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Abstract 

This paper presents a detailed comparison of two implicit time integration schemes for a simple non-linear Hamiltonian system 
with symmetry: the motion of a particle in a central force field. The goal is to cstablisb analytical and numerical results pertaining 
to the stability properties of the implicit mid-point rule (the proto-typical implicit symplectic method) and a particular 
energy-momentum conserving scheme, and to compare the two schemes with respect to accuracy. While all results presented 
herein are withm the context of a simple model problem, the problem was constructed so as to exhibit key features typical of 
more complex systems with symmetry such as those arising in non-linear solid mechanic.;: namely, the presence of large (and 
relatively slow) overall motions together with high-frequency internal motions. 

Dedicated to the memo O' of  Juan Carlos Simo 

1. Introduction and motivation 

In this  pape r  we presen t  a deta i led  compar i son  of  two implicit t ime- in tegra t ion  s c h e m e s  for a s imple  
non- l inea r  Hami l ton ian  sys tem with symmet ry :  the  mot ion  of  a particle in a central  force field. T h e  
m ode l  p rob l em is cons t ruc ted  so as to exhibit  key fea tures  typical o f  m o r e  complex  sy s t ems  with 
s y m m e t r y  such as those  arising in non- l inear  solid mechanics ;  namely ,  the  p resence  o f  large (and 
relat ively slow) overall  mo t ions  toge the r  with h igh- f requency  internal  mot ions .  The  two s c h e m e s  
cons ide red  are  represen ta t ive  o f  two basic classes o f  implicit a lgor i thms  which are  seeming ly  ideal for  
Hami l t on i an  sys tems:  the  so-called symplect ic  in tegrators  and  the conserv ing  (or e n e r g y - m o m e n t u m )  
a lgor i thms .  

First in t roduced  in the  work o f  DeVogelare  [1] symplect ic  in tegra tors  are in tegra t ion  a lgor i thms  which 
p rese rve  exact ly the symplect ic  charac te r  o f  a Hami l ton ian  flow. Within  the  class o f  implicit s c h e m e s  the  
classical examp le  is the  mid-point  rule whose  symplect ic  charac te r  was first no ted  in [2]; in par t icular ,  
t he  ent i re  G a u s s  family of  implicit R u n g e - K u t t a  m e t h o d s  are symplect ic  as no ted  i ndependen t l y  by 
Lasagni  [3] and  Sanz-Serna  [4]. Whi le  symplect ic  in tegra tors  are  geometr ical ly  appea l ing  and  have  been  
s h o w n  to p roduce  sha rp  phase  port ra i ts  in long- te rm s imula t ions ,  see  e .g .  [5-7] ,  the re  is numer ica l  
ev idence  which shows  that  in genera l  these  a lgor i thms  can exper ience  stabili ty p rob l ems  for stiff sy s t ems  
with s y m m e t r y  (for  ex amp le s  see [8-11[) .  
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As an alternative to (implicit) symplectic integrators we have the exact energy-momentum conserving 
algorithms which by design preserve the constants of motion (for specific examples see [8-16, 23]). This 
class of algorithms can be put within a general framework of discrete Hamiltonian systems with 
symmetry and can be shown to possess various notions of stability analogous to those of the underlying 
problem (see [171). 

The goal of this paper is to provide, within the simplest possible context, analytical results pertaining 
to the stability properties of the implicit mid-point rule (the prototypical implicit symplectic method) 
and a particular energy-momentum conserving scheme. For both algorithms we will examine notions of 
stability which are independent of integrability and dimension; in particular, general dynamic stability 
and relative Lyapunov stability of relative equilibria. 

For the conserving scheme we will consider we can use general results on discrete Hamiltonian 
systems with symmetry to show that the scheme inherits the above notions of stability from the 
underlying model problem. However, since these results apply only to conserving schemes, we cannot 
use them directly to say anything about the mid-point rule. Hence, we introduce weaker notions of 
stability which can be 'easily' applied to both algorithms directly. For example, rather than analyze the 
relative Lyapunov stability of relative equilibria we introduce the notion of relative linear stability. This 
weaker notion can be applied in the same fashion to both the symplectic mid-point rule and the 
conserving scheme and hence will allow us to analytically compare stability properties of both schemes. 
(Note that from general results on discrete Hamiltonian systems with symmetry we know a priori that 
the conserving scheme inherits relative equilibria from the underlying system. At the moment we do not 
know if this is so for the symplectic mid-point rule.) We then verify the stability analysis numerically and 
end with a numerical comparison of accuracy. 

2. The model problem 

Consider a single particle of mass m > 0 in R 3 moving about a fixed center of force which will be 
taken as tbe origin of an inertial coordinate system and denote the position of the particle by q ~ •3. 
We restrict ourselves to conservative central forces with potential U : R 3--* R where the potential is by 
necessity a function of the radial distance Iql only, i.e. U ( q ) =  V(]ql) where V: R+-- ,R.  (Here, ]. ] 
denotes the standard Euclidean norm on R3.) For any motion of the system t ~ - * q ( t ) ~ R  3 Newton's 
second law requires 

• , v ' ( lql)  
mij  = -vUI ,  q) = - ~ q . (2.1) 

R E M A R K S  2.1. 

(1) For celestial mechanics applications an identical equation governs the dynamics of the classical 
two-body problem after reduction to the center of mass [18]. In this case m is interpreted as the 
reduced mass and q as the relative position vector defined for the two-body system as 

m = m~rn~l(m~ + m , ) ,  (2.2) 

q = q2 - qt - 

The system in (2. i) ceduees to the well-known Kepler problem when the potential is of the form 
V(iql) = - k / l q !  for some real number k > 0 .  

(2) To model situations arising in solid mechanics we consider the potential V to be that of a stiff 
(non-linear) spring with free length A 0. That is, V'(,~o)= 0 and V" large and positive in a 
neighborhood of A 0. For example, V(A)= ½k(a z -  A~) 2 for some constant k > 0. 

3 .  H a m i l t o n i a n  f o r m u l a t i o n  a n d  c o n s e r v a t i o n  l a w s  

Define the momenta of the particle by the expression p = m q  and consider rewriting (2.1) in 
first-order form on a phase space P -- R a x R 3 --'- R 6 as 
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= m - l p ,  (3.1) 

v'tlql) 
P ~ q. 

Let z=(qT ,  p l ) T E P .  Then, (3.1) defines a Hamiltonian system on P as follows (see [19] for an 
explanation of the terminology and notation used below). Define the Hamiltonian function H :  P-->R 
by 

H(z) = ~ IPl" + V(Iql),  (3.2) 

and consider the standard two-form .O : TP x TP-~ ~ given by the expression 

for all z E P  and fiz, E T=P~I~" (a = 1,2). In view of (3.2) and (3.3) we conclude that Eqs. (3.1) for 
the motion t~--~z(t)~ P can be written in Hamiltonian form as 

:~ = JVH(z). (3.4) 

Consider now the (symplectic) action of the rotation group G = SO(3) on P defined by 

q~(A, ( q, p)) = (Aq, A -  rp) (3.5) 

= (Aq, Ap) ,  

where A E G .  Since H is invariant under '/~ we have a Hamiltonian system with symmetry. 
Furthermore, the action ~ possesses a momentum map J:  P---> T*~G ~ ~3 given by J(q,  p ) = q  x p 
which is called the angular momentum for the system. Given this structure the dynamics described by 
Hamilton's equations (3.1) or (3.4) give rise to a flow on the phase space P with the following 
properties. 

(1) Conservation of  energy. The Hamiltonian (i.e. the total energy of the system) is conserved along 
solutions t ~ z ( t )E  P of Hamilton's equations, i.e. 

d 
- ~  n(z(t)) = 0.  (3.6) 

(2) Conservation o f  total angular momentum. The angular momentum map J : P---~ R 3 defined by 
J(z) = q × p is conserved along solutions t~--~z(t) E P, i.e. 

d 
-dr J(z(t)) = O. (3.7) 

(3) Symplectic character o f  Hamiltonian flow. For any z. E P the local flow F generated by (3.4) is a 
symplectic map on (P,/2) for each t for which it is defined. In particular, for each z, E P there is a 
neighborhood U of zo and an interval 1 in E containing the origin and a map F :  U x I---~P which is 
locally a flow for the Hamiitonian system of ordinary differential equations. That is, for any z ~ U the 
curve defined by ~p(t)= F(z, t )= F,(Z) is a solution with initial condition ~,(0)= z. For each t E 1 the 
mapping F,: U--* P is symplectic in the sense that 

D.FT, j D ~ F , = J ,  VzEU, (3.8) 

where D=F, is the derivative of F, at z E  U (for more details see [19]). 

R E M A R K  3.1. Integrators for which the symplectic condition (3.8) is satisfied by the algorithmic flow 
D:a, are called symplectic integrators. Within the class of implicit Runge-Kutta methods, the so-called 
Gauss family satisfy this condition (see e.g. [3, 4]). The best known example is the implicit mid-point 
rule 121. 
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4. Notions of  stability 

For Hamiltonian systems with symmetry we consider two basic notions of stability which are 
independent of integrability and dimension: general dynamic stability and relative Lyapunov stability of 
relative equilibria. The first deals with boundedness of solutions uniformly in time and the second with 
the behavior of solutions beginning in a neighborhood of a relative equilibrium solution (i.e. an 
invariant set). 

4.1. General dynamic stability 

Recall that a solution (q(t), p(t)) of (3.4) with initial condition (qo, P,J) is said to be dynamically 
stable if there is a constant K > 0 such that [l(q(t), p(t))ll <~ K for all t 1> 0. (Here,  [[. II denotes the 
standard Euclidean norm on P.) We now investigate the ~yna_m.jc stability of solutions to (3.4) for two 
classes of potentials: 

(1) Non-linear spring potential. The potential V : R + --~ R is of the form I/(A) = ½ k(A ~" - ~ 0) 2 for some 
constants k > 0 and A 0 > 0. Note that V(A) >~ 0 for all A E R+ and V(A)---~ 00 as A--~ oc. To assess dynamic 
stability note that a solution (q(t), p(t)), while it exists, remains in a level set H-~(c) C P w h e r e  c t> 0 is 
determined by the initial condition, i.¢. H(q o, Po) = c. Now, while a solution exists we have 

1 
H( q(t), p(t)) = ~ m-'lp(t)l  2 + v(Iq(t)l) = c .  (4.1) 

So 

v([q(t)D<~c and [p(t)l"<~2mc. (4.2) 

Hence, while they exist, solutions are bounded. Since we are dealing with smooth Hamiltonians only 
this implies that solutions are defined for all t ~> 0. For any solution we can thus find a constant K > 0 
such that II(q(t), P(t))II ~< K for all t 9 0 .  

(2) Kepler potential. The potential V: R + - ,  R is of the form V(A)= - k / t t  for some constant k > 0. 
Note that V(it)~<0 for all / t~R+,V(It)--- ,0 as it--~=, and V(it)--- ,-= as it--,0. To assess dynamic 
stability we note that a solution (q(t), p(t)), while it exists, remains in a level set H - ' ( c ) C  P where 
c E R is determined by the initial condition, i.e. H(qo, P0) = c. In this case, however, we cannot show 
that solutions are hounded using only level sets of the Hamiltonian. We now have to use some of the 
symmetry properties, namely, the fact that the momentum map J' is conserved along solutions. Suppose 
the initial condition is such that J(qo, P0)=/~ which implies (q(t), p(t) )E H-~(c)N J - ' ( / ~ ) .  Given the 
notion of a reduced system (to be introduced in the next section) we have that the following quantity 

H(lql, =) = =-" 12m + 1~*l"/2mlq]'- + V(Iql) (4.3) 

is conserved along solutions. In particular,/~ is the reduced Hamiltonian which we will derive shortly 
and ¢r~  R is the reduced momentum variable defined such that [p[2= or-'+ [tzl2/lq[ 2. Now, while a 
solution exists we have 

rr: /2m + 1~l:12mlql: - k / l # l  = c ,  (4.4) 

Assuming c = - Ic l  < 0  we get -k / [q[  <<, -Ic[ which implies 

Iq(t)l ~< k / Ic l .  (4.5) 

Also from (4.4) a'a ri the assumption c < 0 we have [la I" / 2mlql 2 _ k / [q] <~ 0 which implies 

Iq(t)l ~> II.tl2/2mk. (4.6) 

Hence, H(q.,  Po) = c < 0  implies that Iq(t)l is bounded. Similarly for [~r(t)[ and hence Ip(t)b Thus, for 
any solution with initial condition satisfying H(q o, p . ) =  c < 0 we can find a constant K > 0 such that 
]l(q(t),/gt))ll ~<K for all t~>0. 

Clearly, any energy-momentum conserving approximation scheme (which conserves the reduced 
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Hamiltonian) inherits this notion of stability from the underlying system. It is not clear, however, that 
similar infinite-time results (independent of the time step) can be deduced for the mid-point rule on a 
six-dimensional phase space. 

4.2. Relative equilibria, reduction and relative stability 

Given the Hamiltonian .ystem with symmetry (P, fL G, H) with momentum map J: P--* T*G recall 
that a relative equilibrium with momentum p is a point (q~,p~)~J-  t (/.t) c P wtth" the property that the 
solution through it satisfies 

(q(t), p(t)) = ¢,(exp[t~ l, (q~, Pe)) 
(4.7) 

= (exp[t~]q e, exp[t~]p~), 

for some ~ E T.G = so(3) where exp[.] is the matrix exponential and so(3) denotes the set of real 3 x 3 
skew-symmetric matrices. In particular, a relative equilibrium point (q~, p , ) E J - I ( I Q C P  may be 
characterized as a critical point of the Hamiltonian H restricted to the level set j - l ( / ~ )  (s¢¢ e.g, 
[20-22]). Regarding Lyapunov stability for the relative equilibrium point, the most that we can say is 
with respect to the set 

[(q., Pe)] = {(q, P) E P] (q, p) = ~(A,  (q,, p.)), A E G.} C J - ~ ( D ) ,  (4.8) 

where G~, is the subgroup of G under which the level set J - l ( / t )  is invariant (i.e. ~g: P---~ P leaves this 
set invariant for all g E G~). In particular, Lyapunov stability for the set [(q¢, pC)] within the momentum 
level set, which is defined as relative Lyapunov stability for the point (q., p.),  may be defined using the 
notions of reduction and reduced systems. Briefly, given a regular value /~ for J we can restrict the 
original Hamiltonian system to the level set J-~(/~) and then 'factor out' those group motions that leave 

~ ~ ~ 

this level set invariant. The result is a Hamiltonian system (P, ~Q, H)  which is called the reduced system. 
By design, the set [(q., p.)] in j - I ( # )  C P corresponds to a critical point ~'. E/~ =J-~(p ) /G~  of the 
reduced system and we say that the set [(q., p.)] is stable within J - l ( /~ )  if the critical point of the 
reduced system is stable. That is, a relative equilibrium point (qe, P.) E P is relatively Lyapunov stable 
if the associated fixed point for the reduced system is Lyapunov stable. 

By general results for discrete Hamiltonian systems with symmetry the constructions outlined above 
carry over to a large class of conserving approximation schemes such as those considered herein. 
Hence, for the conserving scheme we consider, if the underlying system possesses a relatively stable 
relative equilibrium point so does the algorithm. We cannot, however, use the above constructions to 
conclude the same for the mid-point rule. In order to 'compare' stability properties of both 
approximation schemes we thus carry out the reduction process in detail for the underlying problem and 
introduce a weak¢: notion of relative stability applicable to both algorithms. Our goal is to introduce a 
framework in which to analytically compare the stability properties of the symplectic mid-point and 
conserving algorithms, at least within the context of relative equilibria. 

4.2.1. Reduction 
In this section we review the notion of reduction for the model problem. The ideas presented are 

well-known (see e.g. [18, Chapter 3]) and are outlined below merely to motivate the procedure for the 
algorithmic setting. 

Let {el,e2,e3} be a fixed orthonormai basis in R 3 and let J ( z 0 ) = t ~ 0 .  (The case /s = 0  is 
degenerate and corresponds to motion along a straight line through the origin.) Since J is constant 
during any motion and by construction q - J  = 0 and p . J  = 0, we conclude that q and p remain in a 
plane F C R 3 where F = {x E R 3 : x . / z  = 0}. 

Assume for simplicity that/z is parallel to e 3 and introduce plane polar coordinates (A, O) E R+ x S I 
in F. In addition, let {e, • ~ , e3} be a moving orthonormal frame defined by the expressions 
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e = q~ [ql ,  

e3 = ~[V,,  (4.9) 

e X = e 3 × e ,  

and let 0 be defined such that the orientation of e with respect to the fixed frame is 

• =cos(O )e~ + sin(O)e,.  (4.10) 

From (4.10) and (4.9) we see that {e, e ± } span F and have time derivatives given by 

i = O e  ~ , 
i a  = - O e .  (4.11) 

To obtain the reduced equations of motion we express q, p • r in the moving frame as 

q = Ae, (4.12) 
p = rre + Tle ± , 

and note immediately that the condition ~ = q  x p implies r/--/z[A. Substituting (4.12) into Hamilton's 
equations (3.1) gives the following evolution equations for the reduced variables: 

.b = tz /m2t  ' , 0 E S ~ , 

= ¢ r / m ,  A ~ R + ,  (4.13) 

4 r = - V ' ( , ~ ) +  t f f  / m A  ~, ~ r E R .  

In the present case the reduced equations have a particularly simple form. Note that the evolutions 
for A and ¢r are independent of O. Once A has been determined as a function of time, Eq. (4.13)t may 
be integrated to determine O. (In this case O is said to be a cyclic or ignorable coordinate.) Hence, the 
reduced dynamics are completely characterized by the evolution of a and ,r. We now show that the 
reduced equations (4.13)2 3 are Hamiltonian with phase space/~ = {(A, *r)TE Rz: A E R+ }. 

Let ~=  (A, It) T E ,6. Then, (4.13)2.3 define a Hamiltonian system o n / ;  as follows. Define the reduced 
Hamiltonian function H :  P-- ,  R by 

H(z) = ~ m  ¢rz + V,(A), (4.14) 

where V,(A)= V(A)+p,Z/2mA2 and consider the standard two-form g]: T/~ x T/~---, R given by the 
expression 

g~a,(~, ,~£z)=M':J~£2 where 3 = [ _ 0  1 ] .  (4.15) 

In view of (4.14) and (4.15) we conclude that Eqs. (4.13)2.3 for the motion t ~ - - ~ ( t ) E  f i  can be written 
in Hamiltonian form as 

£ = 3 V/~(Z). (4.16) 

R E M A R K S  4.1. 

(1) Note that the reduction followed from the conservation of total angular momentum; in 
particular, the conservation of energy played no role in the reduction process. This observation is 
crucial in the algorithmic setting. 

(2) The potential V, in the reduced Hamiltonian is the sum of the original potential V and the 
potential of the centrifugal force. In the mechanics literature, V, is known as the amended 
potential and arises in the study of relative equilibria for Hamiitonian systems with symmetry. 

(3) In this case the reduced equations are Hamiitonian relative to the standard two-form fl  on 
/~ C R z. In the general case, reduction yields equations which are Hamiltonian relative to a 
non-s tandard two-form. 

(4) As required by the symplectic reduction theorem [22], the reduced flow in/5 is a symplectic map 
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for each t > 0 relative to the two-form .0 : T/5 x T/5---, R. In particular, for each t > 0 the reduced 
flow is an area-preserving map of/5 into itself. 

4.2.2. Relative equilibria and relative linear stability 
Consider a fixed point [ * E  t5 of the reduced equations (4.16) which in components are 

/t = zr/m , (4.17) 
~- = -v~(A). 

Clearly, the fixed point must be of the form ~* = (A*, 0) r where A* is a stationary point of the amended 
potential V~,. Inspection of Eqs. (4.11)-(4.13) shows that a fixed point of the reduced Hamiltonian flow 
on P corresponds to a steady motion on the canonical phase space P. This steady solution is a relative 
equilibria for the system on P. In terms of the motion of the particle in ~3, the relative equilibria 
corresponds to a steady circular orbit of the particle in the plane F with radius Iql = A*. 

We now introduce the notion of relative linear stability for a relative equilibria. In particular, we will 
say that a relative equilibria is relatively linearly stable if the fixed point of the reduced equations in/5 is 
linearly stable, which we define next. 

Let ]~t:/5---~/5 be the t-advance mapping for the solution of the reduced equations, i.e. ~', = Ft(zo), 
and note that by definition the fixed point ~* satisfies ~'* = b~,(~ *) for all t/> 0. We say that £* is linearly 
stable if infinitesimal disturbances 8~'E Te.P on ~'* do not grow in time. To examine the linear stability 
of £'* we must consider the derivative D~.F, : T~./5---~ T~./5. First, note that as in the canonical case the 
mapping F, is sympleetic on /5 for each t > 0. Hence, the condition (3.8) implies 

d e t [ D - ~ , ] = l ,  ' ¢ t > 0 ,  V [ E / 5 ,  (4.18) 

so that/~, is an area-preserving map of/5 c R 2 into itself. Now consider an infinitesimal disturbance ~" 
on the solution [*. The infinitesimal disturbance satisfies the equation of variations 

84, = JV2~(~ *) ~Z',, (4.19) 

which may be solved as 

~ ,  = exp[dV2H(~*)t] 8[,, = A, ~z'0. (4.20) 

Hence, the evolution of the infinitesimal disturbance ~" is determined by the one-parameter group of 
transformations A, = D~.F,: T~./5---> T~./5. From (4.20) we see that infinitesimal perturbations of the 
fixed point :T* remain infinitesimal if the mapping A, is stable. In view of (4.18) stability of this mapping 
requires that the eigenvalues ~'L2(A,) be simple on the unit circle in the complex plane. Since A, ~ R 2xz 
we have 

' V¼ ~l.2(At) = "~ tr[A,] +- tr2[A,] - 1, (4.21) 

so that the eigenvalues are simple on the unit circle if 

[1 tr[A,] I < 1 .  (4.22) 

From the preceding results we conclude that the linear stability of the fixed point E* = (a*, 0) T ~ /~  (and 
hence relative linear stabilitypf the relative equilibria on P) is determined by the trace of the linearized 
t-advance mapping A, = Dz.F,. 

R E M A R K  4.2. In the present case, linear stability of the fixed point [* implies that A* is a local 
minimum of the amended potential, i.e. V~(A*) > 0. This follows from (4.20) where a simple calculation 
gives the eigenvalues of A, as 

~m(A,)  = exp[ ±i~/V~( A*) / m t] . (4.23) 
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It then follows that the condition for linear stability is equivalent to V~,I(A*) > 0 which implies non-linear 
stability of the fixed point (and hence the relative equilibria). This, however, does not hold for the 
general case. That is, linear stability does not generally imply non-linear (Lyapunov) stability. 
Throughout the remainder of our analysis we assume that the model problem has a stable relative 
equilibria in the sense that V~(A*)>0. 

5. Symplectic approximation: Implicit mid-point rule 

In the following sections we consider the mid-point algorithm and address the question of relative 
linear stability for a relative equilibria of the discrete dynamics. Beginning with the mid-point rule 
formulated on the canonical.phase space P = R 3 × R 3 we will show that the discrete dynamics may be 
reduced to the phase space P C R2. We then show that a fixed point exists for the reduced algorithmic 
equations and analyze the linear stability of this fixed point by way of the linearized algorithmic 
At-advance mapping. For purposes of comparison, we then formulate the mid-point rule directly on the 
reduced space P and perform a similar analysis. 

5.1. Algorithmic approximation on original phase space 

Let [0, T] be the time interval of interest and consider the equations of motion on P given in (3.1) or 
(3.4) with initial data z(O)=zo. Given a partition {t,}~= 0 of [0, T] such that t 0=0 ,  tN= T, and 
t,+ i - t n  = At >0 ,  the algorithmic problem is to compute z.+l from given data z~ E P and generate a 
solution sequence (zn)~=0 where zn stands for an algorithmic approximation to z(t,). The mid-point 
approximation to (3.4) is 

Z.+~ - z .  = At JVH(Z.+,,:) , (5.1a) 

where (')n+l,2 = ½[('). + (').+1]. In view of (3.1) the explicit form of (5.1a) is 

q.+~ - q .  = Atm-~p.+l:2 , 
V'(lq .... 2[) (5.1b) 

P"+'-Pn=-At Iqn+,,2l q . . . . .  

R E M A R K  5.1. For the discrete dynamics defined by the mid-point algorithm (5.1) the 'motion' of the 
phase point in the phase space is given by a sequence (zn)~=o in P. In this case we view the algorithmic 
solution as being generated by a At-advance mapping F~,: P---, P such that zn+~ = U:,,(z,). For the 
mid-point algorithm this mapping is defined implicitly by an expression of the form G,,(z, ,  z ,+~)= O. 

5.2. Properties o f  the algorithmic flow 

The discrete dynamics described by the mid-point algorithm (5.1a) or (5.1b) give rise to an 
algorithmic flow on P with the following properties. 

(1) Conservation of  total ang,dar momentum. As before, define the angular momentum map 
J :  P--* R 3 by the expression J ( z )=q  x p. Then, J is preserved along any motion (z~)~o in the sense 
that 

J(zn+,)=J(z~),  ( n = O , l  . . . . .  N ) .  (5.2) 

This result follows directly from the algorithmic equations. 
(2) Symplectic character o f  the algorithmic flow. Consider the At-advance mapping for the mid-point 

algorithm defined by the implicit relation (5.1a). Associated with this mapping we have the discrete 
equation of variations 

~ .  +, = :~,(z~, z~ . , )  ~z . .  (5.3) 

where ~,(z~,  z,,+ ~): T ~ P - ~  Tz~ ÷, P is the linearized At-advance mapping. A straightforward calculation 
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shows that l ~ ( z n , z , + t )  satisfies the condition in (3.8) so that the algorithmic At-advance mapping 
defined by the implicit relation (5.1a) is a symplectic map on P with the standard two-form. 

5.3. Reduct ion  

Due to the presence of the co~iserved quantity J the discrete dynamics on P defined by the m'~d-point 
algorithm (5. la) or (5. lb)  may be reduced to a phase space/3 C R 2. As before, let {e~, e2, e3) be a fixed 
or thonormal  basis in [~3 and consider a motion (zn)~=o in P for which J(z0) = /~  ~ 0. Since J is constant 
along any motion and by construction q, . J  = 0 and pn . J  = 0, we conclude that qn and Pn remain in the 
plane F =  ( x ~ 3 :  x - / t  =0}  for n = 0 ,  1 . . . . .  N. 

Assume for simplicity that p. is parallel to e 3 and introduce plane polar coordinates (A, O ) E  R .  x S I 
in F. Let (en,e~,  e3} be a moving orth~normal frame defined at each point of the motion by the 
expressions 

e 3 =/t/~t, (5.4) 

e ~  = e 3 × e n . 

At each point of the motion let O n be defined such that the orientation of e~ with respect to the fixed 
frame is 

e, = cos(On)e I + sin(O~)e 2 . (5.5) 

From (5.4) we see that {e~, e~ } span F for each n and hence we can express q~, q, + t E F as 

q,, = A~e., (5.6) 

qn+t =)in+ten+! " 

To simplify the developments that follow it proves convenient to define a second moving frame 
{i, ~ ~, e3} which in each time interval [t~, t~+l] is given by 

e n +  I "1" e n 

-- ]e,,+~ +e,,I ' 

en+  I - e  n 

e '±  -~ l e n + , - e ~ l  " (5 .7 )  

e 3 = ~  X ~  ± ----- i t t / ~  . 

Let 0 = 0~+~ - On be the angle between the vectors q~+~ and q~, i.e. the swept angle in the interval 
[t~, tn+!]. Then using the basis in (5.7) we have 

e~ = cos(0 /2) i  - sin(0/2)~ ~ , 

e~+ I = cos(0 /2) i  + sin(0/2)~ l (5.8) 

which in view of (5.6) gives 

q~ = A~ c o s ( O / 2 ) i  - A~ s in (O/2 ) i  ~ , 

q~ + l = A~ + i cos (0 /2 ) i  + A~ + ~ sin(0/2)~ ~ . (5.9) 

We now proceed to express p~, p , ~  E F  i,I the mov:ng frame (5.7). As before, at each point in the 
motion let ¢r~ = p~. e~. By conservation of angular momentum we have q~ x p~ = / ze  3 and q, + ~ x ,on + ~ = 
/ze 3. Taking the cross product of these expressions with q~ and q~+m, respectively, leads to 
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pn = [¢r n Cos(O/2)+ "~  s i n ( O / 2 ) ] ~ - [  ~'n sin(O/2)-~-~cos(O/2)i~ L , 
(5.1o) 

p . + , =  [¢r.+, cos (0 /2 ) -  ~ s i n ( 0 / 2 ) ] i +  [¢r.+, sin(0/2) + A-~-~÷ cos (0 /2 ) ] i ;  . 

Substituting (5.9) and (5.10) into the mid-point algorithm (5.1b) yields the following component 
equations for the reduced variables ~, ¢r and 0: 

_A =Atm_~Fcr~+~,,[ A.+~-A.  . -I A.+l + t~ ~ t a n ( 0 / 2 ) ] ,  
(5.11) 

2An+l/2 
¢r.+~ - or. = -A t  OrAn+l/2 + p, ~ tan(0/2),  

2A.+,/2 sin(0/2) = A r m -  [ ~  (or.+, - lrn) sin(0/2) +/~ --.--n+~. n+ cos(O/2)J, 
(5.12) 

1 A,,+ l - An : 
2¢r. + ~,2 sin(O/2) = - ~ At ¢r(A.+ ~ - A.) sin(O~2) + I~ ~ cos(O, 2) ,  

where o.=g'({qn+l/2D/]qa+l,2[. Note that there are four equations for three unknown reduced 
variables A.+,, ¢r.+~ and O (i.e. 0.+1). A simple calculation shows that the dependent equations are 
those in (5.12). With the proper substitutions these two equations become identical. Solving for the 
quantity (A.+~ - A . )  in (5.11)1 and substituting the result into (5.12)2 yields 

2A,,A,,+~ / 1 2 i "x 
tan2(0/2) - ~  ~1 +-~-At m-  ~r) tan(0/2) + 1 = 0 .  (5.13) 

Hence. Eqs. (5.12) may be replaced by the single equation (5.13). The reduced algorithmic equations 
are then 

A.+1-A.  =~tm_l[cr .+ ,~2+ A . + , - A .  tan(0/2)]  ~ ~  
2A.+llz 

¢rn+ , - ¢r n = -A t  crA.+,, z +/z  ~ tan(0/2) ,  (5.14) 

: . 2A A m 1AtZm_%r) t a n ( O / 2 ) + l = O .  tan ( 0 / 2 ) - ~  (1 +~- 

R E M A R K  5.2. The third equation in (5.14) may be taken to define 0 as an implicit function of A. and 
A.+I. In principle, we could eliminate this equation and end up with a system of the form 
Ga,(z., z~ + i ) = 0 where ~'~ = (A~, ¢r.)'r E/~. That is, we may view (5.14) as defining an implicit map of 
P C R 2 into itself. According to the symplectic reduction theorem, the At-advance mapping for the 
reduced algorithm on P is symplectic given that the algorithm on the cmzonical phase space P is 
symplectic. 

5. 4. Stability o f  algorithmic relative equilibria 

As in ti',e exact case, a fixed point of the reduced algorithmic equations on/3 corresponds to a steady 
(discrete) solution of the algorithmic equations on P. This steady solution is then a discrete analog of a 
relative equilibria. Following the model problem we seek a fixed point i * ~ / 3  of the reduced 
algorithmic equations (5.14). In the algorithmic case, i* is a fixed point if there exists a motion (z.)~=0 
such that ~'. = i* (n = 0, 1 . . . . .  N). To this end we have the following 

L E M M A  5.1. ~'* = (A*, O) x E/3 is a fired point o f  the reduced algorithmic equation,~ (5.14) i f  A* is a 
stationary point o f  an algorithmic amended potential V,, : R+ ~ R deJined as 
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I:,(A) = rjiA a(s)V'(s/a(s)) ds + g" /ZmA 2 , (5.15) 

where 

a ( A ) = V l +  1 2 ~ ~g / r (A ,  and ,O~(A) = At g/mA" 

~ N PROOF. Consider a motion (z.).=0 such that ~ ' .=(A*,0)  T for all n. Setting A.=A,,+ l =A* and 
zr. = ~r.+ i = 0 in (5.14)1 shows that this equation is satisfied identically. From (5.14) 2 we get 

2/x 
~r = ~ tan(O/2), (5.16) 

which upon substitution into (5.14)3 yields 

a t /~  (5.17) 
tan(0/2) = 2re(a.)  2 . 

In view of (5.17) and (5.16) we see that the reduced algorithmic equations are satisfied by a motion of 
the form ~. = (A*, 0) r (n = 0, 1 . . . . .  N) if A* satisfies the equation 

(5.18) 
~r = m(lt*) '  ' 

where cr=v'(Iq.+n/zl)/{q.+n/2l. For the motion we are considering we have qn=X*e,  and q.÷t = 
A*e.+ I, and by definition of 0 we have e . . e . +  n =cos(0),  Using the definition of qn+n/2 and some 
trigonometric identities we arrive at 

Iq . . . . .  I = A* cos(0/2) ,  (5.19) 

which in view of (5.17) and some more trigonometric identities yields 

it* 
Iq.+,,zl = [ - 1 + 1 /  At/z ~2] , :2 .  (5.20) 

L ~,~-T~-;9/J 
Substituting (5.20) into (5.18) then shows that ~* must satisfy 

~( ,x*)v ' ( ,x , / , , (a*) )  - m - - ( ' ~  = o .  (5.21) 

In view of (5.15) A* must be a stationary point of ~', as claimed. [] 

Regarding the existence of a zero for the function t2~: ~ +--, R (and hence the existence of a fixed 
point for the reduced algorithm) we have the following 

L E M M A  5.2. (i~ = 0 defines A* as an implicit function o f  At in a neighborhood o f  At = O. 

PROOF. Consider I;'~ as a function of both A and At. Then the zero level set of 17"~ contains the point 
(a*, At) = (a*, 0) where a~ is the stationary point of the exact amended potential V~. Since 

^ l  , a^ V~(A,, 0) = V~(A ~*) > 0, the claim follows from the implicit function theorem. I"1 

The above result shows that there is a unique A*, and hence fixed point (A*, 0) of the reduced 
algorithm, for each At > 0 sufficiently small. The question arises, however, as to what happens for a 
large range of At and how strongly A* depends on At. To answer these questions we present some 
numerical results for a specific potential. In particular, we consider the non-linear spring potential to be 
used in our numerical stability experiments which is of the form 
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Fig. 1. Plot of ~ venus A (with vertical axis ~aled by I/k) ~r time ste~ in the inte~al 0 ~ At ~ 2. Note that ~r each time step 
there exists a unique zero which de~nds strongly on the time step. 

1 
V(A) = ~ k(A 2 - Ao2) 2 . (5.22) 

Taking for the 'stiff' case k = 106, a 0 = 1,/~ = 10, and m = 1, in Fig. 1 we plot V,~ versus A for a wide 
range of time steps At. Since zeros of 17'~ correspond to stationary points of I? ,  the plot shows that there 
exits a unique stationary point A* over a wide range of time steps and that A* depends strongly on the 
time step. 

In analogy with the model problem, the algorithmic relative equilibria on P is said to be relatively 
linearly stable if the fixed point of the reduced algorithmic equations in P is linearly stable. To examine 
the linear stability of the fixed point we proceed as follows. Invoking the implicit function theorem, the 
reduced algorithmic equations (5.14) may be written in the form 

GA,(z., z'. +, ) = 0 ,  (5.23) 

where ~'. = (A., *rn)VE/~ C H 2. By definition the fixed point ~*= (A*,0) v satisfies Ga,(~'*,~*)=0. 
Consider an infinitesimal disturbance 8~ on the motion ( )n=o. The infinitesimal disturbance satisfies 
the discrete equation of variations 

8~', +, = Aa,fz' ,  z") 8~.,  (5.24) 

where ~ , ( z , ,  z', +t ): T~/;--~ T~÷/~ is the linearized At-advance mapping. The fixed ~aoint is said to be 
linearly stable if the linear mapping &a,(z*, z*) is stable, i.e. if the eigenvalues ;~l.2(AAt) are simple on 
the unit circle in the complex plane. If the At-advance mapping defined implicitly by relation (5.23) is 
symplecl,c on f with the standard two-form, then det[A~,(~'~,~'~+l) ] = 1 along any motion (z~),~0" s and 
the linear stability condition for the fixed point becomes 

[ 1 tr[~A,(~*, :~*)] [ < 1 .  (5.25) 

Through a tedious, yet straightforw:~rd application of the chain rule we linearize (5.14) (considering 0 as 
an implicit function of A. and An+t) to obtain the discrete equation of variations. Particularizing this 
result for the solution ([*)N= o yields (5.24) with a linearized At-advance mapping given by 

1 

where 
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1 .O F 1 1 -~.Ov/3( .O~- 3.O~- 8) .  = A t m  a = l - ~  -~.o~ b - ' ,  

( l a ~ ) [ - . o ~ - a ~  l 
c = A t - l m \ l  - - ~  - , , -~aF~(a~ 3.O~- 8)] 

1 ~ 1 , 1 
d = 1 - ~ .OF -- ~" .O, -- -g .OF/3(.O 7 -- 3.O~- -- 8) ,  (5.26b) 

1 1 2 0 = 1 +-~.o~ +-g.Od3(.O, -3.O~ - 8 ) .  

]3=[.OF( 1 t , 1 , ]  / [ ' 1  4 1 ' ' 1 ] ,  + ~ .O~ + ~ .OT)J / [~  a , -  ~g a ~ ;  - 

with the sampling frequencies "OF and .or defined as 

O r = At ~/m(a*)-",  

.O~ = At" m - ' V " ( a * / a ) ,  = V l  
1 +-~a~ 

For this particular solution one may verify that det[A~,(~*, ~*)] = 1 so that the At-advance mapping 
defined implicitly by (5.23) is a symplectic map on P with the standard two-form along the given 
motion. (Here, we have used the fact that a mapping of the plane into itself is sympleetic with respect to 
the standard two-form if and only if it is area-preserving.) Regarding the linear stability of the fixed 
point (and hence the relative linear stability of the relative equilibria) we have the following. 

L E M M A  5.3. The relative linear siability l imit  f o r  the relative equilibria o f  the mid-poin t  algori thm on P 
is .OF-~ 2. 

P R O O F .  The result follows by direct verification of condition (5.25). From (5.26) we get 

~, 4 2 +  4 
1 ~ 2.OF + 20~-O, 64.O F + 160.O~ + 32.O 2, (5.27) 

"2tr[~a'(Z*'e*)l = 1 3.O~+ 240 r4+ 4.O~-0,2 2 + 64.O~+ 16.O~ +64 " 

Considering the 'stiff' case .Or >> .OF > 0 and retaining the highest-order terms in (5.27) gives 

1 ~ , 3 2  + 2.O 4 
~- tr[/~a,(~ , ~*)1 ~ 1- 16 + 4.O~" .Oi large. (5.28) 

In view of (5.28) the stability condition (5.25) is satisfied for 0 < OF < 2 and violated for O r ~> 2. Hence, 
for the 'stiff" case we have that "OF ~ 2 is the relative linear stability limit for the mid-point algorithmic 
relative equilibria. [] 

5.5. A lgor i thmic  approximat ion on reduced phase  space 

To contrast the results in the preceding sections which were obtained by reducing the mid-point 
approximation on P, we formulate the mid-point algorithm directly on the reduced space P and address 
the question of linear stability for fixed points of this formulation. The mid-point approximation to the 
reduced equations (4.16) is 

£,, +, - ~, = At dVH(~, +,,z), (5.29a) 

where (').+,/2 =½[( ') .  + ( ') .+,].  In view of (4.13)2. 3 the explicit form of (5.29a) becomes 

-i 
A.+l-A.=Atm ~'.+~/2, (5.29b) 
"rrn+ , -- lr, = --At V~(An+,,2). 
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By inspection, a motion of the form [ ,  = (A*, 0) T (n -- 0, 1 . . . . .  N) satisfies (5.29b) where A* = A~* is a 
stationary point of the exact amended potential V,,. Hence, :~* = (A*, 0) "r is a fixed point for the 
mid-point algorithm on/~ and we see that the fixed point of the reduced dynamics is exactly preserved. 

To examine the linear stability of the algorithmic fixed point we consider an infinitesimal disturbance 
8~" on the motion (z*)~=o- The infinitesimal disturbance satisfies the discrete equation of variations 

~o+, = ~,~,(~*, ~'*) ~'~, (5.30) 

where ~ , ( ~ , ,  ~ ÷~): T i P - o  T~, ~, P is the linearized At-advance mapping. Linearizing (5.29b) about the 
solution [* yields 

,~a,(:'."*, i* ) --- -~- ~ ] ,  (5.31a) 

where 

| 2 1 
, ,  = 1 - -4 -At  m -  V,~(A*),  

b = A r m  -I , 

c = - A t  V~(A*), (5.31b) 

d = 1 - 1 At 2 m -  tI'.~(A*), 

1 2 
D = 1 +~-At  m- 'V~(a*) .  

As before, the fixed point is said to be linearly stable if the mapping A4t(£*, ~'*) is stable. From (5.31) 
one can verify that det[An,] = 1 and 1½ tr[/~a,][ < 1 so that the mapping A.,, and hence the fixed point is 
unconditionally linearly stable. 

6. Conserving approximation 

Here,  we consider an energy-momentum conserving algorithm and address the question of the 
relative linear stability for a relative equilibria of this algorithmic approximation. We first outline the 
construction of a conserving algorithm on P and then reduce the discrete dynamics to/~ C R 2. We then 
show that the reduced algorithm has a fixed point which is exact and analyze its linear stability. (Note 
that from general results on discrete Hamiltonian systems with symmetry [17] we know a priori that the 
reduced scheme will inherit exactly the fixed points in the reduced phase space.) For purposes of 
comparison we formulate a conserving algorithm directly on the reduced space P and perform a similar 
analysis. 

6. I. Algori thm approximation on original phase space 

As a point of departure consider the following mid-point approximation to the equations of motion 
off P: 

q.+t - q. -= At m-~P.+ ~/2 , 

P.+l - P .  = - A t  cr(q., q.+t)q.+t/2 , (6.1) 

_ t  , where ~ :  R 3 x R---* R is to be determined and as usual (').+1/2 - ~ [ ( ) .  + ( ' ) .+l] .  From the results for 
the mid-point rule it follows that the above algorithm preserves the momentum map ] :  P - *  i~ 3 for any 
~ (q~  q~+~)E R. We now proceed to determine cr such that the Hamiltonian (i.e. "ae total energy) is 
conserved along any motion ((q~, P.))~=o generated by (6.1). Recall, for the system at hand the 
Hamil~onian H :  P---* R is separable, of the form H ( z ) =  K ( p ) +  V(]q]) where K ( p ) =  ]p]2/2m is the 
kinetic energy of the particle. In the interval [t., t~÷t] the change in kinetic energy is 
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1 
K(p.÷, )  - K(pD = ~ m - ' ( I p . + , l  "~ - Ip . [ - ' ) ,  

= m-Op. +,,2" (P , . l  - P . ) .  (6.2) 

Substituting the algorithmic equations (6.1) into the above identity yields 

1 
K(p.+, ) - K(p.)  = - ~ (Iq. +, I - Iq.l~')~r(q., q. +t ).  (6.3) 

N The Hamiltonian is said to be conserved along a motion (Z.).=0 if H(z .+I )=H(z . )  for all n. This 
requires K(p ,+~) -  K ( p . ) =  -[V([q., ~, [ ) -  V(Iq,!) ] which in view of (6.3) is satisfied by setting 

1 V(lq.+, l ) -V(Iqol)  
o.(q., q.+l) = 1( (6.4) 

Iq.+l[ + Iq, I) I q ,+ l l -  Iq, I 

Hence, the discrete dynamics described by (6.1) together with (6.4) give rise to an algorithmic flow on 
P which preserves exactly the momentum map J and the Hamiltonian H. 

R E M A R K S  6.1. 
(1) Note that cr as given in (6.4) is well-defined in the limit as Iq, . l l  - Iqnl ----}0. In practice, when 

Iq,+,l---I'I.I we compute o- via an expansion of the form 

I 1 ( lq.I)) +"  ". + - I q . I )  v "Q- ( Iq .+ I I  + " ~( lq .+ , l+ lq . i ) c r=V, (_~( lq .+l  [ iq. i))  + 2 4  (iq.+ll ~ 1 

(6.5) 

(2) The approach outlined above for the construction of an exact energy-momentum preserving 
algorithm generalizes to more complicated systems such as non-linear elasticity, shells and rods 
(see [8-10]). For the construction of conserving algorithms for general Hamiltonian systems with 
more general momentum maps see [17]. 

6.2. Reduction 

Due to the presence of the conserved quantity J the discrete dynamics on P defined by the conserving 
algorithm (6.1) together with (6.4) may be reduced to a phase space /~ C R 2. Following the same 
procedure as before yields the reduced equations 

-- An= At m-I['~"+I/2L ~An+l -An "] A.+l + ~ tan(0/2)~, 
. . 2A ~j: 

*r. + 1 - *r~ = -A t  era. + i/2 + V - ~  tan(0/2) ,  (6.6) 

2A.A.+~ [ 1 2 i ' 
- + ~ A t  m -  t r ]  tan(0/2) + 1 = 0  tan2(0/2) ~ ~,1 

where tr = A~+~,/2[V(A.+,) - V()t.)l/lA.+ , - )t.]. 

6.3. Stability o f  algorithmic relative equilibria 

As before, a fixed point ~*~/5  of the reduced algorithmic equations corresponds to a relative 
equilibria for the algorithm on the original phase space P. Regarding fixed points of the reduced 
algorithmic equations we have the following: 

L E M M A  6.1. £'* = (A*,0)v• / ;  is a fv.ed point o f  the reduced algorithmic equations (6.6) i f  A* /s a 
stationary point o f  the exact amended potential Vu : • + --* R defined as 
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V~,(A) = V(A) +/~2/2mA2. (6.7) 

P R O O F .  Consider a motion (zn)~o0 such that £n=(A*,0)  T for all n. Setting a,,=~.n÷u =A* and 
zr n = ~rn+ , = 0 in (6.6), shows that this equation is satisfied identically. From (6.6) 2 we get 

2/.L 
a = ~ tan(O/2), (6.8) 

which upon substitution into (6.6)3 yields 

At/z (6.9) 
t a n ( 0 / 2 ) -  2re(A.) 2 . 

In view of (6.9) and (6.8) we see that the reduced algorithmic equations are satisfied by a motion of the 
form zn = (A*, 0)T(n = 0, 1 . . . . .  N) if A* satisfies the equation 

Or = m(A,)4 , (6.10) 

where we use the expression for Or given in (6.5). For the motion we are considering we have 
A n = An+ I = A* so that (6.10) becomes 

2 
v ' (a*) -~=0.  (6.11) 

Comparing (6.11) to (6.7) shows that A* must be a stationary point of V~, as claimed. [] 

To examine the linear stability of the fixed point we linearize (6.6) to obtain the discrete equation of 
variations (5.24). Particularizing this result for the solution (z*)~oo yields a linearized At-advance 
mapping 

1 
3 . , , i f ' .  ~'*)= ~-[ca bd], (6.12a) 

where 

1 2 1 . ( I  1 ~) 

i )  = A r m  - l  , 

c = A t - ' m ( l - , n ~ - ) [ - / 2 ~ -  ,Q~+4/3(1 1 , 1 2•-I 
(6.12b) 

1 2 1 " + , B ( I + ' ~ . . Q ~ + - ~ _  1 1 a= 1 - ~ a , ~ - - i a ;  a~,, 

D=  I + -~O~-~  

,02 / r  1 . -1 

with the sampling frequencies O F and 0 t defined as 

OF = At .~/m(~*) 2 , 

O~ = a t :  m - ' V " ( x * ) .  

For this solution one l~ay verify that det[~a,(~*,~'*) 1 = 1 so that the stability condition is given by 
(5.25). Regarding the linear stability of the fixed point we have the following 
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L E M M A  6.2. The relative equilibria for  the conserving algorithm on P is unconditionally relatively 
linearly stable. 

P R O O F .  The result again follows by direct verification of (5.25). From (6.12) we have 

= ! I I  = 1 - 3 0 ~ _  + . O ~  . ( 6 . 1 3 )  
z tr'~a'(£'*' £'*)' ~ 0  4 + t.o~ + ~.O~ + 2 

Making the assumption .01 >> .of: > 0 yields a result independent of ,f]~.. To see the effects of ~ -  on 
(6.13) we proceed as follows, Holding 121 fixed, we seek the value of I/F, if any, for which (6.13) has a 
local extrema. Taking the first variation yields .0¢ = 2 as the only stationary point. For this value of .or: 
we get ½ t r l ~ , l  = - 1  independent of .0,. In particular, for any value of "Oi, we have l½ tr[,~a,ll <1  for 
0 < .O~ < 2 and .or: > 2. Furthermore, one may show using (6.12) that at "Oe = 2 we have Aa~ = - l d e n .  
Hence, the energy-momentum consetwing algorithmic relative equilibria is relatively linearly stable for 
all .O r, .Or > 0. [] 

R E M A R K S  6.2. 
(1) In accordance with general results for discrete Hamiltonian systems with symmetry we see that 

the energy-momentum conserving algorithm on the canonical phase space P exactly preserves the 
fixed point of the reduced dynamics, and hence preserves the relati~,e equilibria of the original 
system up to group motions. 

(2) Since the conserving algorithm inherits the relative Lyapunov stability of the relative equilibria 
from the underlying ~ystem we necessarily have unconditional relative linear stability. 

6.4. Algorithmic approximation on reduced phase space 

To compare with the results in the preceding sections which were obtained by reducin~ the 
algorithmic approximation on P. we formulate the algorithm directly on the reduced space P and 
address the question of linear stability for fixed points of this formulation. Our conserving approxi- 
mation to the reduced equations (4.16) is 

A'*I - An = A t m - ~ l r ' + l "  " (6.14) 

7 r . . , - o r . =  --At ff(A.. A.÷,),  

where (').÷l~. =½[(') .  + ( ' ) .*l]  and or is of the form 

flV..(~°+,)-v..(x°)]/[,~ .... - ,~ , l .  ,~ .... ~,~,,; 
a ( a , , . a , + , ) = l . V , (  a ~ -  - ) .  ,~ .... =,~,,. 

(6.15) 

By inspection, a motion of the form ~. = (A*, 0) 1" (n = 0.1 . . . . .  N) satisfies (6.14) where A* = A* is a 
stationary point of the exact amended potential V~,. Hence, E*= (A*,0) v is a fixed point for the 
conserving algorithm on/5 and we see that the fixed point of the reduced dynamics is exactly preserved. 

To examine the linear stability of tile algorithmic fixed point we consider an infinitesimal disturbance 
ttZ on the motion (z*).u=,,. The infinitesimal disturbance satisfies the discrete equation of variations 

~E.+, = ~at(z'*, z'*) 6~.,  (6.16) 

where "~at(z., z.+ i): Te./~---" Tr:.. ,/5 is the linearizcd At-advance mapping. Lincarizing (6.14) about the 
solution ~* yields 

1 
aa,(E*, ~ ' ) =  ~ - [ c  ~ ] ,  (6.17a) 

where 
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1 1 
a = 1 - ~ At'- m -  V~(;t * ) ,  

b = At m -t , (6.17b) 

c =  -- At V~( ;t * ) , 

d 1 1 . = 1 - - ~ A t 2 m  - V~(,~ ) ,  

D = 1 + 1 A t :  m-'V~(X*).  

As before, the fixed point is said to be linearly stable if the mapping Aa~(z*, z*) is stable. From (6.17) 
one may verify that det[Aa,)] = 1 and [½ t r [~ , l l  < 1 so that the mapping Aa, and hence the fixed point is 
unconditionally linearly stable. 

R E M A R K  6.3. An important difference between the symplectic mid-point algorithm and the energy- 
momentum conserving algorithm is that the latter preserves the fixed point of the reduced dynamics 
regardless of whether it is formulated on the canonical phase space P or the reduced space P. This is a 
reflection of the symmetry properties of the conserving algorithm (see [17]). 

7. Numerical example: Verification of stability a n a l y s i s  

In this section we present a numerical example to verify the stability results obtained in the preceding 
sections. Specifically, we consider the conservative central force problem for a particle of unit mass with 
a nonlinear spring potential V: •+---, R of the form 

1 
V(A) = ] k(A 2 - 1) 2 . (7.1) 

For the "stifF' case we take k = 106 and take as the amplitude of the angular momentum p, = 10. 

7.1. Mid-po in t  approximat ion  

To verify the "_esult of the stability analysis of the mid-point algorithm on P we have plotted in Fig. 2 
(half) the trace of the amplification matrix (5.27) versus ~F- As the plot shows, the stability condition 
(5.25) for the algorithmic relative equilibria is violated for ~ > 2. At the point t'] F ~ 2 the eigenvalues 

. . . .  ' . . . .  i . . . .  k 

o 

0 1 g 3 

Fig. 2. Trace (up to a factor of one-half) of the linearized At-advance mapping for the reduced mid-poin~ algorithm. 
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of the amplification matrix experience a bifurcation from two complex-conjugate roots with unit 
modulus into two real roots one of which has modulus greater than unity. 

For three values of At we integrated the equations of motion on P using (5.1b) and plotted the 
reduced trajectories in ft. Figs. 3(a-c) show the fixed point i n / ;  and neighboring solutions which were 
obtained by specifying initial conditions slightly away from the fixed point. Also shown are plots of the 
total energy versus time for each trajecto~. For the plots of the trajectories in /5 we have scaled the 
reduced momenta lr by a factor of 1 /Vmk to balance the scaling between the ~r- and A-axes. 

Note the dependence of the location of the fixed point z:* on At. In Fig. 3(a) for At = 0,01 we have 
~'*-(1.0013, 0) T. in Fig. 3(c) for At = 0.02 the fixcd point has moved to ~*--" (1.0050, 0) T. Also note the 

..." , ; \ "  -,, 

. °[4 i C'~ ~, i 

o .~  1.oo I i ~  

ii. 

:., • • • I . . . .  ) . . . .  * . . . .  ) . ) I  
05  1,0 1.5 2 ,0  

t 

: 1 ! , . .  " .... ' .............. ;'1 " o[ ,"  k : ;  ~ i - -  

~~l:  \ , . . -  .................... " . . /  

0.98 t .00 1 .O2 0 O~ t .0 t .5 2.0 

), ! (b) 

~'-... ~ ...] 
.o.,t ~ ~ " ~ f  ..... 

. .  ,-:": . . . . . . . . .  
1.004 1.005 1 .0 (0  0 1 2 3 4 

1. t 

(e) 
Fig. 3. Reduced phase trajectories and energy plots for the mid-point algorithm on F for (a) At = 0.01 (.O~. ~ 0. I); (b) At = 0.015 
(.O r ~ 0.15); (c) At = 0.02 (.O~. ~ 0.2). (0) denotes the initial condition. 



216 O. Gonzalez, J.C. Simo / Comput. Methods Appl. Mech. Engrg. 134 (1996) 197-222 

2 101 

tO '  

,e 101 

=: 10 '  

• 10 a 

tO*  

10 

1 
0 2 4 I 0 2 4 I $ 10 

J~ t 

Fig. 4. Spurious solution obtained by continuing computations along curve 5 of the previous figure. (0) denotes the initial 
condition 

size of the stability region in Fig. 3(c). In this figure, curves 1-3 show the fixed point and neighboring 
solutions which appear qualitatively correct. Slightly further away from the fixed point we have curve 4 
in which we begin to see corners in the trajectory. Finally, curve 5 shows a solution which quickly leaves 
the neighborhood of the fixed point and becomes a spurious solution. Fig. 4 shows the spurious solution 
which results if we proceed with the computations along curve 5. 

Further increases in At yield similar behavior, i.e., the fixed point continues to move to the right and 
the stability region continues to shrink. By At = 0.13 (~r  ~ 1) the stability region for the fixed point 
cannot be resolved due to the precision of the computations. The fixed point itself can be maintained 
only for a few time steps before roundoff and tolerance errors drive the solution out of the stability 
region. For some value of ,(2F between 1 and 2 the fixed point vanishes, i.e. it is lost after the first time 
step. 

Fig. 5 shows the result of integrating the reduced equations of motion on ,6 using (5.29b). in this case 
the solution curves are independent of the time step so that we show only one plot. Here, we note that 
the fixed point Z*- ' - (1.(~I ,  0) T of the reduced dynamics is exactly preserved and that the fixed point 
does not have a limited stability region. 

7.2. C o m e r v i n g  approximat ion  

The results of the stability analysis of the energy-momentum conserving algorithm on P are verified in 
Fig. 6 where we have plotted (half) the trace of the amplification matrix (6.13) versus f/r. As the plot 
shows, the stability condition (5.25) for the algorithmic relative equilibria is satisfied for all ~ / >  0. The 
only exception is ~ r  = 2 where we have [½ tr[/~,]] = 1. This point, however, is still stable as discussed 
earlier. 

m 
• - , |  . . . .  | . . . .  i , - -  

o~  . . ' "  . .  . . . . .  ~ " ' .  

c 
o u 1 .oo t .o2 o o6 1.o I ~ 2.o 

) .  t 

Fig. 5. Phase trajectories and energy plots for the mid-point algorithm on/~. Note that the trajectories are independent of At. (O) 
denotes the initial condition. 
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. ' ' ' ' 1  . . . .  I . . . .  I . . . .  ! . . . .  , 

1.0 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.5 

~ o 

-O.5 

-1.0 ........................................ 
" . . . .  I . . . .  I . . . i | i i . . I . . , I ' 

0 10 20 30 40 50 

Q ,  

Fig. 6. Trace (up to a factor of one-half) of the linearized At-advance mapping for the reduced energy-momentum conserving 
algorithm. 

i 
. . . |  . . . .  ! . . . .  i . ' '  

O02 • - - - ,  ~ 

r , "  . o . . . .  I " 

o t ~ 4 * ',. , e 

t • : .  ... , 
• . . . .  • I I 

0.t;8 1 .oo 1 no 

l, 

0 0-~ t.O 1.8 :1.0 

t 

Fig. 7. Reduced phase trajectories and energy plots for the energy-momentum conserving algorithm on P. Note that the 
trajectories are independent of Af. ( e )  denotes the initial condition. 

For At = 0.02 we integrated the equations of motion on P using (6.1) together with (6.4) and plotted 
reduced trajectories in P. Fig. 7 shows the fixed point and neighboring solutions as well as the energy 
plots for each trajectory. For the conserving algorithm the location of the fixed point [* "--(1.0001, 0) T is 
exact and is independent of At, hence we show only one plot. Also, note that this algorithm is not seen 
to have a limited stability region which decreases with At as does the mid-l~int rule on P. 

Fig. 8 shows the result of integrating the reduced equations of motion on P using (6.14). Again, the 
trajectories are independent of the time step so that we show only one plot. As with the formulation on 

............ i 

." "" "" . . . . . .  "" "~.. 4 

0.02 .'" " , . . .  

0]16 ! .00 I nO 0 O.S 1.0 1 .S 2.0 

). t 

Fig. 8. Phase trajectories and energy plots for the energy-momentum ~:onserving algorithm on ,~. Note that the trajectories are 
independent of ~ .  tO)  denotes the initial condition. 
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P, the fixed point [*--~(1,0001,0) T of the reduced dynamics is exactly preserved and does not have a 
limited stability region. Note that the trajectories in this case are identical to those in Fig. 7 which were 
obtained using the formulation on P. 

8. Numerical accuracy comparisons 

In this section we perform some numerical experiments to compare the relative accuracy of the 
symplectic mid-point rule and the energy-momentum conserving scheme. As we saw in the previous 
section the symplectic mid-point rule can have stability problems for stiff Hamiltonian systems with 
symmetry. However, for moderately small time steps where the mid-point rule actually performs well, 
the question arises as to how the relative accuracy of the conserving scheme compares with that of the 
mid-point rule. Also, it is of interest to know how conserving schemes compare with the mid-point rule 
for non-stiff problems. In view of these questions we perform our numerical experiments with the 
central force problem using three different potentials: the classical Kepler potential (non-stiff), a 
non-linear spring potential with low stiffness, and a non-linear spring potential with high stiffness (as 
considered in the previous section). 

8. I. Classical Kepler potential 

In this section we present a numerical accuracy comparison between the symplectic mid-point rule 
and the conserving scheme (both formulated on the original phase space) for the conservative central 
force problem with the classical Kepler potential. Specifically, we consider a particle of unit mass under 
the influence of a central force field with potential V : R+ --* R of the form 

V(A) = - k / a .  (8.1) 

We take k = 100 and use the initial conditions qo = (0.9/V'2, 0, 0 .9/V~)  and Po = (0, - 1 0 0 / 9 ,  0). For 
the accuracy comparison we will consider the time interval [0, T] with T = 4.40 and will consider the 
relative displacement and momentum errors at time t = 7". For reference, Fig. 9 shows the trajectory 
from ~he above initial condition for the time interval [0, T] computed using the mid-point rule with a 
relatively small time step {similar results obtained with the conserving scheme)• 

For the accuracy comparison we computed the solution in the time interval [0, T] for various time 
steps and plotted the relative displacement error Eq(T)=Iq , , , (T ) -qc (T)J / lqc (T)J  versus At where 
qc(T) are the converged displacements at time t = T computed with At = 10 -6. Results for the relative 
momentum error Ep(T)=  [pa , (T)-p~(T)  I/]p,.(T)J were computed and plotted in a similar manner. 
Fig. 10 shows the results for the Kepler potential. 

For this example we see that the conserving scheme has substantially smaller displacement and 
momentum errors as compared to the symplectic mid-point rule. 

0.51 ~ ! 4).0 o.s 
-O.S 

-I 

- % ~ - o °  
Fig. 9. Numerical trajectory for central force problem with the classical Kei~er potential. 
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Fig. 10. Relative displacement error Eq(T) and relative momentum error Ep(T) versus time step At for the central force problem 
with the Kepler potential. 

8.2. Non-s t i f f  non-linear spring potential  

To determine the effect of the force potential on the relative performance of the conserving and 
mid-point schemes we next consider an example in which the potential is positive-definite (i.e. 
V"(A) > 0) along the motion. This is in contrast to the Kepler potential which is negative-definite along 
motions. In particular, we consider the central force problem with potential V: R+--* R of the form 

v ( ~ )  = ½k(A ~ - I y .  (8.2)  

We ta!:e k = 1000 and use the initial conditions q0 = (0.8/ 'v~,  0, 0.8/V~) and P0 = (0, - 100 /8 ,  0). For 
the accuracy comparison we will consider the time interval [0, T] with T = 0.63 and will again consider 
the relative displacement and momentum errors at time t = T. For reference, Fig. 11 shows the 
trajectory from the above initial condition for the time interval [0, T] computed using the mid-point 
rule with a relatively small time step (similar results obtained with the conserving scheme). 

Fig. 12 shows show the results of the accuracy comparison. For this example we see that both 
schemes exhibit nearly identical displacement errors. With regard to momentum errors, the mid-point 
rule has a slightly smaller error for a wide range of time steps. However, for small time steps it appears 
that the opposite may be true. In general, the results show that both schemes have comparable accuracy 
characteristics for the problem considered. Comparing these results with those for the Kepler potential 
it is clear that the relative performance of these schemes is problem dependent. 

x 0 0 j ~ ' ~ - ~ . . ~  -O~S " 

*0.8 -o.Q .o.4 -o2 0 0 2  0.4 o. I  0.8 

Fig. I I. Numerical trajectory for central force problem with the non-stiff non-linear spring potential. 
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Fig. 12. Relative displacement error Eq(T) and relative momentum error Ep(T) versus time step At for the central force problem 
with the non-stiff nonlinear spring potential. 

8.3. St i f f  non-linear spring potential 

We next consider an example of a stiff system such as that considered in our earlier stability analyses. 
In particular, we consider a system with a non-linear spring potential V of the same form as before with 
stiffness constant k = l0 s ~,nd use the same initial conditions q0 = (0.8/~,~,  0, 0 . 8 / V ~ )  and P0 -- (0, - 
100/8,  0). For the accuracy comparison we again consider the time Jnie.rval [0, T] with T =  0.63 and 
consider the relative displacement and momentum errors at time t = 7". For reference, Fig. !'~ shows the 
trajectory from the above initial condition for the time interval [0, T] computed using the mid-point 
rule with a relatively small time step (similar results obtained with the conserving scheme). Fig. 14 
shows the results of the accuracy comparison. 

As we saw earlier [lie symplectic mid-point rule has stability problems for stiff systems with 
symmetry. However, the numerical results show that for small time steps the mid-point rule and 
conserving scheme are nearly indistinguishable from the viewpoint of accuracy. These results suggest 
that ,  at the expense of added complexity, the conserving scheme possesses bet ter  stability properties 
than the mid-point rule without a compromise in accuracy, at least for the problems considered herein. 
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Fig. 13. Numerical trajectory for central force problem with the stiff non-linear spring potential. 
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Fig. 14. Relative displacement error Eq(T) and relative momentum error E,(T) versus time step At for the central force problem 
with the stiff non-linear spring potential. 

9. Concluding remarks 

Within the context of a simple model problem, we have analyzed the stability of the symplectic 
mid-point rule and an energy-momentum algorithm. We saw that the mid-point rule formulated on the 
canonical phase P possessed an algorithmic relative equilibria which depended on the time step and 
which was only conditionally stable. Also, we have shown by example that the stability region for a 
'stable' relative equilibria can decrease dramatically as the time step is increased so that it is practically 
unstable for time steps substantially below critical. In contrast, the mid-point rule formulated on the 
reduced space/3 exactly preserved the relative equilibria of the original system up to group motions. In 
this setting (i.e. in the absence of group motions) the mid-point rule was shown to possess a fixed point 
which was unconditionally linearly stable. 

As an alternative to the symplcctic mid-point rule we introduced an energy-momentum conserving 
algorithm. We saw that the energy-momentum algorithm formulated on the canonical phase space P 
had an algorithmic relative equilibria which was independent of the time step, exact up to group 
motions, and unconditionally linearly stable. Similar results were shown for a conserving algorithm 
formulated directly on the reduced space. 

Our stability analysis confirms a well-observed fact: the symplectic mid-point rule can experience 
stability problems for stiff systems with symmetry if the time step is not small. Regarding accuracy, our 
numerical results show that for small time steps the mid-point rule and conserving scheme are nearly 
indistinguishable. These results suggest that, at the expense of added complexity, the conserving 
scheme possesses better stability properties than the mid-point rule without a compromise in accuracy, 
at least for the simple model problems considered in this paper. 
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