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ON THE STOCHASTIC MODELING OF RIGID BODY SYSTEMS
WITH APPLICATION TO POLYMER DYNAMICS∗

J. WALTER† , O. GONZALEZ‡ , AND J. H. MADDOCKS†

Abstract. The stochastic equations of motion for a system of interacting rigid bodies in a
solvent are formulated and studied. Three-dimensional bodies of arbitrary shape, with arbitrary
couplings between translational and rotational degrees of freedom, as arise in coarse-grained models
of polymers, are considered. Beginning from an Euler–Langevin form of the equations, two different,
properly invariant, Hamilton–Langevin forms are derived and studied together with various associ-
ated measures. Under different conditions depending on the choice of rotational coordinates, the
canonical measure is shown to be a stationary solution of an associated Fokker–Planck equation
and to always factorize into independent measures on configuration and velocity spaces. Explicit
expressions are given for these measures, along with a certain Jacobian factor associated with the
three-dimensional rotation group. When specialized to a fully coupled, quadratic model of a stiff
polymer such as DNA, our results yield an explicit characterization of the complete set of model
parameters.
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1. Introduction. The mechanical properties of polymers in a solvent can be
studied through the use of various types of models, for example, detailed atomistic-
type models, coarse-grained chain-type models built from bead or link elements, and
continuous rod-type models based on the classic theory of elasticity [5, 11, 13, 14,
21, 33, 38, 43, 47, 54]. These types of models resolve polymer properties to different
levels of detail, possess different practical limitations, and together provide a means
to explore properties at different scales. At short length scales where local structural
features are important, atomistic-type models are typically appropriate, and a solvent
is usually included explicitly in the model. At long length scales where local features
average out, homogeneous chain- or rod-type models are typically appropriate, and a
solvent is usually included implicitly through viscous and stochastic loads. Resolving
polymer properties at intermediate scales, for example, the biologically important
scale of tens to hundreds of basepairs in the case of DNA, poses special problems.
Such scales are prohibitively expensive for detailed atomistic-type models, yet often
involve important local features that are below the resolution of the homogeneous
models typical in polymer physics.

A class of models that are particularly well suited for intermediate scales are those
based on interacting, three-dimensional rigid bodies. Compared to detailed atomistic
models, rigid body models are coarse-grained and consequently simpler to parame-
terize, simulate, and understand. Compared to homogeneous chain-type models built
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from bead or link elements, rigid body models are more detailed and consequently
better adapted to represent local features. Whereas the beads or links in a chain-type
model are typically meant to correspond to segments of polymer consisting of several
monomers, the bodies in a rigid body model are meant to correspond to individual
monomer units, such as bases or basepairs in the case of DNA. Moreover, while
interactions between beads and links in a chain-type model represent average interac-
tions over several monomers, interactions between bodies in a rigid body model can
represent local molecular interactions between specific monomer units. In the case
of DNA, rigid body models offer a promising approach to understand various local
structural features, such as sequence-dependent curvature and deformability, as have
been investigated by various authors [6, 9, 20, 42, 46, 48]. The continuum limit of rigid
body models lead naturally to inhomogeneous rod models of the Kirchhoff or Cosserat
types, whose mathematical properties are well understood [1] and whose minimum
energy configurations have been successfully used in various recent investigations of
DNA [15, 35, 52, 53].

In this article, we outline a stochastic rigid body model for a polymer in a solvent
and study its mathematical properties. We consider a system of multiple, interacting,
three-dimensional rigid bodies of arbitrary shape, with arbitrary couplings between
their translational and rotational degrees of freedom, immersed in a solvent which is
modeled implicitly through viscous and stochastic loads. We begin with an Euler–
Langevin model of a single rigid body and use the rules of stochastic calculus to
derive different forms of the equations of motion. We show that the equations can
be phrased in both canonical and noncanonical Hamilton–Langevin forms and show
that each form is natural in the sense that each is invariant under an arbitrary change
of configuration variables. A unique feature of our treatment is that translational
and rotational degrees of freedom are fully coupled not only through the viscous and
stochastic loads but also through a potential defined on the space of translations and
rotations. Whereas coupling among all degrees of freedom is a natural and well-
studied case in the modeling of point masses [7, 23, 27], it has received little attention
in the modeling of rigid bodies, where motions have traditionally been modeled in the
absence of a potential defined on the three-dimensional rotation group [34, 39].

We study the classic canonical measure for our stochastic rigid body model and
examine the implications of different choices of rotational coordinate charts. For con-
creteness, we focus attention on two standard types: Euler angle charts, for which the
coordinate domain is bounded and some coordinates are cyclic in an appropriate sense
(see section 3), and Cayley charts, for which the coordinate domain is unbounded and
all coordinates are acyclic. We outline a form of the celebrated fluctuation-dissipation
theorem [29], which provides conditions under which the canonical measure is station-
ary under the flow of the canonical Hamilton–Langevin equations, or equivalently is
a steady-state solution of the associated Fokker–Planck equation [18, 31, 45, 49], and
show that the conditions which guarantee stationarity impose different restrictions
on the translational and rotational components of the potential energy. Whereas a
growth condition is necessary in the translational coordinates, it is not necessary in
the rotational ones, even if the rotational coordinate domain is unbounded. Moreover,
whereas periodicity conditions are necessary when the rotational coordinate domain
is bounded, they are not necessary when the domain is unbounded. Implications of
these conditions in the modeling of bodies with unrestrained and strongly restrained
rotational degrees of freedom are discussed.

Furthermore, we study the factorability of the canonical measure, which property
is crucial in various applications. Due to the nonseparability of the rigid body Ham-
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iltonian in canonical variables, the canonical measure does not explicitly factor into
independent measures over the configuration and conjugate momenta spaces. How-
ever, we show that, by a simple change of variables on the momenta, the measure can
always be explicitly factored into certain independent, canonical measures over the
body configuration and velocity spaces, the product of which is stationary under the
flow of the noncanonical Hamilton–Langevin equations. The exact, explicit canonical
configuration measure derived here contains a Jacobian factor associated with the
three-dimensional rotation group. We show that this factor has an elegant geometri-
cal interpretation as the determinant of a velocity structure matrix. Moreover, just
as with the canonical measure on phase space, we show that the derived measure
on configuration space is invariant under an arbitrary transformation of this space,
which implies that the canonical configuration measure is intrinsic to the system. This
invariance property depends crucially on the Jacobian factor.

We then extend our results from a single body to an arbitrary system of interacting
rigid bodies. We describe how all results pertaining to the Hamiltonian form of the
equations of motion and the associated canonical measures on phase, configuration,
and velocity space carry over to systems. As an example application, we specialize our
results to a rigid body model of a topologically linear polymer. We consider the case in
which the potential energy of the system is a general quadratic function of a natural
set of internal coordinates describing the relative, three-dimensional displacements
and rotations between bodies. We outline the internal coordinates for the system
and derive explicit forms for the associated canonical measures on the various spaces.
Furthermore, we derive relations which characterize the complete set of potential
energy and mass parameters of the model in terms of the expected or average values
of certain state functions, or ratios thereof. Although the potential energy is quadratic,
the canonical configuration measure is non-Gaussian due to a Jacobian factor. Thus
our characterization relations can be viewed as generalizations of the usual Gaussian
relations and provide a tool for parameter estimation from stationary time series and
other types of data.

The presentation is organized as follows. In section 2, we outline a basic Euler–
Langevin model for a rigid body in a solvent. In section 3, we derive various Hamilton–
Langevin formulations of the model and establish important invariance properties.
In section 4, we introduce the associated canonical measure for the model, study
conditions which guarantee that it is stationary, factorize it into independent measures
on the configuration and velocity spaces, and show that each measure is invariant in
accordance with the invariance of the Hamilton–Langevin equations. In section 5, we
extend our results to a system of rigid bodies with arbitrary interactions. In section 6,
we specialize our results to a quadratic model of a topologically linear polymer and
characterize the complete set of model parameters. In section 7, we summarize our
results and conclusions.

2. Stochastic rigid body model. Here we outline our basic model for a rigid
body subject to viscous, conservative, and stochastic loads. We do not attempt to
justify these equations from a more refined theory. Instead, we simply postulate
them and study the consequences. The model outlined here can be viewed as a
generalization to a rigid body of the classic Langevin model for a particle in a potential
field. For treatments of the particle case see [8, 18, 23, 45], and for general background
on rigid body mechanics see [3, 19, 26].

2.1. Basic kinematics, balance laws. We consider an arbitrary rigid body
whose configuration is defined by a vector r0 and an orthonormal frame {di} (i =
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1, 2, 3). The vector r0 describes the position of the center of mass, whereas the frame
{di} is fixed in the body and describes its orientation relative to a frame {ei} fixed
in space. The kinematics of the body are encapsulated in the relations

(2.1) ṙ0 = v0, ḋi = ω × di,

where v0 is the velocity of the center of mass, ω is the angular velocity of the body
frame, an overdot denotes a derivative with respect to time, and × denotes the stan-
dard vector product. The linear momentum p and angular momentum π0 of the body
about its center of mass are defined by

(2.2) p = mv0, π0 = Iω,

where m is the total mass and I is the symmetric, positive-definite rotational inertia
tensor with respect to the center of mass, which in general is configuration, and
therefore time, dependent. When the body is acted upon by a system of loads with
resultant force f and resultant torque τ0 about the center of mass, the balance laws
for linear and angular momenta take the simple form

(2.3) ṗ = f , π̇0 = τ0.

2.2. General kinematics, balance laws. In some applications, it is desirable
to refer the angular momentum of the body and the resultant loads to a general,
body-fixed reference point r rather than the center of mass r0, whose location in the
body may not be known explicitly. Thus, let r = r0 − c, where c is a vector that
is fixed in the body. Substituting this relation into (2.1) and noting that ċ = ω × c
because c is fixed in the body, we find that the kinematical relations take the form

(2.4) ṙ = v, ḋi = ω × di,

where v = v0 − ω × c. Notice that v is the velocity of the reference point and that
the linear momentum in (2.2) becomes p = m(v + ω × c). Moreover, let π and τ
denote the angular momentum and resultant torque about the reference point, which
are defined as

(2.5) π = π0 + c× p, τ = τ0 + c× f .

Substituting (2.5) into (2.3) and again using the fact that ċ = ω× c, we find that the
balance laws of linear and angular momenta take the form

(2.6) ṗ = f , π̇ = (ω × c)× p+ τ .

2.3. Resultant loads. We suppose that the resultant loads (f , τ ) can be de-
composed as

(2.7) f = f (v) + f (c) + f (s), τ = τ (v) + τ (c) + τ (s),

where (f (v), τ (v)) denote viscous loads, (f (c), τ (c)) denote conservative loads, and
(f (s), τ (s)) denote stochastic loads. Here all loads are referred to the reference point r.
We assume that the viscous loads have a general linear dependence on the linear and
angular velocities,

(2.8) f (v) = −γ1v − γ3ω, τ (v) = −γ2v − γ4ω,
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where γ1, . . . ,γ4 are given tensors which in general may depend on the configuration
of the body. We suppose that the conservative loads (f (c), τ (c)) satisfy, for all possible
motions of the body,

(2.9) f (c) · v + τ (c) · ω = −U̇ ,

where U is a prescribed potential energy function. Last, we assume that the stochastic
loads (f (s), τ (s)) are white-noise-type loads of the form

(2.10) f (s) = σ1Ẇ
lin + σ3Ẇ

ang, τ (s) = σ2Ẇ
lin + σ4Ẇ

ang,

where σ1, . . . ,σ4 are given tensors which in general may depend on the configura-
tion of the body and (W lin,W ang) denote standard, independent Wiener processes.
Following the standard abuse of notation, we represent these loads as derivatives of
Wiener processes (which do not exist in any classical sense) rather than in terms of
appropriate stochastic integrals.

Remarks 2.1.

1. The form of the viscous loads in (2.8) is consistent with a Stokesian hydrody-
namic model of the solvent and is a generalization to a rigid body of arbitrary
shape of the classic Stokes laws for the force and torque on a sphere. Detailed
discussions of this hydrodynamic model and the hydrodynamic resistance ten-
sors γ1, . . . ,γ4 can be found in [16, 22, 24, 28].

2. The definition of the conservative loads in (2.9) states that the rate of work
done by (f (c), τ (c)) in any motion is equal to the negative rate of change of
the potential energy U . This coordinate-free statement is a straightforward
generalization to a rigid body of the usual definition of potential loads on a
particle.

3. Just as in classic Langevin models, the form of the stochastic loads in (2.10)
is motivated by the form of the viscous loads in (2.8). As we will see,
when σ1, . . . ,σ4 are related to γ1, . . . ,γ4 through an appropriate fluctuation-
dissipation relation [29], the stochastic rigid body model will possess a sta-
tionary measure in certain canonical variables.

4. In general, the resultant loads (f , τ ) may also contain arbitrary, time-depen-
dent external loads (f (e), τ (e)). Throughout our developments we shall omit
explicit reference to such loads. This is done for simplicity alone; all our
results can be generalized in a straightforward way to include them.

2.4. Euler–Langevin equations, components. Substituting (2.7), (2.8), and
(2.10) into (2.6), combining the result with (2.4), and using the antisymmetry of the
vector product, we obtain the Euler–Langevin equations of motion

(2.11)

ṙ = v,

ḋi = ω × di,

ṗ = f (c) − γ1v − γ3ω + σ1Ẇ
lin + σ3Ẇ

ang,

π̇ = p× (c× ω) + τ (c) − γ2v − γ4ω + σ2Ẇ
lin + σ4Ẇ

ang,

where p = m(v + ω × c) and π = Iω + c× p. These are vector equations which are
defined independently of any choice of reference frame.

We next express (2.11) in terms of a convenient set of components in the frames
{di} and {ei}. Let Q ∈ SO3 ⊂ R

3×3 denote the component matrix of the body frame
{di} in the fixed frame {ei}, that is, Qij = ei · dj, where SO3 denotes the set of
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proper rotation matrices. Moreover, let r ∈ R
3, v ∈ R

3, γ1 ∈ R
3×3, and so on denote

the component vectors and matrices of all other quantities in the frame {di}, that is,
ri = di ·r, vi = di ·v, γij1 = di ·γ1dj, and so on. Then by straightforward calculation
we find that the equations in (2.11) become

(2.12)

ṙ = r × ω + v,

Q̇ = Q[ω×],

ṗ = p× ω + f (c) − γ1v − γ3ω + σ1Ẇ
lin + σ3Ẇ

ang,

π̇ = π × ω + p× (c× ω) + τ (c) − γ2v − γ4ω + σ2Ẇ
lin + σ4Ẇ

ang,

where p = m(v+ω× c), π = Iω+ c×p, and [ω×] ∈ R
3×3 denotes the skew-symmetric

matrix

(2.13) [ω×] =

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ .

By definition, this matrix has the property that [ω×]g = ω × g for all component
vectors g. Moreover, we have [ω×]ij = εikjωk, where εikj is the standard permuta-
tion symbol of vector analysis. Here and throughout we use the usual summation
convention on pairs of repeated indices. To derive (2.12) we made use of the identity
A(a× b) = Aa×Ab, which holds for any proper rotation matrix A ∈ SO3 and vectors
a, b ∈ R

3.
We interpret (2.12) as a system of stochastic differential equations in the sense of

Itô for the phase variables (r,Q, p, π) which evolve in the space R3×SO3×R
3×R

3. In
this system, the scalarm, the component vector c, and the component matrix I are all
assumed to be constant. The component matrices γ1, . . . , γ4 and σ1, . . . , σ4 and the
function U appearing in (2.8), (2.9), and (2.10) are all assumed to be functions of the
configuration variables (r,Q). Notice that, in terms of components, those equations
become

(2.14)

f (v) = −γ1v − γ3ω, τ (v) = −γ2v − γ4ω,

f (c) · v + τ (c) · ω = −U̇ ,
f (s) = σ1Ẇ

lin + σ3Ẇ
ang, τ (s) = σ2Ẇ

lin + σ4Ẇ
ang.

Remarks 2.2.

1. We assume that the component matrices γ1, . . . , γ4 and σ1, . . . , σ4 and the
function U are all smooth functions of the configuration variables (r,Q) ∈
R

3 × SO3. Moreover, when working in local coordinates for SO3, we will
assume that the coordinate chart as well as its associated inverse chart are
smooth. Furthermore, we will assume that all changes of variables as well as
their inverses are smooth. These assumptions are stronger than necessary,
but they allow for a clean presentation of our results.

2. Our choice to work with body-frame components in (2.12) is motivated by
the fact that, by definition, the inertia matrix I is constant in this frame,
which will simplify our developments. In many applications, the resistance
matrices γ1, . . . , γ4 are also constant in this frame [16, 22, 28]; however, we
make no assumption along these lines. In view of Propositions 3.7 and 3.9
below, there is no loss of generality in this choice of frame.

3. In general, for a system of stochastic equations with multiplicative noise as
in (2.12), there is a distinction between their Itô and Stratonovich interpre-
tations [41]. Here, however, it can be shown that this distinction vanishes
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due to the fact that the noise terms appear only in the momentum equations
and that they have coefficients that depend only on the configuration vari-
ables. In contrast, it can be shown that the distinction becomes relevant in
the high-friction limit of (2.12).

4. An important property of the formulation in (2.12) is the allowed coupling
between translational and rotational motions. If this coupling is assumed
to vanish, then translational and rotational motions can be studied indepen-
dently. The equations for translational motion in the decoupled case (which
are most naturally expressed using components in a fixed frame) reduce to
that of a particle and are covered by the classic theory [8, 18, 45]. The equa-
tions for rotational motion are less well studied; various results for different
models can be found in [34, 39].

5. Existence and uniqueness of solutions to general systems of stochastic differ-
ential equations are guaranteed by classic theory when the coefficient func-
tions satisfy suitable Lipschitz and growth conditions [2, 17]. While a detailed
analysis of such issues for (2.12) is beyond the scope of this article, we remark
that various results have been established for related systems under various
different assumptions [25, 36, 37, 50]. Throughout we shall assume that, for
any given initial condition, the system in (2.12) has a unique solution defined
for all positive time.

3. Hamiltonian formulations. Here we discuss local coordinates for SO3 and
use the change of variables formula of Itô [41] to show that the equations of motion
in (2.12) can be put into both canonical and noncanonical Hamiltonian–Langevin
forms. Moreover, we show that these forms are invariant under an arbitrary change of
configuration variables. Similar results for particle systems can be found in [7, 23, 27].

3.1. Local coordinates for SO3. Consider an arbitrary coordinate chart Q =
Q(η) : A → R, with inverse η = η(Q) : R → A, where A ⊂ R

3 and R ⊂ SO3 are
open subsets. Given any such chart, we consider an associated matrix S = S(η) :
A → R

3×3, which we call the angular velocity structure matrix, defined by

(3.1) Smj =
1

2
εimkQli

∂Qlk
∂ηj

=
1

2
εimk

[
QT

∂Q

∂ηj

]
ik

.

Consistent with the invertibility of the chart, we assume that S ∈ R
3×3 is invertible for

all η ∈ A. Indeed, as shown below, differential three-volume elements in R and A are
related as dQ = gdη, where g = 23/2|S| is the associated Jacobian determinant factor.
For simplicity, we assume that R has full measure in SO3, which will allow us to
state all results in terms of a single chart rather than an atlas of overlapping charts.
Without loss of generality, we assume that A is the Cartesian product of possibly
unbounded open intervals Ai, where each coordinate ηi is either regular or singular in
the sense that |S| �= 0 or |S| = 0 on ∂Ai (points at infinity included). Furthermore,
we assume that the local representation of any function on SO3 is periodic in the
regular coordinates. For convenience, we will use the more descriptive terms cyclic
and acyclic in place of regular and singular, respectively, and will assume that any
cyclic coordinates are bounded.

Various different standard coordinate charts satisfy the above assumptions. All
the various different Euler angle charts [26] provide one family of examples, each
of which has a bounded coordinate domain A ⊂ R

3 and one acyclic and two cyclic
coordinates. The Cayley (also referred to as Euler–Rodrigues or Gibbs) chart [26] and
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its variations provide another family of examples, each of which has an unbounded
coordinate domain A = R

3 and three acyclic coordinates, with coordinates at infinity
representing rotations through π-radians. Charts based on Euler coordinates would be
natural for the modeling of bodies with unrestrained rotational degrees of freedom,
whereas charts based on Cayley coordinates would be natural for the modeling of
bodies with strongly restrained rotational degrees of freedom, for example, bodies
whose relative rotations about any axis are inherently restricted to be through an
angle less than π.

Our first result, which involves only deterministic calculus on SO3, establishes
an important connection between the structure matrix S and the derivatives of Q,
a certain commutation identity for the derivatives of S, and a relation between the
volume elements dQ and dη.

Proposition 3.1. The structure matrix S and volume elements dQ and dη
satisfy

(i) d
dαQ(η + αa)

∣∣
α=0

= Q[(Sa)×] or
∂Qij
∂ηk

ak = Qin[(Sa)×]nj for all a ∈ R
3,

(ii)
∂Smj
∂ηr

− ∂Smr
∂ηj

= 1
2εimk

(
SkjSir − SkrSij

)
,

(iii) dQ = 23/2|S| dη.
Proof. To establish (i) let a be arbitrary and consider the curve Q(η+αa) ∈ SO3

defined for all α ∈ R sufficiently small. Differentiating the orthogonality relation
QTQ = Id with respect to α at α = 0, where Id ∈ R

3×3 denotes the identity matrix,
we get [Q′]TQ+QTQ′ = 0, which implies

(3.2) QTQ′ = −[QTQ′]T .

By the definition of S in (3.1) and the chain rule, we have

(3.3) Smjaj =
1
2εimkQli

∂Qlk
∂ηj

aj =
1
2εimkQliQ

′
lk = 1

2εimk[Q
TQ′]ik.

Multiplying the above result by εpmq, summing over m, and using the well-known
tensor analysis identity εpmqεimk = δpiδqk − δpkδqi, where δij is the Kronecker delta
symbol, we get

(3.4) εpmqSmjaj =
1
2 (δpiδqk − δpkδqi)[Q

TQ′]ik = 1
2 ([Q

TQ′]pq − [QTQ′]qp).

Using (2.13), we can express the above result in the matrix form

(3.5) [(Sa)×] = 1
2 (Q

TQ′ − [QTQ′]T ) = QTQ′,

where the last equality follows from (3.2). Multiplying both sides by Q yields the
desired result.

To establish (ii) we differentiate the relation in (3.1) with respect to ηr and obtain

(3.6)
∂Smj
∂ηr

=
1

2
εimk

[
∂QT

∂ηr

∂Q

∂ηj

]
ik

+
1

2
εimk

[
QT

∂2Q

∂ηj∂ηr

]
ik

.

Using the orthogonality of Q, we can rewrite the first term in brackets on the right-
hand side of the above equation as

(3.7)

[
∂QT

∂ηr

∂Q

∂ηj

]
ik

=

[(
QT

∂Q

∂ηr

)T (
QT

∂Q

∂ηj

)]
ik

=

[
QT

∂Q

∂ηr

]
li

[
QT

∂Q

∂ηj

]
lk

.
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Moreover, from (2.13) and part (i) with a = ej , where ej ∈ R
3 denotes the jth

standard unit vector, we have

(3.8)

[
QT

∂Q

∂ηj

]
pq

= εpmqSmj .

Using (3.8) in (3.7) and substituting the result into (3.6), we get

(3.9)
∂Smj
∂ηr

=
1

2
εimkεlniεlpkSnrSpj +

1

2
εimk

[
QT

∂2Q

∂ηj∂ηr

]
ik

.

Furthermore, using the identity εlniεlpk = δnpδik − δnkδip, together with the fact that
εimkδik = 0, we obtain

(3.10)
∂Smj
∂ηr

= −1

2
εimkSkrSij +

1

2
εimk

[
QT

∂2Q

∂ηj∂ηr

]
ik

,

and interchanging the indices j and r we find

(3.11)
∂Smr
∂ηj

= −1

2
εimkSkjSir +

1

2
εimk

[
QT

∂2Q

∂ηr∂ηj

]
ik

.

The desired result now follows by subtracting (3.11) from (3.10) and noting that the
second-order mixed partial derivatives of Q are equal.

To establish (iii) we consider SO3 as a manifold in R
3×3 = R

9 parameterized by
a chart Q(η) with Jacobian matrix DQ(η) ∈ R

9×3. In terms of a chart, the intrinsic
three-volume of any open subset O ⊂ R with preimage Q−1(O) ⊂ A is given by [40, 51]

(3.12) vol(O) =

∫
O

dQ =

∫
Q−1(O)

g dη, g =
√
|DQTDQ|.

The matrix DQTDQ ∈ R
3×3 can be expressed in terms of S. Indeed, using the

orthogonality of Q, part (i) with a = ek and a = el, and the definition of the skew-
symmetric matrix in (2.13), we have

[DQTDQ]kl =
∂Qij
∂ηk

∂Qij
∂ηl

= Qnr
∂Qnj
∂ηk

Qmr
∂Qmj
∂ηl

=

[
QT

∂Q

∂ηk

]
rj

[
QT

∂Q

∂ηl

]
rj

=
[
(Sek)×

]
rj

[
(Sel)×

]
rj

= 2(Sek) · (Sel) = 2[STS]kl.

(3.13)

From this we deduce that DQTDQ = 2STS, and the result follows.
The next result shows that if (r,Q, p, π)(t) is any process satisfying the equa-

tions in (2.12), then the process η(t) satisfies a particularly simple equation with no
diffusion.

Proposition 3.2. Let (r,Q, p, π)(t) be any process satisfying the equations in
(2.12). Then the process η(t) satisfies the equation

(3.14) η̇ = S−1ω,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC MODELING OF RIGID BODY SYSTEMS 1027

where S = S(η) is the associated angular velocity structure matrix and ω = I−1(π −
c× p) is the body angular velocity.

Proof. The fact that Q(t) is an Itô process implies that η(t) = η(Q(t)) is also an
Itô process, which in general can be characterized by an equation of the form

(3.15) dη = A(η, t)dt +B(η, t)dW

for some coefficient functions A(η, t) ∈ R
3 and B(η, t) ∈ R

3×3, where W (t) ∈ R
3

denotes a standard Wiener process and d denotes a differential increment. To deter-
mine A(η, t) and B(η, t), let η(t) satisfy (3.15) and consider Q(η(t)). Then, by Itô’s
formula, we have

(3.16) d[Q(η)]ij =
∂Qij
∂ηk

dηk +
1

2

∂2Qij
∂ηk∂ηl

dηkdηl.

Substituting (3.15) into (3.16) and omitting the arguments of A and B for clarity, we
get

(3.17)
d[Q(η)]ij =

∂Qij
∂ηk

[
Akdt+BkndWn

]
+

1

2

∂2Qij
∂ηk∂ηl

[
Akdt+BkndWn

][
Aldt+BlmdWm

]
.

Using the stochastic calculus rules dtdt = 0, dtdWi = 0, and dWidWj = δij dt, we
obtain

(3.18) d[Q(η)]ij =

[
∂Qij
∂ηk

Ak +
1

2

∂2Qij
∂ηk∂ηl

BknBln

]
dt+

∂Qij
∂ηk

BkndWn.

Alternatively, from (2.12) we have

(3.19) dQij = Qip[ω×]pj dt.

Comparing (3.19) and (3.18) we deduce that the diffusion term in (3.18) must vanish.
By Proposition 3.1(i), this term can be written in the form

(3.20)
∂Qij
∂ηk

BkndWn = Qip[(SBdW )×]pj .

Since Q is invertible, the diffusion term vanishes if and only if [(SBdW )×] vanishes.
Moreover, since S is invertible, [(SBdW )×] vanishes if and only if BdW vanishes.
Thus we conclude that B must vanish. Setting B = 0 in (3.15) and (3.18) and
combining the resulting equations, we find

(3.21) d[Q(η)]ij =
∂Qij
∂ηk

dηk = Qip[(Sdη)×]pj ,

where the last equality follows from Proposition 3.1(i). From (3.21), (3.19), and (2.13)
we then deduce that

(3.22) Sdη = ωdt,

which yields the desired result.
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3.2. Velocity structure matrix, kinetic energy, momenta. Consider the
configuration variables (r, η), where η are any local coordinates for SO3. From (2.12)1
and (3.14) we find that the velocity components (v, ω) can be expressed as a function
of (r, η, ṙ, η̇), that is,

(3.23)

(
v
ω

)
=

(
ṙ − r × ω

Sη̇

)
= G

(
ṙ
η̇

)
,

where G = G(r, η) ∈ R
6×6 is an invertible matrix depending on the choice of coordi-

nates for SO3, namely

(3.24) G =

(
Id −[r×]S

0 S

)
, G−1 =

(
Id [r×]

0 S−1

)
.

Here and in the following, Id denotes the identity matrix whose dimension is set by
the context. Notice that the invertibility of G may not be uniform since the deter-
minant |G| = |S| vanishes at the limiting boundary values of any acyclic rotational
coordinates. We will refer to G as the velocity structure matrix associated with the
configuration variables (r, η); it will play an important role throughout our develop-
ments.

The kinetic energy of the body is a function Φ(v, ω) defined by

(3.25) Φ(v, ω) = 1
2 (v + ω × c) ·m(v + ω × c) + 1

2ω · Iω,

where v + ω × c is the velocity of the center of mass. By expanding the first term on
the right-hand side of (3.25), we find that Φ(v, ω) can be written in the convenient
form

(3.26) Φ(v, ω) =
1

2

(
v
ω

)
·M

(
v
ω

)
,

where M ∈ R
6×6 is a constant, symmetric, positive-definite generalized mass matrix

given, along with its inverse, by

(3.27)

M =

(
mId m[c×]T

m[c×] I +m[c×][c×]T

)
,

M−1 =

(
m−1Id + [c×]I−1[c×]T [c×]I−1

I−1[c×]T I−1

)
.

The equations of motion can be formulated in terms of different momentum vari-
ables [19, 26]. In their most basic form as in (2.12), they are formulated in terms of
(p, π), which are given by

(3.28)

(
p
π

)
=

(
m(v + ω × c)
c× p+ Iω

)
=M

(
v
ω

)
.

Alternatively, the equations of motion can be put into a certain canonical form by
introducing momentum variables (ψ, ζ) associated with (r, η), namely

(3.29) ψ =
∂T

∂ṙ
, ζ =

∂T

∂η̇
,
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where T is the kinetic energy of the body expressed as a function of (r, η, ṙ, η̇). Specif-
ically, using (3.26) and (3.23), we have

(3.30) T (r, η, ṙ, η̇) = Φ(v, ω)
∣∣∣
v=v(r,η,ṙ,η̇)
ω=ω(r,η,ṙ,η̇)

=
1

2

(
ṙ
η̇

)
·GTMG

(
ṙ
η̇

)
.

The variables (ψ, ζ) are called the canonical or conjugate momenta associated with
(r, η). From (3.29) and (3.30) we deduce that

(3.31)

(
ψ
ζ

)
= GTMG

(
ṙ
η̇

)
.

Various relations between (v, ω), (p, π), and (ψ, ζ) can be deduced from (3.23),
(3.28), and (3.31). The relations that will be most useful for our developments are

(3.32)

(
v
ω

)
=M−1

(
p
π

)
,

(
v
ω

)
=M−1G−T

(
ψ
ζ

)
,(

ψ
ζ

)
= GT

(
p
π

)
.

Carrying out the matrix products in each of the three relations in (3.32), we find

(3.33)

v = m−1p+ c× ω, ω = I−1
(
π − c× p

)
,

v = m−1ψ + c× ω, ω = I−1
(
S−T ζ − (r + c)× ψ

)
,

ψ = p, ζ = ST
(
π + r × p

)
.

In reformulating the equations of motion it will be useful to express the kinetic
energy in terms of different sets of variables. In terms of the noncanonical variables
(r, η, p, π) we have

(3.34) Υ (r, η, p, π) = Φ(v, ω)
∣∣∣
v=v(r,η,p,π)
ω=ω(r,η,p,π)

=
1

2

(
p
π

)
·M−1

(
p
π

)
.

Here we consider (v, ω) as functions of (r, η, p, π) via the first equation in (3.32), or
equivalently the first pair of equations in (3.33). Similarly, in terms of the canonical
variables (r, η, ψ, ζ) we have

(3.35) Ψ(r, η, ψ, ζ) = Φ(v, ω)
∣∣∣
v=v(r,η,ψ,ζ)
ω=ω(r,η,ψ,ζ)

=
1

2

(
ψ
ζ

)
·G−1M−1G−T

(
ψ
ζ

)
.

Here we consider (v, ω) as functions of (r, η, ψ, ζ) via the second equation in (3.32),
or equivalently the second pair of equations in (3.33).

The following result provides explicit expressions for the partial derivatives of Υ
and Ψ , which will be useful in establishing various Hamiltonian formulations of (2.12).

Proposition 3.3. Let Υ (r, η, p, π) and Ψ(r, η, ψ, ζ) be the functions defined in
(3.34) and (3.35). Then

(3.36)

∂Υ

∂p
= v,

∂Υ

∂π
= ω,

∂Υ

∂r
= 0,

∂Υ

∂η
= 0,

∂Ψ

∂ψ
= r × ω + v,

∂Ψ

∂ζ
= S−1ω,

∂Ψ

∂r
= −p× ω,

∂Ψ

∂ηl
= −∂Sml

∂ηj

[
S−1ω

]
j

[
π + r × p

]
m
−
[
ST

(
π × ω + (r × p)× ω

)]
l
.
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Proof. All of the partials of Υ , and those of Ψ with respect to ψ, ζ, and r, follow
from straightforward applications of the chain rule. To establish the result for Ψ with
respect to η, we use (3.35) and the second pair of relations in (3.33) to write

(3.37)
∂Ψ

∂ηl
=

(
∂Φ

∂vk

∂vk
∂ωi

+
∂Φ

∂ωi

)
∂ωi
∂ηl

=

[(
∂v

∂ω

)T
∂Φ

∂v
+
∂Φ

∂ω

]
i

[
∂ω

∂ηl

]
i

.

From the second pair of relations in (3.33) we find ∂v/∂ω = [c×] and ∂ω/∂ηl =
I−1( ∂

∂ηl
S−1)T ζ, and from (3.26) and (3.28) we find ∂Φ/∂v = p and ∂Φ/∂ω = π.

Substituting these results into (3.37) we get

(3.38)
∂Ψ

∂ηl
=
[
π − c× p

]
i

[
∂ω

∂ηl

]
i

=
[
Iω

]
i

[
I−1

(
∂

∂ηl
S−1

)T
ζ

]
i

,

where the last equality follows upon substituting for π − c× p from (3.33).
Using the fact that (A−1)′ = −A−1A′A−1 for any invertible matrix A(α), α ∈ R,

we get

(3.39)
∂Ψ

∂ηl
= −

[
Iω

]
i

[
I−1S−T

(
∂S

∂ηl

)T
S−T ζ

]
i

.

Writing the above relation as a dot product and using properties of the matrix trans-
pose and the symmetry of I, we obtain

(3.40)
∂Ψ

∂ηl
= −Iω · I−1S−T

(
∂S

∂ηl

)T
S−T ζ = − ∂S

∂ηl
S−1ω · S−T ζ.

Using components, we can write the above relation in the form

(3.41)
∂Ψ

∂ηl
= −∂Smj

∂ηl

[
S−1ω

]
j

[
S−T ζ

]
m
.

Substituting for ∂Smj/∂ηl from Proposition 3.1(ii) and using the notation b = S−T ζ
and properties of matrix multiplication, we get

(3.42)

∂Ψ
∂ηl

= −
(
∂Sml
∂ηj

+ 1
2εimkSkjSil − 1

2εimkSklSij

)[
S−1ω

]
j
bm

= −∂Sml
∂ηj

[
S−1ω

]
j
bm − 1

2εimkSilωkbm + 1
2εimkSklωibm

= −∂Sml
∂ηj

[
S−1ω

]
j
bm − 1

2Sil

[
b× ω

]
i
+ 1

2Skl

[
ω × b

]
k
,

where the last line follows from the representation of the vector product using (2.13).
Simplifying using the antisymmetry of the vector product and properties of matrix
multiplication, we obtain

(3.43)
∂Ψ

∂ηl
= −∂Sml

∂ηj

[
S−1ω

]
j
bm −

[
ST

(
b× ω

)]
l
.

By definition, we have b = S−T ζ, and from (3.33) we have S−T ζ = π + r × p.
Substituting these relations into (3.43) we get

(3.44)
∂Ψ

∂ηl
= −∂Sml

∂ηj

[
S−1ω

]
j

[
π + r × p

]
m
−
[
ST

(
π × ω + (r × p)× ω

)]
l
,

which is the desired result.
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3.3. Resultant loads. Here we establish some convenient expressions for the
components (f (v), τ (v)), (f (c), τ (c)), and (f (s), τ (s)) given in (2.14). Our first result
provides an explicit characterization of the conservative load components (f (c), τ (c))
in terms of the derivatives of the potential energy U with respect to the configuration
variables (r, η), where η are any local coordinates for SO3.

Proposition 3.4. For all possible processes (r, η)(t) consistent with (2.12) and
(3.14) let (f (c), τ (c)) satisfy

(3.45) f (c) · v + τ (c) · ω = −U̇ ,
where U = U(r, η) is a given potential energy function. Then

(3.46) f (c) = −∂U
∂r

, τ (c) = r × ∂U

∂r
− S−T ∂U

∂η
,

or in matrix form

(3.47)

(
f (c)

τ (c)

)
= −G−T

(
∂U
∂r

∂U
∂η

)
.

Proof. Applying Itô’s formula to the function U(r, η) and using the fact that
(2.12)1 and (3.14) for r and η contain no diffusion terms, we find

(3.48) d[U(r, η)] =
∂U

∂rk
drk +

∂U

∂ηk
dηk,

which, using matrix notation, implies

(3.49) U̇(r, η) =
∂U

∂r
· ṙ + ∂U

∂η
· η̇.

Substituting this result into (3.45) and using the relations v = ṙ+ω× r and ω = Sη̇,
the identity (x× y) · z = x · (y × z), and properties of the matrix transpose, we get

(3.50) f (c) · ṙ + ST
(
τ (c) + r × f (c)

) · η̇ = −∂U
∂r

· ṙ − ∂U

∂η
· η̇.

The desired result then follows from the arbitrariness of ṙ and η̇. For this last step,
notice that (3.45) is assumed to hold for all possible processes, and moreover, with
suitable time-dependent external loads, which can be determined using (2.12) and
(3.14), a process with any given values of ṙ and η̇ can be achieved.

We next consider the viscous and stochastic load components (f (v), τ (v)) and
(f (s), τ (s)). Let γ = γ(r, η) ∈ R

6×6, σ = σ(r, η) ∈ R
6×6, and W ∈ R

6 be given, in
block form, by

(3.51) γ =

(
γ1 γ3
γ2 γ4

)
, σ =

(
σ1 σ3
σ2 σ4

)
, W =

(
W lin

W ang

)
.

The proof of the following result is a straightforward consequence of (2.14) and Propo-
sition 3.3 and is omitted for brevity.

Proposition 3.5. The components (f (v), τ (v)) and (f (s), τ (s)) can be written in
the form

(3.52)

(
f (v)

τ (v)

)
= −γ

(
∂Υ
∂p

∂Υ
∂π

)
= −γG

(
∂Ψ
∂ψ

∂Ψ
∂ζ

)
,

(
f (s)

τ (s)

)
= σẆ .
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3.4. Canonical Hamilton–Langevin formulation. Consider the configura-
tion variables (r, η) with associated conjugate momenta variables (ψ, ζ) and the Ham-
iltonian function defined by

(3.53) H(r, η, ψ, ζ) = Ψ(r, η, ψ, ζ) + U(r, η),

where Ψ(r, η, ψ, ζ) and U(r, η) are the kinetic and potential energy functions. Let
J ∈ R

12×12, Γ = Γ (r, η) ∈ R
12×12, and Σ = Σ(r, η) ∈ R

12×6 be given, in block form,
by

(3.54) J =

(
0 Id

−Id 0

)
, Γ =

(
0 0
0 GT γG

)
, Σ =

(
0

GTσ

)
.

The next result shows that if (r, η, p, π)(t) is a process satisfying the equations in
(2.12) and (3.14), then the process (r, η, ψ, ζ)(t) satisfies a system of equations with
a canonical Hamiltonian structure.

Proposition 3.6. Let (r, η, p, π)(t) be any process satisfying the equations in
(2.12) and (3.14). Then the process (r, η, ψ, ζ)(t) satisfies the canonical Hamilton–
Langevin equations

(3.55) ẋ =
∂H

∂y
, ẏ = −∂H

∂x
−GTγG

∂H

∂y
+GTσẆ ,

where x = (r, η) ∈ R
6, y = (ψ, ζ) ∈ R

6, and H(x, y) = 1
2y · G−1M−1G−T y + U(x).

Equivalently, introducing z = (x, y) ∈ R
12, we have

(3.56) ż = (J − Γ )
∂H

∂z
+ΣẆ.

Proof. The result for x = (r, η) follows directly from (2.12)1, (3.14), and Proposi-
tion 3.3. To establish the result for y = (ψ, ζ), we notice first that ψ = p by the third
pair of equations in (3.33). Using (2.12)3 and Proposition 3.3, we get

(3.57) ψ̇ = −∂Ψ
∂r

+ f,

where f = f (v)+f (c)+f (s). Since ζ is a function of (r, η, p, π), (r, η) satisfy equations
with no diffusion terms, and ζ is linear in (p, π), we find that Itô’s formula reduces to
the ordinary chain rule, which can be written as

(3.58) ζ̇i =
∂ζi
∂rk

ṙk +
∂ζi
∂ηk

η̇k +
∂ζi
∂pk

ṗk +
∂ζi
∂πk

π̇k.

Combining this with the third pair of equations in (3.33), we get, using matrix nota-
tion,

(3.59) ζ̇ = ṠT
(
r × p+ π

)
+ ST

(
ṙ × p+ r × ṗ+ π̇

)
.

Substituting for ṙ, ṗ, and π̇ from (2.12) and using the relation v = m−1p+ c×ω from
the first pair of equations in (3.33) and the vector identity (x×y)×z = (x·z)y−(y ·z)x,
we obtain

(3.60) ζ̇ = ṠT
(
r × p+ π

)
+ ST

(
π × ω + (r × p)× ω

)
+ ST

(
r × f + τ

)
,
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where τ = τ (v) + τ (c) + τ (s). Writing the above result in components and using the
relation η̇j = [S−1ω]j from (3.14), we get

ζ̇l =
∂Sml
∂ηj

[
S−1ω

]
j

[
r × p+ π

]
m

+
[
ST

(
π × ω + (r × p)× ω

)]
l
+
[
ST

(
r × f + τ

)]
l
,

(3.61)

and from Proposition 3.3 we obtain, after converting back to matrix form,

(3.62) ζ̇ = −∂Ψ
∂η

+ ST
(
r × f + τ

)
.

The desired result for y = (ψ, ζ) follows by combining (3.57) and (3.62) and using
Propositions 3.4 and 3.5 to substitute for the component vector (f, τ), that is,

(3.63)

(
ψ̇

ζ̇

)
= −

(
∂Ψ
∂r

∂Ψ
∂η

)
+GT

(
f

τ

)

= −
(

∂Ψ
∂r

∂Ψ
∂η

)
+GT

[
−G−T

(
∂U
∂r

∂U
∂η

)
− γG

(
∂Ψ
∂ψ

∂Ψ
∂ζ

)
+ σẆ

]

= −
(

∂H
∂r

∂H
∂η

)
−GTγG

(
∂H
∂ψ

∂H
∂ζ

)
+GTσẆ .

3.5. Invariance of canonical formulation. Here we show that the Hamilton–
Langevin equations in Proposition 3.6 are invariant under an arbitrary change of
configuration variables provided that the new momentum variable is taken as the
associated canonical one.

Let x = (r, η) and y = (ψ, ζ) be as in Proposition 3.6 and consider new variables
x̃ and ỹ defined by

(3.64) x̃ = φ(x), ỹ = Dφ−T (x)y,

where φ(x) is an arbitrary bijective map with Jacobian matrix Dφ(x). For brevity,
we denote the above transformations by x̃ = x̃(x) and ỹ = ỹ(x, y) and the inverse
transformations by x = x(x̃) and y = y(x̃, ỹ). Analogous to (3.23), let G̃(x̃) ∈ R

6×6

be the velocity structure matrix for the configuration variable x̃ defined such that

(3.65) ν = G̃ ˙̃x,

where ν = (v, ω) are the body-frame components of the body linear and angular
velocities.

The variable ỹ defined in (3.64) can be identified as the canonical momentum
associated with x̃. In particular, from (3.23), (3.64)1, and (3.65) we find

(3.66) G̃ = GDφ−1,

and from (3.23), (3.31), (3.64)2, (3.65), and (3.66) we deduce that

(3.67) ỹ = G̃TMG̃ ˙̃x =
∂T̃

∂ ˙̃x
,
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where T̃ is the kinetic energy of the body expressed as a function of (x̃, ˙̃x), that is,

(3.68) T̃ (x̃, ˙̃x) = Φ(v, ω)
∣∣∣
(v,ω)= ˜G ˙̃x

=
1

2
˙̃x · G̃TMG̃ ˙̃x.

Finally, let H̃(x̃, ỹ), Ũ(x̃), γ̃(x̃), and σ̃(x̃) be functions defined via the change of
variables as

(3.69)
H̃(x̃, ỹ) = H(x, y)|x=x(x̃),y=y(x̃,ỹ), Ũ(x̃) = U(x)|x=x(x̃),

γ̃(x̃) = γ(x)|x=x(x̃), σ̃(x̃) = σ(x)|x=x(x̃).
The following result generalizes a classic result from the theory of Hamiltonian

systems. It shows that, just as in the deterministic case, the form of the canonical
equations in the stochastic case is invariant under the class of transformations in
(3.64). In particular, if (x, y)(t) is a process satisfying the system in (3.55), then
the process (x̃, ỹ)(t) satisfies a system of precisely the same form. Similar results for
particle systems can be found in [23].

Proposition 3.7. Let (x, y)(t) be any process satisfying the Hamilton–Langevin
equations (3.55). Then, after an arbitrary change of configuration variables, the pro-
cess (x̃, ỹ)(t) satisfies Hamilton–Langevin equations of the same form, namely

(3.70) ˙̃x =
∂H̃

∂ỹ
, ˙̃y = −∂H̃

∂x̃
− G̃T γ̃G̃

∂H̃

∂ỹ
+ G̃T σ̃Ẇ ,

where H̃(x̃, ỹ) = 1
2 ỹ · G̃−1M−1G̃−T ỹ + Ũ(x̃) is the total system energy, and G̃ and ỹ

are the velocity structure matrix and canonical momentum associated with x̃.
Proof. Since x satisfies an equation with no diffusion terms and the function

ỹ = ỹ(x, y) is linear in y, we find that Itô’s formula applied to (3.64) reduces to the
ordinary chain rule. Thus in components, employing the usual summation convention,
we have

(3.71) ˙̃xi =
∂x̃i
∂xj

ẋj , ˙̃yi =
∂ỹi
∂xj

ẋj +
∂ỹi
∂yj

ẏj ,

where indices take values from one through six. From (3.69)1 we get H(x, y) =

H̃(x̃, ỹ)|x̃=x̃(x),ỹ=ỹ(x,y), which implies

(3.72)
∂H

∂xj
=
∂H̃

∂x̃k

∂x̃k
∂xj

+
∂H̃

∂ỹk

∂ỹk
∂xj

,
∂H

∂yj
=
∂H̃

∂ỹk

∂ỹk
∂yj

.

Substituting (3.55)1 and (3.72)2 into (3.71)1 and using the relations ∂x̃/∂x = Dφ and
∂ỹ/∂y = Dφ−T , we obtain

(3.73) ˙̃xi = [Dφ]ij [Dφ
−T ]kj

∂H̃

∂ỹk
=
∂H̃

∂ỹi
,

which establishes the result for x̃. Substituting (3.55)2 and (3.72) into (3.71)2 and
using ∂x̃/∂x = Dφ and ∂ỹ/∂y = Dφ−T , together with (3.66) and (3.69), we get

(3.74) ˙̃yi =
∂ỹi
∂xj

ẋj − ∂ỹi
∂yj

∂H̃

∂ỹk

∂ỹk
∂xj

− ∂H̃

∂x̃i
−
[
G̃T γ̃G̃

∂H̃

∂ỹ

]
i

+ [G̃T σ̃Ẇ ]i.

Since ∂H̃/∂ỹ = ˙̃x and x̃ = x̃(x), we can rewrite (3.74) as
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(3.75) ˙̃yi =

(
∂ỹi
∂xm

− ∂ỹi
∂yj

∂x̃k
∂xm

∂ỹk
∂xj

)
ẋm − ∂H̃

∂x̃i
−
[
G̃T γ̃G̃

∂H̃

∂ỹ

]
i

+ [G̃T σ̃Ẇ ]i.

The coefficient of ẋm in the above equation vanishes. To see this, we use the relation
ỹ = Dφ−T (x)y to write

(3.76)
∂ỹi
∂yj

∂x̃k
∂xm

∂ỹk
∂xj

= [Dφ−T ]ij
∂x̃k
∂xm

(
∂

∂xj
[Dφ−T ]kp

)
yp.

From the relation x̃ = φ(x) we have [Dφ−T ]ln = ∂xn/∂x̃l, and using this in (3.76)
together with the chain rule and symmetry of second partial derivatives we find

∂ỹi
∂yj

∂x̃k
∂xm

∂ỹk
∂xj

=
∂xj
∂x̃i

∂x̃k
∂xm

(
∂

∂xj

∂xp
∂x̃k

)
yp

=
∂x̃k
∂xm

(
∂

∂x̃i

∂xp
∂x̃k

)
yp =

(
∂

∂xm

∂xp
∂x̃i

)
yp =

∂ỹi
∂xm

.

(3.77)

Substituting (3.77) into (3.75) we obtain

(3.78) ˙̃yi = −∂H̃
∂x̃i

−
[
G̃T γ̃G̃

∂H̃

∂ỹ

]
i

+ [G̃T σ̃Ẇ ]i,

which establishes the result for ỹ.

3.6. Noncanonical Hamilton–Langevin formulation. Consider configura-
tion variables (r, η) with physical momenta variables (p, π), and consider the Hamil-
tonian function defined by

(3.79) Hnc(r, η, p, π) = Υ (r, η, p, π) + U(r, η),

where Υ (r, η, p, π) and U(r, η) are the kinetic and potential energy functions. Let
Jnc = Jnc(r, η, p, π) ∈ R

12×12, E = E(p, π) ∈ R
6×6, Γ nc = Γ nc(r, η) ∈ R

12×12, and
Σnc = Σnc(r, η) ∈ R

12×6 be given, in block form, by

(3.80)

Jnc =

(
0 G−1

−G−T E

)
, E =

(
0 [p×]

[p×] [π×]

)
,

Γ nc =

(
0 0
0 γ

)
, Σnc =

(
0
σ

)
.

The next result, which follows by inspection from Propositions 3.3, 3.4, and 3.5, shows
that the equations in (2.12) and (3.14) for the process (r, η, p, π)(t) possess a natural
noncanonical Hamiltonian structure.

Proposition 3.8. Equations (2.12) and (3.14) for the process (r, η, p, π)(t) can
be written in the noncanonical Hamilton–Langevin form

(3.81) ẋ = G−1 ∂H
nc

∂ync
, ẏnc = −G−T ∂H

nc

∂x
+ E

∂Hnc

∂ync
− γ

∂Hnc

∂ync
+ σẆ ,

where x = (r, η) ∈ R
6, ync = (p, π) ∈ R

6, and Hnc(x, ync) = 1
2y

nc ·M−1ync + U(x).
Equivalently, introducing znc = (x, ync) ∈ R

12, we have

(3.82) żnc = (Jnc − Γ nc)
∂Hnc

∂znc
+ΣncẆ .

This formulation will be useful later in interpreting a certain factorization of the
standard canonical measure associated with the canonical formulation in Proposi-
tion 3.6.
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3.7. Invariance of noncanonical formulation. Here we show that, just as in
the canonical case, the noncanonical Hamilton–Langevin equations in Proposition 3.8
are invariant under an arbitrary change of configuration variables.

Let x = (r, η) and ync = (p, π) be as in Proposition 3.8 and consider a new
configuration variable x̃ defined as in (3.64), with associated velocity structure matrix

G̃(x̃) ∈ R
6×6 defined as in (3.65). Moreover, let H̃nc(x̃, ync), Ũ(x̃), γ̃(x̃), and σ̃(x̃) be

functions defined via the change of variables as

(3.83)
H̃nc(x̃, ync) = Hnc(x, ync)|x=x(x̃), Ũ(x̃) = U(x)|x=x(x̃),

γ̃(x̃) = γ(x)|x=x(x̃), σ̃(x̃) = σ(x)|x=x(x̃).
Notice that the noncanonical momentum ync and coefficient matrix E in (3.81) are
not affected by the change of configuration variables from x to x̃.

The following result extends Proposition 3.7 to the noncanonical case. In par-
ticular, if (x, ync)(t) is a process satisfying the system in (3.81), then the process
(x̃, ync)(t) satisfies a system of precisely the same form. The proof is similar to that
of Proposition 3.7 and is omitted for brevity.

Proposition 3.9. Let (x, ync)(t) be any process satisfying the noncanonical
Hamilton–Langevin equations (3.81). Then, after an arbitrary change of configuration
variables, the process (x̃, ync)(t) satisfies noncanonical Hamilton–Langevin equations
of the same form, namely

(3.84) ˙̃x = G̃−1 ∂H̃
nc

∂ync
, ẏnc = −G̃−T ∂H̃

nc

∂x̃
+ E

∂H̃nc

∂ync
− γ̃

∂H̃nc

∂ync
+ σ̃Ẇ ,

where H̃nc(x̃, ync) = 1
2y

nc ·M−1ync + Ũ(x̃) is the total system energy and G̃ is the
velocity structure matrix associated with x̃.

4. Measures for Hamiltonian formulations. Here we study various measures
associated with the Hamilton–Langevin system in (3.55). We introduce the canonical
measure associated with this system, outline conditions under which the measure is
stationary, and discuss various issues that arise in a rigid body model. We then show
that the canonical measure can always be factorized into independent measures on
configuration and velocity space, and we interpret this factorization in terms of the
noncanonical system in (3.81). Moreover, we show that the canonical, configuration,
and velocity measures are each invariant under an arbitrary change of configuration
variables.

4.1. Fokker–Planck description. Consider the Hamilton–Langevin system in
(3.55), where x = (r, η), y = (ψ, ζ), and z = (x, y). We denote the spaces for x, y,
and z by X, Y, and Z and note that X = R

3 × A ⊂ R
6, Y = R

3 × R
3 = R

6, and
Z = X× Y ⊂ R

12. For any given initial condition z0, or distribution thereof, and any
time t > 0, we assume that the random variable z(t) defined by (3.55) is distributed
according to a normalized (probability) measure μt so that for any open set O ⊂ Z we
have Pr{z(t) ∈ O} =

∫
O
μt(dz). Moreover, we assume that μt is absolutely continuous

with respect to the Lebesgue measure in the sense that μt(dz) = ϕ(z, t) dz for some
density function ϕ(z, t).

According to the theory of Itô stochastic differential equations, the density ϕ
satisfies the Fokker–Planck equation [18, 31, 45, 49], which (using the summation
convention) takes the form

(4.1)
∂ϕ

∂t
= − ∂

∂zi
[Aiϕ] +

1

2

∂2

∂zi∂zj
[Bijϕ] , z ∈ Z, t > 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC MODELING OF RIGID BODY SYSTEMS 1037

Here indices take values from 1 through 12, and A = A(z) ∈ R
12 and B = B(z) ∈

R
12×12 are coefficients defined by

(4.2) A = (J − Γ )
∂H

∂z
, B = ΣΣT .

The spatial terms on the right-hand side of (4.1) can be written as the negative
divergence of a probability current or flux field F = F (z) ∈ R

12 defined as

(4.3) Fi = Aiϕ− 1

2

∂

∂zj
[Bijϕ] .

Appropriate boundary conditions for (4.1) can be specified as follows. For nota-
tional convenience, consider writing Z as the Cartesian product of bounded or un-
bounded open intervals (ai, bi) (i = 1, . . . , 12), and let N |zi=ai ∈ R

12 and N |zi=bi ∈
R

12 denote the standard unit vectors which are normal to the coordinate hyperplanes
zi = ai and zi = bi, including points at infinity, oriented outwardly from Z. Moreover,
let Imom, Iconcyclic, and Iconacyclic denote the sets of indices i for which zi is a momentum co-
ordinate, cyclic configuration coordinate, and acyclic configuration coordinate, where
all translational coordinates are grouped in the acyclic set. Then appropriate bound-
ary conditions are [18, 45]

F ·N |zi=ai = 0, F ·N |zi=bi = 0, i ∈ Imom ∪ Iconacyclic,(4.4)

F ·N |zi=ai = −F ·N |zi=bi , i ∈ Iconcyclic.(4.5)

The conditions in (4.4) state that the normal current at the boundary of Z is zero
for each of the momentum and acyclic configuration coordinates; that is, there are
no probability leaks. The conditions in (4.5) state that the normal current at the
boundary of Z is periodic for each of the cyclic configuration coordinates; the minus
sign arises because N |zi=ai = −N |zi=bi . Each condition should be understood to hold
almost everywhere on the indicated hyperplane, or a portion thereof, defined by all
points in Z with the specified value of zi. In (4.5), points on the opposing, parallel
hyperplanes zi = bi and zi = ai are identified with each other in the obvious way.

Various assumptions are required in order for (4.4) and (4.5) to be meaningful.
For (4.4), we assume that the approach to a boundary value of zero, obtained by taking
limits from the interior of Z, occurs sufficiently fast so that the surface integrals of
F · N over the indicated hyperplanes converge. Similarly, for (4.5), we assume that
the surface integrals of F · N over each pair of opposing hyperplanes also converge.
In this case, the conditions imply that the total probability is conserved for all t > 0.
This can be verified by integrating (4.1) over a sequence of bounded interior domains
of increasing size, applying the divergence theorem to each, and taking limits.

4.2. Canonical measure. We consider a time-independent measure μ on Z =
X× Y of the form

(4.6) μ(dz) = ρ(z) dz, ρ(z) =
1

C
e−βH(z),

where β and C are fixed, positive constants. We will consider only the case when
μ is normalizable, or equivalently

∫
Z
e−βH dz is finite, and choose C to obtain a

probability measure. When the stochastic forcing in (3.55) is meant to model a heat
bath at absolute temperature Θ, we take β = 1/(κΘ), where κ is the Boltzmann
constant. In this case, we call μ and ρ the canonical measure and density associated
with (3.55).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1038 J. WALTER, O. GONZALEZ, AND J. H. MADDOCKS

The connection between the canonical measure and Hamilton–Langevin equations
is a well-studied subject; see, for example, the treatise [49] and references therein. Here
we outline a standard result, commonly referred to as the fluctuation-dissipation the-
orem [18, 29, 31, 45], which establishes sufficient conditions for the canonical measure
to be stationary under the dynamics described by (3.55) or, equivalently, (4.1). We
remark that, in contrast to the classic case of particle systems on unbounded domains,
for which boundary conditions need not be considered, the case of rigid bodies as de-
veloped here requires their consideration. The proof of the result is straightforward
and is omitted for brevity.

Proposition 4.1. Consider the canonical Hamilton–Langevin equations (3.55)
and assume the following:

A1. the integral
∫
Z
e−βH dz is finite, and the vector field J ∂e

−βH
∂z satisfies (4.4)

and (4.5) on the boundary of Z;
A2. the resistance matrix γ and noise matrix σ satisfy 2γ = βσσT at all points

in Z.

Then the canonical density ρ is a stationary or steady-state solution of the Fokker–
Planck equation (4.1) subject to the boundary conditions (4.4) and (4.5).

Motivated by Proposition 4.1, we say that a system is in thermal equilibrium at
temperature Θ if its states z are distributed according to the canonical measure μ.
The proposition implies that, under suitable constitutive assumptions on H , γ, and σ,
a system which is in thermal equilibrium at t = 0 will remain so for all t > 0. As a
consequence, the expected or average value of any state function f(z) is independent
of time and is given by

(4.7) Eμ[f ] =

∫
Z

f(z)μ(dz).

Remarks 4.1.

1. Assumption A1 requires that the Hamiltonian satisfy appropriate periodicity
and asymptotic growth conditions. It must be periodic in the cyclic config-
uration coordinates (if any) and grow sufficiently rapidly in the momentum
and acyclic configuration coordinates. The periodicity condition is straight-
forward; it is sufficient for the potential energy in local coordinates to be the
representation of a function on the intrinsic configuration space R

3 × SO3.
The growth condition is more complicated; it depends on properties of both
the kinetic and the potential energies and on the coordinate chart for SO3

through the velocity structure matrix.
2. Finiteness of the integral

∫∫
X×Y

e−βH(x,y) dx dy can be achieved without a
growth condition on the rotational component of the potential U(x). Indeed,
performing the Gaussian integral over Y and using Proposition 3.1(iii) and
the relation |G(x)| = |S(η)|, we find

∫∫
X×Y

e−βH(x,y) dx dy = (2π/β)3
√
|M |

∫
X

e−βU(x)|G(x)| dx

= (2π/β)3
√
|M |

∫∫
R3×A

e−βU(r,η)|S(η)| dr dη

= (
√
2π/β)3

√
|M |

∫∫
R3×SO3

e−βU(r,η(Q)) dr dQ.

(4.8)
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From this we deduce, by compactness of SO3, that the integral will be finite
if U(r, η) is bounded from below for all (r, η) and satisfies a growth condition
in r. In particular, no growth is required in η, even if the domain A is
unbounded.

3. There are some advantages to using a Cayley chart for SO3 in the modeling
of bodies with strongly restrained degrees of freedom. Indeed, because all
rotational coordinates are acyclic, the potential need not satisfy any period-
icity conditions. Thus an arbitrary, fully coupled potential energy could be
modeled using a simple functional form, for example, a positive-definite, qua-
dratic function of all the coordinates, which presumably would be sufficient to
satisfy assumption A1. Such a form will be employed in the multibody model
of a polymer chain introduced later, where the translational and rotational
coordinates will describe the relative displacements and rotations between
bodies.

4. Assumption A2 requires that the matrices γ and σ satisfy a constitutive
relation. In a standard Stokesian model of viscous loads, γ would be a sym-
metric, positive-definite matrix uniquely determined by the geometry of the
body, and σ would be a necessarily invertible matrix determined from the
relation βσσT = 2γ. Although this relation does not uniquely determine σ,
any solution is sufficient to guarantee the stationarity of the measure μ. The
symmetry, definiteness, and invertibility of γ and σ extend to the coefficient
matrices GT γG and GTσ appearing in (3.55), but not uniformly so. Indeed,
while |G| is nonzero at all points in Z, nonuniformity arises because |G| may
vanish at boundary points.

5. A detailed analysis of ergodicity for (3.55) is beyond the scope of this article.
Nevertheless, in the case when γ is symmetric and positive-definite, and σ is
invertible, we expect the stationary measure μ to be unique and consequently
[44] solutions of (3.55) to be ergodic with respect to μ in the sense that

(4.9) lim
T→∞

1

T

∫ T

0

f(z(t)) dt =

∫
Z

f(z)μ(dz),

where the equality is understood to hold for almost every sample path z(t).
We remark that the stronger notion of geometric ergodicity has recently been
established for related systems and their numerical approximation under var-
ious different assumptions [36, 37, 50].

4.3. Invariance of canonical measure. Consider a change of variables from
(x, y) ∈ X× Y to (x̃, ỹ) ∈ X̃× Ỹ defined as in (3.64), where φ : X → X̃ is an arbitrary
bijection. For a fixed temperature Θ, let μ and μ̃ be the canonical measures associated
with (3.55) and (3.70), so that

(4.10) μ(dx, dy) =
1

C
e−βH(x,y) dx dy, μ̃(dx̃, dỹ) =

1

C̃
e−β ˜H(x̃,ỹ) dx̃ dỹ.

The next result, which is well known and included only for completeness, can be
understood as a consequence of Proposition 3.7. It shows that the measures μ and μ̃
are equivalent in the sense that they both yield the same expected value for any
given state function. That is, the canonical measure is invariant under the change of
variables (3.64). The proof is straightforward and relies on the fact that the Jacobian
determinant of this change of variables is identically equal to one.
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Proposition 4.2. Let Eμ and Eμ̃ denote expectations with respect to μ and μ̃.
Then for any state function f(x, y) we have

(4.11) Eμ̃[f̃ ] = Eμ[f ],

where f̃(x̃, ỹ) = f(x, y)|x=x(x̃),y=y(x̃,ỹ).
The above result shows that the canonical measure, and hence the expected value

of any state function, is an intrinsic property of the system described by (3.55). That
is, these quantities are independent of the choice of configuration variables for the
system, which in turn determines the conjugate momenta via (3.64).

4.4. Factorized measures. In general, due to the form of the Hamiltonian in
(3.55), the canonical measure μ over the variables (x, y) ∈ X × Y cannot be readily
factored into independent measures over the configuration variables x = (r, η) ∈ X

and conjugate momentum variables y = (ψ, ζ) ∈ Y. However, here we show that μ can
always be factored into independent measures over x = (r, η) ∈ X and ν = (v, ω) ∈
V = R

6, where (v, ω) are the body velocity components.
For a given potential energy U(x) and kinetic energy Φ(ν) = 1

2ν ·Mν consider
measures on X and V defined by

(4.12) μcon(dx) =
1

C′ e
−βU(x)|G(x)| dx, μvel(dν) =

1

C′′ e
−βΦ(ν) dν,

where β = 1/(κΘ), C′ and C′′ are positive constants, and |G(x)| denotes the de-
terminant of the velocity structure matrix G(x) given in (3.23). Just as before, we
assume that μcon and μvel are normalizable and choose C′ and C′′ to obtain probabil-
ity measures on X and V. We call μcon the canonical configuration measure and μvel

the velocity measure associated with (3.55). Moreover, in view of (3.23) and (3.31),
consider the change of variables from (x, y) ∈ X× Y to (x, ν) ∈ X× V defined by

(4.13) (x, y) = χ(x, ν) = (x,GT (x)Mν).

The next result follows from the fact that (4.13) separates the Hamiltonian in the
sense that H ◦ χ(x, ν) = Φ(ν) + U(x) and has a simple Jacobian determinant given
by | ∂(x,y)∂(x,ν) | = |GTM |.

Proposition 4.3. Under the change of variables (4.13) the canonical measure
μ(dx, dy) is equivalent to the product measure μcon(dx)μvel(dν). That is, for any state
function f(x, y) we have

(4.14)

∫∫
X×Y

f(x, y)μ(dx, dy) =

∫∫
X×V

f ◦ χ(x, ν) μcon(dx)μvel(dν).

The above result shows that, for a system in thermal equilibrium at temperature
Θ, its configuration and velocity states (x, ν) are distributed according to the inde-
pendent measures μcon and μvel. That is, x and ν are statistically independent. As a
consequence, the expected or average value of any functions g(x) and h(ν) are given
by

(4.15) Eμcon [g] =

∫
X

g(x)μcon(dx), Eμvel [h] =

∫
V

h(ν)μvel(dν).

As we will see later, the formulas in (4.15) will be useful in characterizing parameters
in the energy functions U(x) and Φ(ν) under appropriate assumptions.
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It is interesting to note that, under the conditions of Proposition 4.1, the product
measure μconμvel on X×V can be viewed as a stationary measure for the noncanoni-
cal formulation in (3.81), where the noncanonical momentum variable ync should be
replaced by the velocity variable ν through the simple relation ync = Mν. Indeed,
the stationarity of μconμvel on X× V follows from the stationarity of μ on X× Y and
the fact that (3.81) and (3.55) are connected, up to the relation ync = Mν, through
the same change of variables which connects μconμvel and μ.

4.5. Invariance of factorized measures. Consider a change of variables from
(x, y) ∈ X× Y to (x̃, ỹ) ∈ X̃× Ỹ defined as in (3.64), where φ : X → X̃ is an arbitrary
bijection. For a fixed temperature Θ, let μcon and μ̃con be the canonical configuration
measures associated with (3.55) and (3.70), so that

(4.16) μcon(dx) =
1

C′ e
−βU(x) |G(x)| dx, μ̃con(dx̃) =

1

C̃′ e
−β ˜U(x̃) |G̃(x̃)| dx̃.

Moreover, let μvel be the associated velocity measure given by

(4.17) μvel(dν) =
1

C′′ e
−βΦ(ν) dν.

By virtue of its definition, notice that μvel is independent of the choice of canonical
variables.

The next result, which can be understood as a consequence of Proposition 3.9,
shows that the measures μcon and μ̃con are equivalent in the sense that they both yield
the same expected value for any given function. That is, the canonical configuration
measure is invariant under an arbitrary change of configuration variables. The proof
is straightforward and follows directly from Proposition 4.2 by choosing the arbitrary
function f(x, y) to be independent of y and then integrating over y.

Proposition 4.4. Let Eμcon and Eμ̃con denote expectations with respect to μcon

and μ̃con. Then for any function g(x) we have

(4.18) Eμ̃con [g̃] = Eμcon [g],

where g̃(x̃) = g(x)|x=x(x̃).
The above result shows that the canonical configuration measure μcon, and hence

the expected value of any configuration function g(x), is an intrinsic property of the
system described by (3.55). That is, these quantities are independent of the choice of
configuration variables x for the system. The validity of this result depends crucially
on the Jacobian factor |G(x)| appearing in μcon. Indeed, if this factor were omitted,
the measure would in general not be invariant, and the expected value of a function
would in general depend on the choice of variables.

5. Extension to systems. Here we extend our results from a single body to an
arbitrary system of interacting rigid bodies. We describe how all results pertaining to
the Hamiltonian form of the equations of motion and the associated canonical mea-
sures on phase, configuration, and velocity space carry over to systems. Throughout
this section the summation convention remains in effect on subscripts i, j, and so on,
but it is not employed on superscripts a, b, and so on.

5.1. General kinematics, balance laws. Consider a system of n independent
rigid bodies with reference points ra and body frames {dai } (a = 1, . . . , n). Just as
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in the case of a single body, the kinematics of each body a are encapsulated in the
relations

(5.1) ṙa = va, ḋai = ωa × dai ,

where va is the velocity of the reference point and ωa is the angular velocity of the
body frame. Moreover, the momentum variables for each body a are defined by

(5.2) pa = ma(va + ωa × ca), πa = Iaωa + ca × pa,

where pa is the linear momentum, πa is the angular momentum about the reference
point, ma is the total mass, Ia is the rotational inertia tensor with respect to the
center of mass, and ca is a vector from the reference point to the center of mass.
Notice that va +ωa × ca on the right-hand side of (5.2)1 is the velocity of the center
of mass. Furthermore, the balance laws of linear and angular momenta for each body a
take the form

(5.3) ṗa = fa, π̇a = (ωa × ca)× pa + τ a,

where fa is the resultant force and τ a is the resultant torque about the reference
point of the body.

5.2. Resultant loads. We suppose that the resultant loads (fa, τ a) for each
body a can be decomposed as

(5.4) fa = fa(v) + fa(c) + fa(s), τ a = τ a(v) + τ a(c) + τ a(s),

where (fa(v), τ a(v)), (fa(c), τ a(c)), and (fa(s), τ a(s)) denote viscous, conservative,
and stochastic loads. Here all loads for body a are referred to the reference point ra.
We assume that the viscous loads are of the general linear form

(5.5) fa(v) = −
n∑
b=1

(
γab1 vb + γab3 ωb

)
, τ a(v) = −

n∑
b=1

(
γab2 vb + γab4 ωb

)
,

where γab1 , . . . ,γab4 (a, b = 1, . . . , n) are given tensors which in general may depend on

the configuration of the system. We suppose that the conservative loads (fa(c), τ a(c))
satisfy, for all possible motions of the system,

(5.6)
n∑
b=1

(
f b

(c) · vb + τ b
(c) · ωb

)
= −U̇ ,

where U is a prescribed potential energy function. Last, we assume that the stochastic
loads (fa(s), τ a(s)) are white-noise-type loads of the form

(5.7) fa(s) =
n∑
b=1

(
σab1 Ẇ b,lin+σab3 Ẇ b,ang

)
, τ a(s) =

n∑
b=1

(
σab2 Ẇ b,lin+σab4 Ẇ b,ang

)
,

where σab1 , . . . ,σ
ab
4 are given tensors which in general may depend on the configuration

of the system and (W b,lin,W b,ang) denote standard, independent Wiener processes
(a, b = 1, . . . , n). As before, the form of these loads is motivated by (5.5).
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5.3. Euler–Langevin equations, components. Substituting (5.4), (5.5), and
(5.7) into (5.3), combining the result with (5.1), and using the antisymmetry of the
vector product, we obtain the Euler–Langevin equations of motion for each body a,
namely

(5.8)

ṙa = va,

ḋai = ωa × dai ,

ṗa = fa(c) −
n∑
b=1

(
γab1 vb + γab3 ωb

)
+

n∑
b=1

(
σab1 Ẇ b,lin + σab3 Ẇ b,ang

)
,

π̇a = pa × (ca × ωa) + τ a(c) −
n∑
b=1

(
γab2 vb + γab4 ωb

)
+

n∑
b=1

(
σab2 Ẇ b,lin + σab4 Ẇ b,ang

)
,

where pa = ma(va + ωa × ca) and πa = Iaωa + ca × pa. Notice that the equations
for all a = 1, . . . , n are coupled through the assumed form of the resultant loads.

As before, we can express (5.8) in terms of a convenient set of components. Let
Qa ∈ SO3 ⊂ R

3×3 denote the component matrix of the body frame {dai } in the
fixed frame {ei}, that is, Qaij = ei · daj . Moreover, let va ∈ R

3, Ia ∈ R
3×3, and so

on denote component vectors and matrices in the frame {dai }, that is, vai = dai · va,
Iaij = dai · Iadaj , and so on. Furthermore, let γab1 ∈ R

3×3, σab1 ∈ R
3×3, and so on

denote component matrices with respect to the pair {dai } and {dbi}, that is, (γab1 )ij =
dai · γab1 dbj , (σ

ab
1 )ij = dai · σab1 dbj , and so on. Then by straightforward calculation as

before we find that the equations in (5.8) for each body a become

(5.9)

ṙa = ra × ωa + va,

Q̇a = Qa[ωa×],

ṗa = pa × ωa + fa(c) −
n∑
b=1

(
γab1 v

b + γab3 ω
b
)

+

n∑
b=1

(
σab1 Ẇ

b,lin + σab3 Ẇ
b,ang

)
,

π̇a = πa × ωa + pa × (ca × ωa) + τa(c) −
n∑
b=1

(
γab2 v

b + γab4 ω
b
)

+

n∑
b=1

(
σab2 Ẇ

b,lin + σab4 Ẇ
b,ang

)
,

where pa = ma(va + ωa × ca), πa = Iaωa + ca × pa, and [ωa×] ∈ R
3×3 denotes the

skew-symmetric matrix defined in (2.13).
We interpret (5.9) as a coupled system of stochastic differential equations in

the sense of Itô for the phase variables (ra, Qa, pa, πa)na=1 which evolve in the space
[R3×SO3×R

3×R
3]n. In this system, the scalars ma, the component vectors ca, and

the component matrices Ia are all assumed to be constant. The component matrices
γab1 , . . . , γ

ab
4 and σab1 , . . . , σ

ab
4 and the function U appearing in (5.5), (5.6), and (5.7)

are all assumed to be functions of all the configuration variables (ra, Qa)na=1. Indeed,
the potential energy function U may model both local and nonlocal interactions in
the system.

5.4. Hamilton–Langevin formulation, measures. The results in sections 3
and 4 can be extended in a straightforward way to a system of bodies. To this end, let
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x = (xa)na=1 ∈ R
6n, ν = (νa)na=1 ∈ R

6n, and y = (ya)na=1 ∈ R
6n, where xa = (ra, ηa)

are the configuration coordinates, νa = (va, ωa) are the velocity components, and ya =
(ψa, ζa) are the canonical momenta for body a. Moreover, let G = diag(Ga)na=1 ∈
R

6n×6n and M = diag(Ma)na=1 ∈ R
6n×6n, where Ga is the velocity structure matrix

for body a defined such that νa = Gaẋa and Ma is the mass matrix for body a.
Furthermore, let γ = (γab)na,b=1 ∈ R

6n×6n, σ = (σab)na,b=1 ∈ R
6n×6n, and W =

(W b)nb=1 ∈ R
6n, where γab, σab, and W b are defined by

(5.10) γab =

(
γab1 γab3
γab2 γab4

)
, σab =

(
σab1 σab3
σab2 σab4

)
, W b =

(
W b,lin

W b,ang

)
.

Using the notation outlined above, it can now be seen that all results in sections
3 and 4 pertaining to the Hamiltonian form of the equations of motion and the associ-
ated canonical measures on phase, configuration, and velocity space can be extended
to a system of bodies. In particular, just as in Proposition 3.6, we find that the
equations of motion (5.9) can be written in the canonical Hamiltonian form

(5.11)
ẋ =

∂H

∂y
, ẏ = −∂H

∂x
−GTγG

∂H

∂y
+GTσẆ ,

H(x, y) =
1

2
y ·G−1M−1G−T y + U(x).

As in Proposition 3.7, these equations are invariant under a change of variables of the
form (3.64). Moreover, under the same conditions as in Proposition 4.1, the canonical
measure

(5.12) μ(dx, dy) =
1

C
e−βH(x,y) dx dy,

where β = 1/(κΘ) and C are positive constants, is a stationary measure for (5.11).
Also, as in Proposition 4.2, this measure is invariant under a change of variables of
the form (3.64). Furthermore, for arbitrary potential energy U(x) and kinetic energy
Φ(ν) = 1

2ν ·Mν, we find, just as in Proposition 4.3, that the canonical measure μ
is equivalent to the product of a canonical configuration measure μcon and a velocity
measure μvel defined as

(5.13) μcon(dx) =
1

C′ e
−βU(x)|G(x)| dx, μvel(dν) =

1

C′′ e
−βΦ(ν) dν,

where C′ and C′′ are positive constants and |G(x)| denotes the determinant of the
velocity structure matrix G(x). As in Proposition 4.4, the canonical configuration
measure is invariant under an arbitrary change of configuration variables, and so too
is the velocity measure by virtue of its definition.

6. General quadratic models. Here we specialize the results from section 5 to
a rigid body model of a topologically linear polymer. We consider the case in which
the potential energy of the system is a general quadratic function of a natural set of
internal coordinates describing the relative, three-dimensional displacements and ro-
tations between bodies. We outline the internal coordinates for this system and derive
explicit forms for the associated canonical measures on the various spaces. Further-
more, we characterize the complete set of potential energy and mass parameters of
the model in terms of ratios of certain expected values.
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6.1. Internal coordinates. Consider a model of a topologically linear polymer
in which each monomer unit is modeled as an independent rigid body with reference
point ra and body frame {dai } (a = 1, . . . , n). Then the relative displacement and
rotation between bodies a and a + 1 along the polymer are completely described by
a coordinate vector ξa ∈ R

3 and a rotation matrix La ∈ SO3 such that

(6.1) ra+1 = ra + ξai h
a,a+1
i , da+1

j = Laijd
a
i ,

where {ha,a+1
i } is a right-handed, orthonormal frame that depends on {dai } and

{da+1
i }. The coordinate vector ξa describes the position of ra+1 with respect to ra in

the frame {ha,a+1
i }. In applications to DNA, the frame {ha,a+1

i } is typically chosen
as an average of {dai } and {da+1

i }. The rotation matrix La describes the orientation
of frame {da+1

i } with respect to {dai }. Throughout our developments, we suppose
that each La ∈ SO3 is parameterized by local coordinates θa ∈ A ⊂ R

3 with angular
velocity structure matrix S(θa) ∈ R

3×3.
From (6.1) we deduce that the entries in ξa and La are given by

(6.2) ξai = ha,a+1
i · (ra+1 − ra), Laij = dai · da+1

j .

Let P a,a+1 ∈ SO3 denote the component matrix of the frame {ha,a+1
i } in the fixed

frame {ei}, that is, P a,a+1
ij = ei · ha,a+1

j . Then, using the facts that dai = Qakiek,
ra = rai d

a
i , da+1

i = Qa+1
ki ek, and ra+1 = ra+1

i da+1
i , we deduce that (6.2) can be

written in the matrix form

(6.3) ξa =
(
P a,a+1

)T (
Qa+1ra+1 −Qara

)
, La =

(
Qa

)T
Qa+1.

As with the matrices La, we suppose that each Qa ∈ SO3 is parameterized by local
coordinates ηa ∈ A ⊂ R

3 with angular velocity structure matrix S(ηa) ∈ R
3×3.

The relative displacement and rotation coordinates (ξa, θa) (a = 1, . . . , n − 1)
describe the configuration of the system up to an overall translation and rotation. To
complete the specification of the configuration we introduce a coordinate vector ξ0

and a rotation matrix L0, with coordinates θ0, such that

(6.4) r1 = r0 + ξ0i d
0
i , d1

j = L0
ijd

0
i ,

where r0 is a lab-fixed reference point and {d0
i } is a lab-fixed frame, which without

loss of generality we identify with 0 and {ei}, respectively. With this convention, we
find that the coordinate vector ξ0 and the rotation matrix L0 are given by

(6.5) ξ0 = Q1r1, L0 = Q1.

Thus the configuration of the system is completely described by the coordinates
qa = (ξa, θa) ∈ R

6 (a = 0, . . . , n − 1). Notice that q0 are external coordinates
that specify the spatial location of the polymer, whereas q1, . . . , qn−1 are internal
coordinates that describe its shape. In the terminology of mechanics, the internal
coordinates ξa would be referred to as shear and extension strains and θa as bending
and twisting strains. In applications to DNA, ξa would be referred to as shift-slide-rise
coordinates and θa as tilt-roll-twist coordinates between bodies a and a+ 1.

6.2. Jacobian for internal coordinates. Consider the change of variables
from (ηa, ra) (a = 1 . . . , n) to (θa, ξa) (a = 0 . . . , n − 1) defined by (6.3) and (6.5),
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where for convenience we have reordered the variables. This change of variables is of
the form

(6.6)

θ0 = θ0(η1),
θa = θa(ηa, ηa+1) (a = 1, . . . , n− 1),

ξ0 = ξ0(η1, r1),
ξa = ξa(ηa, ηa+1, ra, ra+1) (a = 1, . . . , n− 1).

Using the notation θ = (θ0, . . . , θn−1), η = (η1, . . . , ηn), and so on, we notice that the
Jacobian matrix

(6.7)
∂(θ, ξ)

∂(η, r)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂θ0

∂η1 · · · ∂θ0

∂ηn
∂θ0

∂r1 · · · ∂θ0

∂rn

...
...

...
...

∂θn−1

∂η1 · · · ∂θn−1

∂ηn
∂θn−1

∂r1 · · · ∂θn−1

∂rn

∂ξ0

∂η1 · · · ∂ξ0

∂ηn
∂ξ0

∂r1 · · · ∂ξ0

∂rn

...
...

...
...

∂ξn−1

∂η1 · · · ∂ξn−1

∂ηn
∂ξn−1

∂r1 · · · ∂ξn−1

∂rn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is in fact lower triangular for changes of variables of the form (6.6). Since the mag-
nitude of a determinant is invariant under reorderings of its columns and rows, we
deduce that the change of variables from x = (x1, . . . , xn) to q = (q0, . . . , qn−1), where
xa = (ra, ηa) and qa = (ξa, θa), has Jacobian determinant

(6.8)

∣∣∣∣ ∂q∂x
∣∣∣∣ = n−1∏

a=0

∣∣∣∣ ∂θa

∂ηa+1

∣∣∣∣ ∣∣∣∣ ∂ξa

∂ra+1

∣∣∣∣ .
The above determinant can be characterized explicitly. From (6.3) and (6.5) we

deduce that the derivative ∂ξa/∂ra+1 is an orthogonal matrix for all a, which implies
|∂ξa/∂ra+1| = 1 for all a. To derive an expression for the derivative ∂θa/∂ηa+1,
we consider an arbitrary curve α 	→ ηa+1(α). Then from (6.6) we have θa(α) =
θa(ηa, ηa+1(α)), and by the chain rule we get, using a circle to denote the derivative
with respect to α,

(6.9) θ̊a =

(
∂θa

∂ηa+1

)
η̊a+1.

Moreover, from (6.3) we have La(α) = (Qa)TQa+1(α). Differentiating this relation
and using Proposition 3.1(i), we get

(6.10)

L̊a = (Qa)T Q̊a+1,

La
[(
S(θa)θ̊a

)×] = (Qa)TQa+1
[(
S(ηa+1)η̊a+1

)×],
S(θa)θ̊a = S(ηa+1)η̊a+1,

θ̊a = S(θa)−1S(ηa+1)η̊a+1.

Comparing (6.10) and (6.9) we find ∂θa/∂ηa+1 = S(θa)−1S(ηa+1), which can be
shown to hold for all a. Substitution of this result into (6.8) gives

(6.11)

∣∣∣∣ ∂q∂x
∣∣∣∣ = n−1∏

a=0

∣∣S(θa)∣∣−1∣∣S(ηa+1)
∣∣.
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6.3. Configuration and velocity measures. For arbitrary potential energy
U(x) and kinetic energy Φ(ν), the behavior of the polymer model in thermal equi-
librium is described by the canonical configuration measure μcon and the velocity
measure μvel, where

(6.12) μcon(dx) =
1

C′ e
−βU(x)|G(x)| dx, μvel(dν) =

1

C′′ e
−βΦ(ν) dν.

In view of (6.11), the measure μcon on the absolute configuration coordinates x can be
transformed into an equivalent measure μcon

rel on the relative configuration coordinates
q, namely

(6.13) μcon
rel (dq) =

1

C′ e
−βU(x(q))J(q) dq, where J(q) =

∣∣G(x(q))∣∣ ∣∣∣∣∂x∂q
∣∣∣∣ .

Using the fact that G = diag(Ga)na=1, together with (3.24) and (6.11), we deduce that
the Jacobian factor J(q) is given by

(6.14) J(q) =

n−1∏
a=0

∣∣S(θa)∣∣.
Assuming a decomposition U(x(q)) = Uext(q

0) + Uint(q
1, . . . , qn−1), where Uext

and Uint are external and internal potential energy functions, the measure μcon
rel can

be factored into a measure μcon
ext on the external coordinate q0 and a measure μcon

int on
the internal coordinates w = (q1, . . . , qn−1). In particular, we have μcon

rel = μcon
extμ

con
int ,

where
(6.15)

μcon
ext (dq

0) =
1

C′
ext

e−βUext(q
0)Jext(q

0) dq0, μcon
int (dw) =

1

C′
int

e−βUint(w)Jint(w) dw.

Here C′
ext and C

′
int are positive constants, and Jext(q

0) and Jint(w) are Jacobian factors
given by

(6.16) Jext(q
0) =

∣∣S(θ0)∣∣, Jint(w) =

n−1∏
a=1

∣∣S(θa)∣∣.
The above result shows that, for a system in thermal equilibrium, the configura-

tion and velocity variables q0, w, and ν are distributed according to the independent
measures μcon

ext , μ
con
int , and μ

vel. That is, q0, w, and ν are statistically independent. As
a consequence, the expected or average value of any functions f(q0), g(w), and h(ν)
is given by

(6.17)

Eμcon
ext

[f ] =

∫
Xext

f(q0)μcon
ext (dq

0),

Eμcon
int

[g] =

∫
Xint

g(w)μcon
int (dw), Eμvel [h] =

∫
V

h(ν)μvel(dν).

Here Xext ⊂ R
6 is a prescribed domain for q0, Xint ⊂ R

6n−6 is a prescribed domain
for w, and V = R

6n is the domain for ν. Assuming all measures are normalizable we
have

(6.18)

Eμcon
ext

[f ] =

∫
Xext

e−βUext(q
0)f(q0)Jext(q

0) dq0∫
Xext

e−βUext(q0)Jext(q0) dq0
,

Eμcon
int

[g] =

∫
Xint

e−βUint(w)g(w)Jint(w) dw∫
Xint

e−βUint(w)Jint(w) dw
, Eμvel [h] =

∫
V
e−βΦ(ν)h(ν) dν∫
V
e−βΦ(ν) dν

.
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From the relations in (6.18) we observe that the expected value of an arbitrary
function h(ν) is entirely dependent on the kinetic energy Φ(ν). In contrast, the
expected value of an arbitrary function g(w) is not entirely dependent on the internal
potential energy Uint(w); it also depends on the Jacobian factor Jint(w). However, a
quantity that is entirely dependent on Uint(w) is given by the ratio

(6.19)
Eμcon

int
[g/Jint]

Eμcon
int

[1/Jint]
=

∫
Xint

e−βUint(w)g(w) dw∫
Xint

e−βUint(w) dw
.

These observations will be exploited below to characterize the material parameters
associated with Uint(w) and Φ(ν).

6.4. Quadratic energy model. For a polymer model with n bodies we consider
an internal potential energy function of the general quadratic form

(6.20) Uint(w) =
1

2
(w − ŵ) ·K(w − ŵ),

where the vector ŵ = (q̂1, . . . , q̂n−1) ∈ R
6n−6 and the symmetric, positive-definite

matrix K ∈ R
(6n−6)×(6n−6) are material parameters. The vector ŵ corresponds to

the equilibrium or ground-state value of w. In particular, q̂a is the equilibrium value
of the relative displacement and rotation coordinates qa between bodies a and a+ 1.
The matrix K is referred to as the stiffness matrix. It provides a measure of the elastic
stiffness associated with each of the internal coordinates and couplings between them,
and need not be assumed to be block-diagonal.

As outlined in section 5, the kinetic energy of a system of n bodies is given by

(6.21) Φ(ν) =
1

2
ν ·Mν,

where M = diag(M1, . . . ,Mn) ∈ R
6n×6n is a symmetric, positive-definite matrix of

mass parameters. In particular, each Ma is the mass matrix for body a as defined in
(3.27). In our developments below, we use the notation w ⊗ w and ν ⊗ ν to denote
the usual outer or matrix product of the vectors w and ν. Thus [w ⊗ w]pq = wpwq
and [ν ⊗ ν]pq = νpνq.

The relations in (6.18) and (6.19) can be exploited to derive explicit characteri-
zations of the parameters ŵ, K, and M . Notice that, although the internal potential
energy Uint is quadratic, the measure μcon

int is non-Gaussian due to the presence of
the Jacobian factor Jint. As a result, the parameters ŵ and K are not given by the
usual moment relations for Gaussian measures. However, from (6.19) we see that
ŵ can be characterized as a ratio of expected values. In particular, substituting the
vector-valued function g(w) = w into (6.19) and assuming Xint = R

6n−6, we obtain,
by standard results for Gaussian integrals,

(6.22) ŵ =

∫
Xint

e−βUint(w)w dw∫
Xint

e−βUint(w) dw
=

Eμcon
int

[w/Jint]

Eμcon
int

[1/Jint]
.

Thus ŵ is not equal to the expected value of w but rather to a ratio of expected values
which are weighted by the Jacobian Jint(w).

The stiffness matrix K can also be characterized similarly. Substituting the
matrix-valued function g(w) = Δw ⊗ Δw into (6.19), where Δw = w − ŵ, we get,
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again assuming Xint = R
6n−6 and using standard results for Gaussian integrals,

(6.23)
1

β
K−1 =

∫
Xint

e−βUint(w)Δw ⊗Δw dw∫
Xint

e−βUint(w) dw
=

Eμcon
int

[Δw ⊗Δw/Jint]

Eμcon
int

[1/Jint]
.

Thus, just as with ŵ, the matrix 1
βK

−1 is not equal to the expected value of Δw⊗Δw
but rather to a ratio of weighted expected values. By expanding the right-hand side
of (6.23) and using (6.22), we deduce that

(6.24)
1

β
K−1 + ŵ ⊗ ŵ =

Eμcon
int

[w ⊗ w/Jint]

Eμcon
int

[1/Jint]
,

which may be more convenient than (6.23) since the expected values on the right-hand
side of (6.24) are purely kinematic and independent of the model parameters ŵ.

The characterization of the mass matrixM is simpler due to the Gaussian form of
the measure μvel. In particular, substituting the matrix-valued function h(ν) = ν ⊗ ν
into (6.18) and using standard results for Gaussian integrals, we get

(6.25)
1

β
M−1 =

∫
V
e−βΦ(ν)ν ⊗ ν dν∫
V
e−βΦ(ν) dν

= Eμvel [ν ⊗ ν].

Thus the matrix 1
βM

−1 is equal to the expected value of ν ⊗ ν. Moreover, since
M = diag(M1, . . . ,Mn), we have M−1 = diag([M1]−1, . . . , [Mn]−1), where Ma and
[Ma]−1 are explicit functions of the mass parameters of body a as defined in (3.27).

7. Summary. We have developed properly invariant formulations of the iner-
tial dynamics of a system of rigid bodies interacting both with each other, through a
potential dependent upon relative location and orientation, and with a solvent, mod-
eled implicitly by viscous and stochastic forcing terms. Our analysis demonstrates
that the invariance properties arise because, whenever the usual chain rule of deter-
ministic calculus is, as it must be in the stochastic context, replaced with the more
complicated Itô formula, the classic invariances nevertheless persist. The governing
equations express the balance laws of linear and angular momenta of each body and
allow a full coupling between the translational and rotational degrees of freedom of
all bodies. These are the equations that we refer to as Euler–Langevin.

We studied the classic canonical measure for the Euler–Langevin model and ex-
amined the implications of different choices of coordinates. The hypotheses of the
fluctuation-dissipation theorem, specifically those pertaining to normalizability and
boundaries, which provide conditions for the canonical measure to be stationary, or
equivalently for the system to be in thermal equilibrium, were shown to impose dif-
ferent restrictions on the system potential energy depending on the type of rotational
coordinate chart. The restrictions suggest that Cayley-type charts are appropriate for
systems with strongly restrained rotational degrees of freedom, whereas Euler-type
charts are appropriate for systems with unrestrained rotational degrees of freedom.
We also studied the factorability of the canonical measure and showed that, by a
change of variables on the momenta, the measure can always be explicitly factored
into independent, properly invariant canonical measures on the configuration and
body velocity spaces, the former of which contains a Jacobian factor associated with
the three-dimensional rotation group.

We believe the Euler–Langevin equations to be an appropriate coarse-grained
model of a polymer at mesoscales in which monomer units can be approximated as
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rigid and the effects of a solvent can be approximated by implicit terms. We have a
particular interest in the development of coarse-grained models of stiff, linear poly-
mers such as DNA, where the appropriate and biologically important mesoscales are a
few tens to a few hundreds of basepairs. At these scales, inhomogeneous effects depen-
dent upon the specific basepair sequence, and the relative orientations of individual
basepairs, can be significant. The model outlined here can capture this level of detail
at these scales, which distinguishes it from other more standard models of polymer
physics, such as chain-type models based on bead or link elements. Indeed, whereas
other more standard models have proven to be very successful at longer length scales,
they are typically homogeneous and typically neglect some or all rotational degrees of
freedom of the individual elements, which may be overly idealistic at the mesoscales
of interest here.

We have shown that, for the important case of a linear polymer, the Euler–
Langevin model can be understood and parameterized in simple physical terms. Each
rigid body can be taken as a model for an individual monomer unit, and the inter-
nal junction coordinates provide a direct, complete, and independent measure of the
relative, three-dimensional displacement and rotation between adjacent units. In the
quadratic approximation, the potential energy can be parameterized by the ground-
state values of these junction coordinates, along with a symmetric, positive-definite
elastic stiffness matrix associated with deformations from the ground state. While
the linearity of the polymer guarantees that the degrees of freedom at each junc-
tion are independent in the sense of there being no kinematic constraint between
them, it is nevertheless perfectly possible that the stiffness matrix might not be block-
diagonal; that is, there could be forces and moments of interaction between nonad-
jacent monomer units. In contrast, the kinetic energy is parameterized by standard
mass and inertia parameters associated with each individual monomer unit, leading
to a block-diagonal generalized mass matrix for the system, which is also necessarily
symmetric and positive-definite.

We have also shown that, under the assumption of thermal equilibrium, the com-
plete set of potential and kinetic energy parameters in a quadratic Euler–Langevin
model can be explicitly characterized in terms of expected values of certain kinematic
functions. The expected values could be approximated by averages over static data as
would be obtained from X-ray diffraction studies of crystal structures or over dynamic
data as would be obtained from atomistic-type molecular dynamics simulations. The
characterizations derived here are properly consistent with the canonical measure on
full phase space and involve a Jacobian factor, which causes the measure on configura-
tion space to be non-Gaussian even though the potential energy is quadratic. While
such factors are often ignored, or equivalently assumed to be constant, we include
them here. Moreover, because they are entirely geometric and explicit functions of
the internal coordinates, these factors can be included without additional effort in any
scheme, numerical or experimental, to estimate material parameters. In applications
to DNA, a challenging problem is to determine estimates for the potential energy and
mass parameters in various different Euler–Langevin models as a function of the base-
pair sequence. Large data sets of molecular dynamics simulations have been prepared
to this end [4, 10, 32]. Parameter extraction from the equilibrium distribution of
an assumed stationary molecular dynamics times series has recently been performed
using the theory outlined here; see [30] for details.

We stress that the structure and interpretation of our basic Euler–Langevin model
were assumed from the outset. It is an interesting question whether such a model could
be derived from first principles by considering a rigid body coupled to a heat bath
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of water molecules. A derivation along these lines is likely to be formidable due in
part to the need for defining an appropriate coupling between the body and bath. We
have not attempted any such derivation here, but note that some results pertaining
to the free, unforced motion of a convex body in an ideal gas heat bath can be found
in [12]. Moreover, we remark that, although our model is of the multiplicative-noise
type, there is no loss of generality in adopting an Itô interpretation. Indeed, due to
the form of the coefficients in the model, the Itô and Stratonovich interpretations are
equivalent. In the high-friction limit of the model, however, the two interpretations
would in general be distinct.

Acknowledgment. The authors thank the reviewers for their helpful comments.
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[7] O. Cépas and J. Kurchan, Canonically invariant formulation of Langevin and Fokker-Planck
equations, Eur. Phys. J. B Condens. Matter Phys., 2 (1998), pp. 221–223.

[8] S. Chandrasekhar, Stochastic problems in physics and astronomy, in Selected Papers on Noise
and Stochastic Processes, N. Wax, ed., Dover, New York, 1954, pp. 3–92.

[9] B. Coleman, Theory of sequence-dependent DNA elasticity, J. Chem. Phys., 118 (2003), pp.
7127–7140.

[10] S. Dixit, D. Beveridge, D. Case, T. Cheatham, III, E. Giudice, F. Lankas, R. Lavery,

J. Maddocks, R. Osman, H. Sklenar, K. Thayer, and P. Varnai, Molecular dynam-
ics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II:
Sequence context effects on the dynamical structures of the 10 unique dinucleotide steps,
Biophys. J., 89 (2005), pp. 3721–3740.

[11] M. Doi and S. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New
York, 1986.

[12] D. Durr, S. Goldstein, and J. Lebowitz, A mechanical model for the Brownian motion of
a convex body, Z. Wahrsch. Verw. Gebiete, 62 (1983), pp. 427–448.

[13] P. Flory, Statistical Mechanics of Chain Molecules, Wiley-Interscience, New York, 1969.
[14] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Appli-

cations, Academic Press, London, 2002.
[15] P. Furrer, R. Manning, and J. Maddocks, Multiple equilibria in DNA rings, Biophys. J.,

79 (2000), pp. 116–136.
[16] G. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with

applications, in Handbook of Mathematical Fluid Mechanics, Vol. 1, North–Holland, Am-
sterdam, 2002, pp. 653–792.

[17] T. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New York, 1988.
[18] C. Gardiner, Handbook of Stochastic Methods, 2nd ed., Springer-Verlag, Berlin, 1985.
[19] H. Goldstein, Classical Mechanics, 2nd ed., Addison–Wesley, Reading, MA, 1980.
[20] O. Gonzalez and J. Maddocks, Extracting parameters for base-pair level models of DNA

from molecular dynamics simulations, Theor. Chem. Acc., 106 (2001), pp. 76–82.
[21] A. Grosberg and A. Khokhlov, Statistical Physics of Macromolecules, AIP Press, New York,

1994.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1052 J. WALTER, O. GONZALEZ, AND J. H. MADDOCKS

[22] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications
to Particulate Media, Kluwer Academic Publishers, Boston, 1983.

[23] C. Hartmann,Model Reduction in Classical Molecular Dynamics, Ph.D. thesis, Free University
Berlin, Berlin, Germany, 2007.

[24] S. Harvey and J. Garcia de la Torre, Coordinate systems for modeling the hydrodynamic
resistance and diffusion coefficients of irregularly shaped rigid macromolecules, Macromol-
ecules, 13 (1980), pp. 960–964.

[25] R. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan
den Rijn, The Netherlands, Germantown, MD, 1980.

[26] P. Hughes, Spacecraft Attitude Dynamics, Wiley, Boston, 1983.
[27] W. Kerr and A. Graham, Generalized phase space version of Langevin equations and asso-

ciated Fokker-Planck equations, Eur. Phys. J. B Condens. Matter Phys., 15 (2000), pp.
305–311.

[28] S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Applications,
Butterworth–Heinemann, Boston, 1991.

[29] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys., 29 (1966), pp. 225–284.
[30] F. Lankaš, O. Gonzalez, L. Heffler, G. Stoll, M. Moakher, and J. Maddocks, On

the parameterization of rigid base and basepair models of DNA from molecular dynamics
simulations, Phys. Chem. Chem. Phys., 11 (2009), pp. 10565–10588.

[31] A. Lasota and M. Mackey, Chaos, Fractals and Noise, Appl. Math. Sci. 97, Springer-Verlag,
New York, 1994.

[32] R. Lavery, K. Zakrzewska, D. Beveridge, T. Bishop, D. Case, T. Cheatham, III, S.

Dixit, B. Jayaram, F. Lankas, C. Laughton, J. Maddocks, A. Michon, R. Osman,

M. Orozco, A. Perez, T. Singh, N. Spackova, and J. Sponer, A systematic molecular
dynamics study of nearest-neighbor effects on base pair and base pair step conformations
and fluctuations in B-DNA, Nucleic Acids Res., 38 (2010), pp. 299–313.

[33] A. Leach, Molecular Modelling: Principles and Applications, Prentice–Hall, New York, 2001.
[34] M. Liao, Random motion of a rigid body, J. Theoret. Probab., 10 (1997), pp. 201–211.
[35] R. Manning, J. Maddocks, and J. Kahn, A continuum rod model of sequence-dependent

DNA structure, J. Chem. Phys., 105 (1996), pp. 5626–5646.
[36] J. Mattingly and A. Stuart,Geometric ergodicity of some hypo-elliptic diffusions for particle

motions, Markov Process. Related Fields, 8 (2002), pp. 199–214.
[37] J. Mattingly, A. Stuart, and D. Higham, Ergodicity for SDEs and approximations: Locally

Lipschitz vector fields and degenerate noise, Stochastic Process. Appl., 101 (2002), pp.
185–232.

[38] J. McCammon and S. Harvey, Dynamics of Proteins and Nucleic Acids, Cambridge Univer-
sity Press, Cambridge, UK, 1987.

[39] J. McConnell, Rotational Brownian Motion and Dielectric Theory, Academic Press, London,
1980.

[40] J. Munkres, Analysis on Manifolds, Addison–Wesley, New York, 1991.
[41] B. Øksendal, Stochastic Differential Equations, 5th ed., Universitext, Springer-Verlag, Berlin,

1998.
[42] W. Olson, A. Gorin, X. Lu, L. Hock, and V. Zhurkin, DNA sequence-dependent deforma-

bility deduced from protein-DNA crystal complexes, Proc. Natl. Acad. Sci. USA, 95 (1998),
pp. 11163–11168.
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