (# )  and recall that there exists a neighborhood B of 
Ze in P,  real numbers he, T > O, and an evolution semigroup F: B x [0, hc] -+ P 
such that, for any 0 < h < he, the local trajectory at Ze is given by z, = F~(ze) for 
n = 0 . . . . .  N where N > 1 is such that N h  < T. Furthermore, we have z,  c j - l ( # )  
for all n = 0 . . . . .  N. 

Now, ifz~ is a relative equilibria, then z,, = qb(a n, z~) for all n = 0 . . . . .  N for some 

a 6 Gu. Hence, for each n it follows that z,, ~ G,, �9 Ze, i.e., z,  is in the orbit of  z~ 
under the action of  Gu. By definition of  the projection rr , :  j - l  (#)  __+ pu, we then have 
zr~(z,) = 7ru(z~) for all n = 0 . . . . .  N ,  and the reduced sequence (7ru(z,))ff=0 in Pu is 
a constant sequence. 

Conversely, assume the local trajectory N j - !  (z,,),,=0 in (>) projects to a constant 
(Tr,(zn)),=0 in Pu, i.e., Jr~,(z,,) = ~u(ze) for all n = 0 . . . . .  N. By definition sequence N 

of  Jr u, we must have z, E G~, �9 ze for each n. That is, there exists a sequence (g,)N=o in 
n G u such that z ,  = ~ ( g , ,  Ze). Since Zn = Fh(Ze) for n = 0 . . . . .  N and the mappings 

= [~n §  n m F~ have the semigroup properties F ~ id  and -h = F h o I: h , we can use properties 
of  the action �9 to deduce that the sequence N (g"),=0 must have the properties go = e 
and g,+m = gngm. Let gl = a 6 G,,, and for induction assume gn = a ' .  Then, since 
gn+I = g, gl, it follows that g,+~ = a "+j. Hence, the sequence (gn),=0N is defined by 
g,  = a n for some a 6 G,,. It then follows that Ze is a relative equilibria. [] 

As with equilibrium points, we would like to be able to characterize relative equilibria 
of  discrete systems in terms of  properties of  the underlying system. To this end we have 
the following proposition. 
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Proposition 3.9. Let ( P, s G, H)  be a Hamiltonian system with symmetry with an 
Ad*-equivariant momentum map J. Assume this system possesses a relative equilibria Ze 
with a regular momentum value IX. I f  zru (Ze) E Pj~ is a nondegenerate minima or maxima 
o f  the reduced Hamiltonian H a, and the parameter h > 0 is sufficiently small  then z~ is 
a relative equilibria for  an associated discrete system with symmetry (P, f2, G, D c, H) 
provided that the action of  G on P is affine and J is an integral for  this system. 

Proof  The result follows from Proposition 3.8, together with the observations that there 
is a well-defined discrete system in P~ and H~ is an integral for this system. [] 

The following proposition follows from the definitions of relative equilibria for both 
the underlying system and an associated discrete system. 

Proposition 3.10. I f  z~ is a relative equilibria for  both the underlying system and an 
associated discrete system, then there is a sequence (gn)ff=o in G u such that the sampled 
trajectory ~o(hn) o f  the underlying system through Ze, and the local trajectory (zn)N=0 of  
the discrete system through Ze, differ by group transformations o f  the form 

q)(hn) = qb(gn, z~), (3.45) 

for  all n = 0 . . . . .  N. 

3.11. Notions o f  Stability 

In analogy with the underlying Hamiltonian system we now introduce the notions of 
general dynamic stability and stability of equilibria and relative equilibria of an associated 
discrete system. 

3.11.1. General Dynamic Stability. Consider a discrete Hamiltonian system (P, ~ ,  
D, H)  with P open in 1R m and consider the associated Hamiltonian difference equation 
(3.5). If the system has symmetry under the affine action of a group G, we suppose this 
action possesses a momentum map J: P ~ Te*G which is conserved along trajectories. 

For any z0 6 P let (zn) denote the maximal trajectory through z0 for given h > 0. 
We say that the trajectory (z,,) is dynamically stable if it is defined for all n > 0 and if 
there is a constant K > 0, depending on h and z0, such that Ilzn tl 5 K for all n > 0. 
More generally, we say that the system is dynamically stable on a subset B of P if, for 
each zo ~ B, there is a real number h > 0 such that the maximal trajectory through z0 
is dynamically stable. 

An elementary criterion for dynamical stability is contained in the following propo- 
sition whose proof is straightforward. 

Proposition 3.11, Without loss o f  generality consider a discrete Hamiltonian system 
with symmetry (P, f2, G, D c, H) possessing a momentum map J. Given zo E P such 
that H (zo) = c and J (zo) = IX, the trajectory through zo is dynamically stable if the 
subset H -  l (c) A J -  J (IX) C P is bounded, and the parameter h > 0 is sufficiently 
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small. In particular, the system is dynamically stable on any bounded subset of  the form 
H-1 (c) N J-1 (#). 

3.11.2. Stabili ty o fEqu i l ib r i a  and  Relat ive Equi l ibr ia .  Our second notion of stability 
is that of  stability of  equilibria and relative equilibria, which is concerned with the 
behavior of  solutions with nearby initial conditions. For concreteness consider a discrete 
Hamiltonian system (P, [2, D, H)  where P is open in m-dimensional Euclidean space 
~m. 

Suppose we are given an equilibrium point z0 c P.  We say that z0 is stable in the sense 
of  Lyapunov if, for any neighborhood U of z0, there is a neighborhood V of zo and a 
real number hmax > 0 such that, for any y ~ V and 0 < h < hrnax, the solution sequence 
(Yn) at y is defined and satisfies y,  c U for all n _> 0. Roughly speaking, z0 is stable 
if all solution sequences beginning in a neighborhood of z0 remain in a neighborhood 
of z0. 

An elementary criterion for the Lyapunov stability of  an equilibrium point of  a discrete 
Hamiltonian system is contained in the following proposition whose proof  is analogous 
to the time-continuous version [1]. 

Proposi t ion 3.12. Let zo be an equilibrium point of  a discrete Hamiltonian system 
(P,  f2, D, H). I f  the bilinearform DZ H (zo) is positive- ornegative-definite, i.e., D2 H (zo) �9 
(v, v) > O or D2 H (zo) �9 (v, v) < O, respectively, for  all nonzero v E ~,,P ~ •m, then 
zo is stable in the sense of  Lyapunov. 

The conditions of the above proposition are sufficient to guarantee Lyapunov stability 
of an equilibrium point for a general discrete Hamiltonian system. However, the propo- 
sition cannot be applied as is to systems with symmetry. The underlying reason is that 
the conditions of  the above proposition imply the equilibrium point is isolated, which 
in general is not true for systems with symmetry. In particular, since equilibrium points 
z0 correspond to critical points of  the Hamiltonian, any point in the orbit G �9 z0 is also 
a critical point. In this case, the most we can hope for is stability of the set G �9 z0, i.e., 
stability up to the group action. 

Similar difficulties are encountered when studying the stability of  relative equilibria; 
in particular, for a relative equilibria with momentum value # the most we can hope 
for is stability of  the set G~L - ze. Since equilibrium points are special cases of  relative 
equil ibria--in particular, they are relative equilibria with g = e (the group identity) in 
expression (3 .44)- -we can discuss their stability together as follows. 

Let Ze be a relative equilibrium point with momentum value J(ze) = /z and recall, 
from Proposition 3.8, that the trajectory in P through z~ projects to a fixed point in the 
reduced phase space Pu. Also, for any trajectory in J 1 (#)  C P,  recall that the reduced 
Hamiltonian Hu: Pu --+ Ii~ is an integral for the reduced trajectory. With this in mind, 
we can establish a criterion for the relative stability of  a discrete relative equilibrium 
point z~. In particular, we will say that Ze is relatively stable if the fixed point zru (z~) in 
P~ is stable in the sense of  Lyapunov. As for the underlying time-continuous system [1 ], 
we have the following criterion for relative stability. 
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Proposition 3.13. Let ze be a relative equilibrium point with momentum g of  a discrete 
Hamiltonian system with symmetry (P, f2, G, D ~;, H), and denote by :r~, the canoni- 
cal projection from J - I ( t x )  onto Pu. I f  the bilinear form D2 Hj~(zru(ze)) is positive- 
or negative-definite, i.e. D2Hl~(:ri,(z~)) �9 (v, v) > 0 or D2Hl~(zrl,(ze)) �9 (v, v) < 0, 
respectively, for  all nonzero v ~ T~,,(=,a PI~, then z~ is relatively stable. 

4. Concluding Remarks 

Using the notion of a discrete Hamiltonian system, this paper has developed a framework 
for the design and analysis of conserving time-integration schemes for Hamiltonian 
systems with symmetry. Given a Hamiltonian system defined on an open set of Euclidean 
space, we have shown that a Hamiltonian-conserving scheme can always be constructed. 
Furthermore, if the system has symmetry under a group of affine transformations, we 
have shown how a conserving scheme that inherits this symmetry may be constructed. 
Regarding qualitative properties, it was shown that conserving schemes which fit within 
the proposed framework inherit invariant sets in phase space such as equilibria and 
relative equilibria, along with their stability properties. 

The results summarized above were obtained for the case in which the underlying 
phase space was open in some Euclidean space and equipped with a symplectic structure. 
However, from the point of view of design, it is easy to see that the framework presented 
herein extends immediately to Euclidean phase spaces with more general Poisson struc- 
tures. Moreover, the framework extends to infinite-dimensional systems. In this case, one 
introduces the idea of discrete functional derivatives, analogous to the discrete derivatives 
introduced in this paper, and then constructs a system of difference equations using the 
Poisson structure of the underlying problem (see [6] and [8] for details). For extensions 
of the ideas presented herein to constrained systems, see [5]. 

With regards to accuracy, we note that conserving schemes constructed using the 
discrete derivatives presented in this paper are formally second-order. However, one 
can employ time substepping procedures such as that proposed in [25] to increase the 
accuracy of a given conserving scheme. 
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