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THEOREMS ON THE STOKESIAN HYDRODYNAMICS OF A RIGID
FILAMENT IN THE LIMIT OF VANISHING RADIUS\ast 

OSCAR GONZALEZ\dagger 

Abstract. The transport dynamics of a rigid filament in a slow viscous flow modeled by the
Stokes equations in a three-dimensional domain are considered. The relation between the transport
velocities, external loads, and far-field flow around the filament is studied in the singular limit as the
radius of the filament tends to zero, and the filament collapses to a curve, which may be an open arc or
closed loop. Beginning from an initially implicit relation defined through the solution of a boundary-
value problem, a potential theoretic representation is used to show that the relation between the
transport velocities, external loads, and far-field flow remains well defined and remarkably becomes
explicit in the limit of vanishing radius. Theorems establishing the form of this relation in different
cases are stated, proved, and illustrated with examples. Special considerations at the ends of the
filament when the limiting curve is open are discussed throughout.
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1. Introduction. A small body or particle suspended in a viscous fluid will
be transported from one location to another depending on the motion of the sur-
rounding fluid, the action of external loads, and the size and shape of the body. An
understanding of such transport, and of ways to control it, is fundamental to many
areas of science and technology. Applications include the study of colloids, from the
traditional theory [14, 22] to the emerging areas of actively-steered colloids [30] and
magnetic swimmers [29], experimental methods for probing the structure of macro-
molecules such as proteins and DNA [3], and the modeling of various devices for the
separation and analysis of particles in microfluidic systems [23], including the opti-
mal design of microrobots in connection with targeted drug delivery [20], and more
recently the design of devices for the capturing and counting of molecular markers of
cancer and other diseases [17]. Indeed, the ability to drive a suspended body in intri-
cate and programmable ways based on its shape has countless potential applications
in biological and chemical analysis [33].

We consider the case in which the transport dynamics of a body are modeled by
the Stokes equations for the viscous fluid in the exterior three-dimensional domain
around the body, together with load balance relations for the quasi-static motion of
the body within the fluid. The Stokes equations for the fluid are completed by a
no-slip boundary condition on the surface of the body, and a prescribed flow far from
the body. In this model the fluid motion is assumed to be nearly steady and slow,
with small velocity gradients, so that inertial effects within the fluid can be ignored.
Similarly, the body motion is assumed to be nearly steady and slow, so that the
inertia of the body can also be ignored. Moreover, the body is assumed to be rigid, so
that its associated equations of motion reduce to balance equations for the net force
and torque. We note that a model for a single body in an infinite fluid is not only
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552 OSCAR GONZALEZ

relevant for understanding the behavior of a rare or distinguished particle in a fluid
sample, but also provides the basis for understanding the behavior of a distribution
of particles at low concentrations [3].

We consider two basic types of transport problems for a body in a fluid with
a prescribed far-field flow. In the first problem, the body velocities are given, and
the external loads required to drive the body through the fluid are sought. In the
second problem, the external loads are given, and the resulting velocities imparted
to the body by the loads and fluid are sought. The general relation between the
loads, velocities, and far-field flow in these problems is provided by the system of
equations outlined above. Indeed, the relation is implicitly defined by the solution
operator for the Stokes boundary-value problem in an exterior, three-dimensional
domain. Closed-form solutions are generally unavailable, and numerical methods
are required to approximate the transport properties of a body of a given shape
[1, 2, 9, 26].

Here we focus our attention on bodies whose shape is that of a filament or tube,
which refers to a cylindrical body of a given radius, whose axis is a general space curve.
We study the Stokes equations in the exterior three-dimensional domain around such
a body and consider the singular limit as the radius vanishes and the body collapses
to a curve. We show that, under mild assumptions, the relation between transport
velocities, external loads, and the far-field flow remains well defined and remarkably
becomes explicit in this limit; theorems establishing the form of this relation in differ-
ent cases are stated and proved. Hence the transport dynamics of an infinitesimally
thin, rigid filament can be determined without direct consideration of the exterior
Stokes boundary-value problem. We illustrate the results with two examples. In the
first, we consider a body whose axial curve is straight (so the body is a cylinder) in a
homogeneous far-field flow, and explicitly characterize the translational and rotational
velocities imparted to the body by the flow in the infinitesimally thin or zero-radius
limit. In the second, we consider a body whose axial curve is helical, and compare the
transport properties in the zero-radius limit with those for positive radius obtained
by a direct numerical treatment of the three-dimensional boundary-value problem.

The results derived here are of intrinsic mathematical interest and provide a
contribution to the theory of slow viscous flow. While our results pertain only to
the case of a vanishing radius, they may be useful in the study and design of bodies
of small radius. For instance, the explicit relations derived herein may be useful
as an initial approximation in optimal design and related problems for thin bodies.
Also, here we only consider the case of a rigid body; the case of a flexible body is
more difficult and outside the scope of the present work. The proof of our results is
based on a tedious analysis of weakly singular integrals in a fully three-dimensional
boundary integral formulation of the Stokes equations. Other approaches to our
results could be contemplated. For instance, rather than begin from a fully three-
dimensional formulation, one may instead begin from a reduced theory for Stokes flow
around thin bodies, such as the resistive-force or slender-body theories [18, 19, 21, 24].
However, since these theories are only approximate, we opt to work with the exact
three-dimensional theory to avoid any issues with approximation errors and their
behavior in a singular limit. Indeed, the case when the axial curve of the body is an
open arc, as opposed to a closed loop, gives rise to special considerations at the ends
or extremities of the body. Various remarks on these issues will be made throughout.
Although not pursued here, the relation between slender-body type theories and three-
dimensional boundary integral formulations of Stokes flows is a topic of significant
interest; see [24, 27, 28] and references therein.
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STOKESIAN HYDRODYNAMICS OF A RIGID FILAMENT 553

2. Statement of main results. Here we outline the Stokes equations and in-
troduce the flow quantities and notation that are needed to state the main results.
For further background, see [14, 22, 25].

2.1. Stokes equations, domain. We consider the slow motion of a body in an
incompressible viscous fluid in three-dimensional space. We denote the body domain
by D - \subset \BbbR 3, the fluid domain by D+ \subset \BbbR 3, and the boundary between them by
\Gamma \subset \BbbR 3. The Stokes equations that describe the velocity field u+ : D+ \rightarrow \BbbR 3 and
pressure field p+ : D+ \rightarrow \BbbR of the fluid flow around the body are, in nondimensional
form,

(2.1)
u+i,jj(x) = p+,i (x),

u+i,i(x) = 0
or

\Delta u+(x) = \nabla p+(x),
\nabla \cdot u+(x) = 0,

x \in D+.

Equation (2.1)1 is the local balance law of linear momentum for the fluid in the
absence of an external force field, and (2.1)2 is the local incompressibility constraint.
We assume that D - \cup \Gamma \cup D+ fills all of three-dimensional space, that D - and D+

are both open and connected, and that D - is bounded. Moreover, we assume that
\Gamma is closed and bounded, and additionally is a Lyapunov surface [12], so that the
techniques of classic potential theory for the Stokes equations may be applied. Briefly
stated, a surface is Lyapunov if it has no self-intersections, is differentiable, and has
a H\"older continuous outward unit normal field.

Unless mentioned otherwise, all vector quantities are referred to a single frame
and indices take values from one to three. Moreover, we use the usual conventions
that a pair of repeated indices implies summation, and that indices appearing after a
comma denote partial derivatives. We assume here and throughout that all quantities
have been nondimensionalized using a characteristic length scale \ell > 0, velocity scale
\vargamma > 0, and force scale \mu \vargamma \ell > 0, where \mu is the absolute viscosity of the fluid. The
dimensional quantities corresponding to \{ x, u+, p+\} are \{ \ell x, \vargamma u+, \mu \vargamma \ell  - 1p+\} .

2.2. Boundary, decay conditions. For given fields v : \Gamma \rightarrow \BbbR 3, u\infty : \BbbR 3 \rightarrow \BbbR 3

and p\infty : \BbbR 3 \rightarrow \BbbR , we consider the boundary conditions

(2.2)
u+i (x) = vi(x), x \in \Gamma ,
u+i (x), p

+(x) \rightarrow u\infty i (x), p\infty (x), | x| \rightarrow \infty .

Equation (2.2)1 is a no-slip condition which states that the fluid and body velocities
coincide at each point of the boundary, and (2.2)2 is an asymptotic condition which
states that the fluid velocity and pressure tend to prescribed values at infinity. We
assume that the fields (u\infty , p\infty ) are twice continuously differentiable and satisfy the
Stokes equations (2.1) in all of space. Moreover, we use the notation in (2.2)2 to
denote the following decay conditions, under which existence and uniqueness results
for the exterior Stokes system can be established [6, 15, 25]:

(2.3)
u+i (x) - u\infty i (x) = O(| x|  - 1), u+i,j(x) - u\infty i,j(x) = O(| x|  - 2),

p+(x) - p\infty (x) = O(| x|  - 2) as | x| \rightarrow \infty .

We assume that the body domain D - is rigid and hence can only undergo rigid-
body motion. In this case, the vector field v in (2.2)1 takes the general form

(2.4) vi(x) = Vi + \varepsilon ijk\Omega j(xk  - ck) or v(x) = V +\Omega \times (x - c),

where \varepsilon ijk is the standard permutation symbol. Here V \in \BbbR 3 is the linear velocity of
a given reference point c \in \BbbR 3, and \Omega \in \BbbR 3 is the angular velocity of the body.
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554 OSCAR GONZALEZ

2.3. Stress, traction, loads. The stress field associated with a pair (u+, p+)
is a function \sigma + : D+ \rightarrow \BbbR 3\times 3 defined by

(2.5) \sigma +
ij(x) =  - p+(x)\delta ij + u+i,j(x) + u+j,i(x),

where \delta ij is the standard Kronecker delta symbol. For each x \in D+ the stress tensor
\sigma + is symmetric in the sense that \sigma +

ij = \sigma +
ji. To highlight the dependence of \sigma + on

the pair (u+, p+) we use the notation \sigma + = \sigma [u+, p+].
The traction field h+ : \Gamma \rightarrow \BbbR 3 exerted by the exterior fluid on the body surface

(force per unit area) is defined by

(2.6) h+i (x) = \sigma +
ij(x)\nu j(x),

where \nu : \Gamma \rightarrow \BbbR 3 denotes the outward unit normal field. The resultant force F \in \BbbR 3

and torque T \in \BbbR 3, about the reference point c, associated with the traction field are

(2.7) Fi =

\int 
\Gamma 

h+i (x) dAx, Ti =

\int 
\Gamma 

\varepsilon ijk(xj  - cj)h
+
k (x) dAx,

where dAx denotes an infinitesimal area element at x \in \Gamma . To highlight the depen-
dence of F and T on the traction field h+ = \sigma +\nu and point c, we use the notation
F = F [h+] and T = T [h+, c].

2.4. Load balance relations. When the body domain D - is rigid and sub-
ject to external resultant loads (F ext, T ext), the slow quasi-static motion of the body
through the fluid is described by the relations

(2.8) F + F ext = 0, T + T ext = 0.

Here (F, T ) are the resultant force and torque of the fluid on the body as defined in
(2.7). These relations express the balance laws of linear and angular momentum for
the body, when inertial effects are ignored. These relations are assumed to hold for
any choice of the reference point c, which serves as the reference for all loads and
velocities as indicated in (2.7) and (2.4).

2.5. Basic problems. We consider two basic problems for the slow motion of a
rigid body through a viscous fluid defined by (2.1)--(2.8).

The resistance problem. Given (V,\Omega , u\infty , p\infty ), find (F ext, T ext, u+, p+). That is,
given prescribed body velocities (V,\Omega ) and a prescribed far-field flow (u\infty , p\infty ), find
the external loads (F ext, T ext) required to propel the body and the resulting flow
(u+, p+) in the surrounding vicinity.

The mobility problem. Given (F ext, T ext, u\infty , p\infty ), find (V,\Omega , u+, p+). That is,
given prescribed external loads (F ext, T ext) and a prescribed far-field flow (u\infty , p\infty ),
find the resulting body velocities (V,\Omega ) and the resulting flow (u+, p+) in the sur-
rounding vicinity.

Existence and uniqueness results for both of the above problems can be established
using potential theoretic techniques under the assumptions that \Gamma is closed, bounded,
and Lyapunov; such results will be outlined later in Lemma 4.1. The representation of
solutions in terms of potentials shows that the difference fields u+  - u\infty and p+  - p\infty 

will be smooth in D+, but may possess only a finite number of bounded derivatives
in D+ \cup \Gamma depending on the precise smoothness of the boundary \Gamma .

The pure resistance and pure mobility problems corresponding to the case of a
vanishing far-field flow, (u\infty , p\infty ) = (0, 0), are of special interest. In this case, there is
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an invertible linear map between (V,\Omega ) and (F ext, T ext) that characterizes the drag
properties of the body as it is driven through a resting fluid. In contrast, the free
mobility problem corresponding to the case of vanishing external loads, (F ext, T ext) =
(0, 0), is also of special interest. In this case, there is a linear map from (u\infty , p\infty ) to
(V,\Omega ) that characterizes how a body is transported by a moving fluid.

The linear maps described above are functions of the body surface \Gamma and the
reference point c, and are implicitly defined by the system of equations in (2.1)--(2.8).
Below we show that exact, explicit expressions for these maps can be obtained for
tubular surfaces in the limit of vanishing tube radius.

2.6. Main results. We consider a body whose bounding surface \Gamma r is a uniform,
cylindrical tube of radius r > 0. We suppose that \Gamma r is centered on an axial curve
\gamma (s) \in \BbbR 3, which is parameterized by an arclength coordinate s \in [ - L,L], so that
the total arclength is 2L > 0. The curve \gamma may be open or closed; if open, we
suppose that \Gamma r is capped by hemispheres of radius r centered at the endpoints. The
assumption of a uniform radius along the axis of the tube, along with hemispherical
caps at the ends in the open case, is made for simplicity. Other types of tubular
geometries could be considered, for example, the size and shape of the cross-sections
could be nonuniform, and the caps at the ends could be nonhemispherical, and the
surface could collapse onto its axial curve in different uniform and nonuniform ways,
but such generalizations are not pursued here.

We consider the decomposition \Gamma r = \Gamma r, - \cup \Gamma r,crv \cup \Gamma r,+. Here \Gamma r,crv is the cylin-
drical portion of the surface corresponding to \gamma (s) with s \in ( - L,L), and \Gamma r,\pm denotes
the remaining portions of the surface associated with the points \gamma (\pm L). Specifically,
\Gamma r,\pm are hemispheres of radius r centered at \gamma (\pm L) in the case when \gamma is open; oth-
erwise, \Gamma r,\pm are (coincident) circles of radius r centered at \gamma (\pm L) when \gamma is closed.
We assume that \gamma is non-self-intersecting, except at the endpoints in the closed case,
and that \gamma \prime is Lipschitz continuous. Among other things, these conditions imply that
\Gamma r is a well-defined Lyapunov surface for all r \in (0, a\gamma ). Here a\gamma > 0 denotes the
injectivity radius (or global radius of curvature) of the curve \gamma [10]; it is defined as
the supremum value of r for which the tubular surface \Gamma r is non-self-intersecting.

We consider the system (2.1)--(2.8) for the surface \Gamma r, with fixed data of either
the resistance or mobility type as described above. For each r \in (0, a\gamma ), the system
is uniquely solvable, and there is a unique flow (u+, p+) in the exterior domain D+

r

defined by \Gamma r. This flow has a stress field \sigma + in D+
r , and a traction field h+ = \sigma +\nu 

on \Gamma r. To state our results, it will be convenient to consider a rescaled traction field,
which is defined on the cylindrical portion of the surface by

(2.9) \Phi (r, x) = | r ln(r)| h+(x), r \in (0, a\gamma ), x \in \Gamma r,crv,

and, in the open case, on the hemispherical caps by

(2.10) \Phi (r, x) = rh+(x), r \in (0, a\gamma ), x \in \Gamma r, - \cup \Gamma r,+.

The rescaled traction field \Phi contains information on a family of solutions pa-
rameterized by r \in (0, a\gamma ). We note that the factors of r| ln(r)| and r in the above
expressions are distinguished scalings that reflect the growth rate of the traction field
on the different portions of the surface in the singular limit as r \rightarrow 0+. These scalings
arise naturally in the analysis of the relevant boundary integral operators, and they
can also be motivated based on local solutions of the Stokes equations around cylin-
drical and spherical geometries. In our developments, we will assume that the family
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of flows (u+, p+) parameterized by r is sufficiently regular in the following sense: the
stress field \sigma + is continuous in D+

r \cup \Gamma r for each r, and the rescaled traction field \Phi is
bounded on the domain \cup r\Gamma r and H\"older continuous on the domain \cup r\Gamma r,crv. In the
case when \gamma is open, different assumptions about the scaling of the traction on the
end-caps in (2.10) could be considered; see the discussion after Lemma 4.4.

Given the axial curve \gamma and reference point c, we consider a matrix G \in \BbbR 6\times 6 of
the form

(2.11) G =

\biggl( 
G1 G3

G2 G4

\biggr) 
,

where G1, . . . , G4 \in \BbbR 3\times 3 are matrices defined by
(2.12)

G1 =

\int L

 - L

g(s) ds, G2 =

\int L

 - L

[(\gamma (s) - c)\times ]g(s) ds,

G3 =

\int L

 - L

g(s)[(\gamma (s) - c)\times ]T ds, G4 =

\int L

 - L

[(\gamma (s) - c)\times ]g(s)[(\gamma (s) - c)\times ]T ds.

Here g(s) \in \BbbR 3\times 3 is defined by g(s) = Id  - 1
2 (\gamma 

\prime \otimes \gamma \prime )(s), where Id \in \BbbR 3\times 3 is the
identity, \gamma \prime (s) \in \BbbR 3 is the unit tangent to \gamma (s), and \otimes denotes the vector outer
product; in components, we have (a\otimes b)ij = aibj for any a, b \in \BbbR 3. Moreover, for any
vector \eta \in \BbbR 3 we use the notation [\eta \times ] \in \BbbR 3\times 3 to denote the unique skew-symmetric
matrix with the property that [\eta \times ]v = \eta \times v for all v \in \BbbR 3; in components, we have
[\eta \times ]ij = \varepsilon ikj\eta k, or more explicitly

(2.13) [\eta \times ] =

\left(  0  - \eta 3 \eta 2
\eta 3 0  - \eta 1
 - \eta 2 \eta 1 0

\right)  .

The matrix function g represents a simple, anisotropic scaling in directions that are
normal and tangent to the curve \gamma ; this type of scaling arises naturally from a local
property of the fundamental solution of the Stokes equations, and has appeared in
some of the earliest studies [4, 11, 13].

Our first result pertains to the free mobility problem for a body whose boundary
is a tubular surface as described. The result shows that, under suitable conditions,
the linear and angular velocities imparted to the body by a given far-field flow have
a well-defined limit as the tube radius vanishes.

Theorem 2.1. Let an axial curve \gamma , reference point c, and far-field flow (u\infty , p\infty )
be given. For any radius r \in (0, a\gamma ), let (Vr, \Omega r) denote the body velocities in the free
mobility problem for the tubular surface \Gamma r. If \gamma \prime is Lipschitz continuous, \sigma + is
continuous in D+

r \cup \Gamma r, and \Phi is bounded in \cup r\Gamma r and H\"older continuous in \cup r\Gamma r,crv,
then

(2.14) lim
r\rightarrow 0+

G

\biggl( 
Vr
\Omega r

\biggr) 
=

\Biggl( \int L

 - L
g(s)u\infty (\gamma (s)) ds\int L

 - L
[(\gamma (s) - c)\times ]g(s)u\infty (\gamma (s)) ds

\Biggr) 
.

Thus, under mild conditions, the product G(Vr, \Omega r) has a limit as the tube ra-
dius r vanishes, and the limiting value is completely characterized by the axial curve
\gamma , reference point c, and far-field velocity u\infty . When the matrix G is invertible,
the expression in (2.14) completely characterizes all components of limr\rightarrow 0+ Vr and
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limr\rightarrow 0+ \Omega r. On the other hand, when the matrix G is not invertible, the expression
in (2.14) characterizes the components of limr\rightarrow 0+ Vr and limr\rightarrow 0+ \Omega r only up to the
nullspace of G, and there is an associated compatibility condition on the data. As
discussed below, G fails to be invertible only when \gamma is a line segment, and the system
in (2.14) can be reduced to a simple form in this degenerate case.

Notice that G has a structure similar to that of a rotational inertia matrix for a
material curve \gamma , with the symmetric, positive-definite matrix g playing the role of
a mass density. Following this observation, it is straightforward to show that G is
symmetric and positive-definite for arbitrary \gamma and c, provided that \gamma is not a line
segment. In the degenerate case of a line segment, the matrix G is only semi-positive-
definite, with a one-dimensional nullspace, and the compatibility condition associated
with (2.14) is trivially satisfied.

The degenerate situation of a line segment can be illustrated by considering an
orthonormal frame in which one of the basis vectors is parallel to the segment, and
the reference point c is taken as the midpoint. In this case, the matrix g is constant
and diagonal, G2 and G3 will vanish, G1 will be diagonal with positive entries, and
G4 will be diagonal with two positive and one zero entry. The expression in (2.14)
will determine all three components of limr\rightarrow 0+ Vr, along with the two components of
limr\rightarrow 0+ \Omega r perpendicular to the line; only the one component of limr\rightarrow 0+ \Omega r parallel
to the line is undetermined. A separate, more detailed analysis would be required to
characterize any limiting value of this component; however, since it plays no role in
the kinematics of a line segment, we do not pursue that here.

The result in (2.14) characterizes the slow motion of an infinitesimally thin, rigid
filament as it is freely transported by advection in a given flow u\infty . Specifically, for
any given shape of the filament as described by the curve \gamma , and any given body
reference point c, the vectors V0 := limr\rightarrow 0+ Vr and \Omega 0 := limr\rightarrow 0+ \Omega r would be the
linear and angular velocities of the infinitesimally thin body about the point c. In
view of (2.14) and (2.11), these velocities satisfy the relations

G1V0 +G3\Omega 0 =

\int L

 - L

g(s)u\infty (\gamma (s)) ds,

G2V0 +G4\Omega 0 =

\int L

 - L

[(\gamma (s) - c)\times ]g(s)u\infty (\gamma (s)) ds.

(2.15)

Notice that these equations could be used to generate the translational and rotational
trajectory of the body as it is transported by the flow, and that they can be assembled
and solved for the body velocities without any explicit consideration of the exterior
Stokes boundary-value problem outlined in (2.1)--(2.8).

The integrals on the right-hand side of (2.15) can be interpreted as weighted
zeroth- and first-order moments of the velocity field u\infty with respect to the curve \gamma 
and point c. It is interesting to note that V0 and \Omega 0 will, in general, depend on both
of these moments, and it may not be possible to decouple the equations. Indeed, in
view of (2.12) and the fact that g is not a scalar, there may be no choice of reference
point c for which the off-diagonal blocks G2 and G3 vanish. One simple case in which
the equations can be decoupled is the degenerate case of a line segment as outlined
above; it is unlikely that the equations decouple in any other case.

Our second result pertains to the pure resistance problem for a body whose bound-
ary is a tubular surface as described. The result shows that, under suitable conditions,
the external force and torque required to propel the body with given linear and angular
velocities vanish at well-defined rates as the tube radius vanishes.
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558 OSCAR GONZALEZ

Theorem 2.2. Let an axial curve \gamma , reference point c, and body velocities (V,\Omega )
be given. For any radius r \in (0, a\gamma ), let (F

ext
r , T ext

r ) denote the external loads in the
pure resistance problem for the tubular surface \Gamma r. If \gamma 

\prime is Lipschitz continuous, \sigma + is
continuous in D+

r \cup \Gamma r, and \Phi is bounded in \cup r\Gamma r and H\"older continuous in \cup r\Gamma r,crv,
then

(2.16) lim
r\rightarrow 0+

| ln(r)| 
\biggl( 
F ext
r

T ext
r

\biggr) 
= 4\pi G

\biggl( 
V
\Omega 

\biggr) 
.

Thus, under mild conditions, the product | ln(r)| (F ext
r , T ext

r ) has a limit as the
tube radius r vanishes, and the limiting value is completely characterized by the axial
curve \gamma , reference point c, and body velocities (V,\Omega ). Since | ln(r)| \rightarrow \infty , it follows
that (F ext

r , T ext
r ) \rightarrow (0, 0) as r \rightarrow 0+. The limiting path along which the force and

torque vanish can be read directly from (2.16), namely (F ext
r , T ext

r ) \rightarrow 4\pi 
| ln(r)| G(V,\Omega )

as r \rightarrow 0+.
In general, for the pure resistance and pure mobility problems, the external loads

and body velocities are linearly related through a symmetric, positive-definite Stokes
resistance matrix R \in \BbbR 6\times 6 and mobility matrix M = R - 1 \in \BbbR 6\times 6 defined such that
(F ext, T ext) = R(V,\Omega ) and (V,\Omega ) =M(F ext, T ext) [14, 22]. For the case of a tubular
surface as considered here, these matrices depend on the tube radius so that R = Rr

and M = Mr, and the result in (2.16) implies Rr \rightarrow 4\pi 
| ln(r)| G and, provided G is

invertible, Mr \rightarrow | ln(r)| 
4\pi G - 1, as r \rightarrow 0+.

The above results may be useful for comparing hydrodynamic properties of thin
filaments. For example, the ratio of entries of Rr (resistance coefficients) or entries of
Mr (mobility coefficients) could be compared between two different filament shapes,
or a given filament shape to itself. In view of the above results, these ratios tend to
well-defined values determined by the matrix G in the infinitesimally thin limit. We
remark that this is a singular limit for the exterior Stokes boundary-value problem
and would be difficult to access numerically.

A more general result that contains Theorems 2.1 and 2.2 as special cases can also
be stated. It says that, if the limiting value of either velocities or loads are prescribed,
then the limiting value of the other satisfies a simple relation that is explicit in the
axial curve and reference point of the body.

Theorem 2.3. Let an axial curve \gamma , reference point c, and far-field flow (u\infty , p\infty )
be given. For any radius r \in (0, a\gamma ), let (Vr, \Omega r) and (F ext

r , T ext
r ) denote the body veloc-

ities and external loads in a resistance or mobility problem for the tubular surface \Gamma r.
Assume that \gamma \prime is Lipschitz continuous, \sigma + is continuous in D+

r \cup \Gamma r, and \Phi is bounded
in \cup r\Gamma r and H\"older continuous in \cup r\Gamma r,crv. If either of the limits limr\rightarrow 0+(Vr, \Omega r) or
limr\rightarrow 0+ | ln(r)| (F ext

r , T ext
r ) exists, then so does the other, and

lim
r\rightarrow 0+

| ln(r)| 
4\pi 

\biggl( 
F ext
r

T ext
r

\biggr) 
= lim

r\rightarrow 0+
G

\biggl( 
Vr
\Omega r

\biggr) 
 - 

\Biggl( \int L

 - L
g(s)u\infty (\gamma (s)) ds\int L

 - L
[(\gamma (s) - c)\times ]g(s)u\infty (\gamma (s)) ds

\Biggr) 
.

(2.17)

The above result can be viewed as a fundamental limiting relation between the
main quantities in a resistance or mobility problem: the far-field flow, body velocities,
and external loads. Whereas the body velocities (Vr, \Omega r) may achieve any finite
value in the limit, the external loads (F ext

r , T ext
r ) must necessarily vanish in order

for | ln(r)| (F ext
r , T ext

r ) to achieve a finite value, and we note that this value would
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be zero for any loads which vanish faster than 1/| ln(r)| . This observation implies a
certain stability or robustness for the general mobility problem: the result in Theorem
2.1 holds not only in the free case with prescribed loads (F ext

r , T ext
r ) \equiv (0, 0) for

all r \in (0, a\gamma ), but also in more general cases with (F ext
r , T ext

r ) = o(1/| ln(r)| ) as
r \rightarrow 0+, for instance when the loads are proportional to the volume enclosed by
\Gamma r, or proportional to the surface area of \Gamma r. For completeness, we note that the
result in Theorem 2.2 for the resistance problem follows from the above relation when
the velocities are fixed (Vr, \Omega r) \equiv (V,\Omega ) for all r \in (0, a\gamma ), and the far-field flow is
assumed to be trivial, so that u\infty \equiv 0. Alternatively, when (Vr, \Omega r) \equiv (0, 0) and
u\infty \not \equiv 0, we note that (2.17) provides information on the external loads required to
hold a body immobilized in a given far-field flow.

The proof of our results is based on a tedious analysis of weakly singular integrals
in a fully three-dimensional boundary integral formulation of the Stokes equations.
The main technical assumption is that of boundedness and H\"older continuity for the
rescaled traction field \Phi defined in (2.9) and (2.10), which is a growth and regularity
assumption for the exterior Stokes problem in the singular limit as a three-dimensional
body collapses to a curve. In particular, while the pointwise traction field may grow
unbounded, we assume that a rescaled version of it is well behaved in the limit. Also,
here we only consider the case of a rigid body; the case of a flexible body is more
difficult and outside the scope of the present work.

We remark that the case of a three-dimensional body collapsing to a curve is
rather special among a natural family of singular problems. For example, we could
also consider a body collapsing in a well-defined way to a point or to a sheet. In the
case of a point, the hydrodynamic properties of the limiting body would have a local
and explicit dependence on the far-field flow: the limiting body would simply translate
as a fluid particle. In the case of a sheet, the hydrodynamic properties of the limiting
body would have a nonlocal and implicit dependence on the far-field flow and limiting
geometry: the hydrodynamic properties would be characterized by a boundary-value
problem similar to the case of a voluminous body. In contrast, the case of a body
collapsing to a curve is special in the sense that the hydrodynamic properties of the
limiting body has a nonlocal but completely explicit dependence on the far-field flow
and limiting geometry.

Other approaches to our results could also be considered. For example, rather
than begin from a fully three-dimensional formulation, one may instead begin from
a reduced theory for Stokes flow around thin bodies, such as the resistive-force or
slender-body theories [18, 19, 21, 24]. These theories provide an approximate relation
between a pointwise force and a pointwise velocity distribution for a thin body of
small radius. Resistive-force theory provides a simple local relation between the force
and velocity distributions, whereas slender-body theory provides a nonlocal integral
relation. In these approximate relations, the pointwise force and velocity distributions
are assumed to depend only on the coordinate along the central axis of the body, and
no-slip boundary conditions may or may not be satisfied at all points of, or even
on, the body surface. While the approximate relations are expected to hold for thin
bodies, there is, in general, no explicit knowledge of the errors, or of how these errors
may be distributed along the central axis up to the ends. Indeed, the analysis of errors
is delicate since the limit of vanishing radius is a singular limit for the exterior Stokes
problem, and the resistive-force and slender-body approximations involve pointwise
quantities that may only converge in a nonuniform or generalized (L1) sense under this
limit; see, for example, Lemmas 4.2--4.4, and the remark at the end of section 4.5. For
these reasons we do not consider any reduced or approximate formulation. Instead, we
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560 OSCAR GONZALEZ

establish all of our results by working directly with an exact, fully three-dimensional
formulation.

3. Examples. Here we briefly illustrate the results in Theorems 2.1--2.3. We
consider an infinitesimally thin, rigid filament with axial curve \gamma and reference point
c in a far-field flow of the homogeneous form

(3.1) u\infty (x) = b+Ax, p\infty (x) \equiv 0.

Here b \in \BbbR 3 is an arbitrary constant vector, and A \in \BbbR 3\times 3 is an arbitrary constant
matrix satisfying tr(A) = 0, as required by the divergence-free condition in (2.1).
Using the same reference point c as the body, the above velocity field can be written
in the equivalent form

(3.2) u\infty (x) = v\infty + w\infty \times (x - c) + S\infty (x - c),

where v\infty = b + Ac, [w\infty \times ] = 1
2 (A  - AT ), and S\infty = 1

2 (A + AT ). Notice that v\infty 

corresponds to the local fluid velocity vector and hence streamline direction at the
point c, whereas w\infty corresponds to the constant rate of rotation (half of vorticity)
vector throughout the homogeneous flow, and S\infty corresponds to the constant rate
of deformation (stretching and shearing) tensor.

Substitution of (3.2) into (2.17), and using the notation V0 := limr\rightarrow 0+ Vr and
\Omega 0 := limr\rightarrow 0+ \Omega r, we obtain

lim
r\rightarrow 0+

| ln(r)| 
4\pi 

\biggl( 
F ext
r

T ext
r

\biggr) 
= G

\biggl( 
V0  - v\infty 

\Omega 0  - w\infty 

\biggr) 
 - 

\Biggl( \int L

 - L
g(s)S\infty (\gamma (s) - c) ds\int L

 - L
[(\gamma (s) - c)\times ]g(s)S\infty (\gamma (s) - c) ds

\Biggr) 
.

(3.3)

For concreteness, we consider the free mobility problem in which the body is freely
transported by advection in the absence of external loads, so that (F ext

r , T ext
r ) \equiv (0, 0),

and (V0, \Omega 0) are the velocities imparted to the body by the flow. In view of (3.3),
these velocities satisfy

(3.4) G

\biggl( 
V0  - v\infty 

\Omega 0  - w\infty 

\biggr) 
=

\Biggl( \int L

 - L
g(s)S\infty (\gamma (s) - c) ds\int L

 - L
[(\gamma (s) - c)\times ]g(s)S\infty (\gamma (s) - c) ds

\Biggr) 
.

When there is no stretching and shearing, so that S\infty = 0 and the fluid flow
is itself a rigid motion, we observe that the body velocities (V0, \Omega 0) will match the
corresponding fluid components (v\infty , w\infty ). In this case, the body motion exactly
matches the fluid motion as it is carried by the flow; in particular, the body reference
point will follow a streamline. On the other hand, when stretching and shearing are
present, so that S\infty \not = 0, then (V0, \Omega 0) and (v\infty , w\infty ) will, in general, be different.
In this case, the body motion cannot match the fluid motion as it is carried by the
flow; in particular, the body reference point will generally not follow a streamline,
regardless of how the reference point is chosen. An important exception occurs in the
degenerate case when \gamma is a line segment and the reference point c is taken as the
midpoint as outlined earlier. In this case, since g is constant and G is diagonal, we
deduce that V0 = v\infty , so that the midpoint of a line segment will follow a streamline
even when S\infty \not = 0. However, for the rate of rotation vectors we deduce, in general,
that \Omega 0 \not = w\infty as a result of fluid shearing in the plane orthogonal to the line segment.
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r = 0.05 r = 0.02
| Vr  - V| /| V| = 0.073 | Vr  - V| /| V| = 0.051
| Gr  - G| /| G| = 0.083 | Gr  - G| /| G| = 0.062

-2.5 -2 -1.5 -1
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r = 0.01
| Vr  - V| /| V| = 0.039
| Gr  - G| /| G| = 0.054

Fig. 3.1. Numerical results for a body with a tubular surface centered on a helical curve. The
free mobility velocity vector Vr and scaled resistance matrix Gr are compared against their zero-
radius limits V and G for different values of the tube radius r. The bottom right panel shows plots
of the relative differences | Vr  - V| /| V| (solid) and | Gr  - G| /| G| (dashed) versus r, where | \cdot | denotes
the Euclidean norm; the three points marked in each plot correspond to r = 0.05, 0.02, and 0.01.

The results in Theorems 2.1--2.3 provide exact results for the limiting case r \rightarrow 0+.
The theorems provide no information on the rates at which the limiting results are
approached. While the analysis of such rates is outside the scope of the present work,
we can nevertheless illustrate some aspects of the convergence by direct numerical
treatment of the exterior Stokes boundary-value problem in (2.1)--(2.8). Figure 3.1
shows results for a body with tubular surface \Gamma r centered on an axial curve \gamma corre-
sponding to a helical arc, namely \gamma (s) = (\alpha cos(s/\eta ), \alpha sin(s/\eta ), \beta s/\eta ), s \in [ - L,L],
where \alpha = 0.2 is the helical radius, 2\pi \beta = 0.3 is the pitch, 2L = 1 is the arclength and
\eta =

\sqrt{} 
\alpha 2 + \beta 2; all quantities are dimensionless as described in section 2.1. Using the

reference point c = (0, 0, 0), we considered the velocity vector Vr = (Vr, \Omega r) for the
free mobility problem in a far-field flow with u\infty (x) = (1 + x2, 0, 0) and p\infty (x) \equiv 0.
Additionally, we considered the Stokes resistance matrix Rr [14, 22], along with the
scaled matrix Gr = | ln(r)| 

4\pi Rr, associated with the pure resistance problem. In view
of Theorem 2.1, we must have Vr \rightarrow V as r \rightarrow 0+, where V = (V0, \Omega 0) is the limit-
ing vector defined in (2.15). Also, in view of Theorem 2.2, we must have Gr \rightarrow G,
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562 OSCAR GONZALEZ

where G is defined in (2.11). For decreasing values of the tube radius r, the vector Vr

and matrix Gr were computed by a direct numerical treatment of (2.1)--(2.8) using
a boundary element technique described elsewhere [7, 26]. The results show that for
values of r in the range 0.07 to 0.002, the relative difference between Vr and V was
in the range 8\% to 2\%, whereas the difference between Gr and G was in the range
10\% to 4\%. A plot of the relative differences versus radius suggests that the rates of
convergence for Vr \rightarrow V and Gr \rightarrow G are rather slow. Whereas the rate for Gr \rightarrow G
appears to continually decrease in the direction of smaller radius, the rate for Vr \rightarrow V

appears to be nearly constant in this example. Due to the singular nature of the limit
r \rightarrow 0+, the direct treatment of the boundary-value problem becomes increasingly
difficult, and analytical results such as those in Theorems 2.1--2.3 may provide the
only practical means to explore the case of extremely small r. Moreover, the slow
rates of convergence indicate that V, G provide only weak approximations to Vr, Gr,
thus a precise characterization of the differences Vr  - V and Gr  - G would be of
significant practical utility. For recent results along these lines, see [27, 28].

4. Proof. Here we provide a proof of Theorems 2.1--2.3. We begin with some
necessary facts about the Stokes single-layer potentials, and then present a series of
lemmas which lead to the main theorems. We first state all the results, and then
outline the proofs. When a result holds for an arbitrary body surface, we will use the
notation \Gamma to denote the surface, and useD - andD+ to denote the associated interior
and exterior domains. When a result is specialized to a tubular surface of radius r as
outlined in section 2.6, we will use the notation \Gamma r to denote the surface, and use D - 

r

and D+
r to denote the associated interior and exterior domains. As before, we omit

indices on vector and tensor quantities whenever there is no cause for confusion.

4.1. Preliminaries. Let \psi : \Gamma \rightarrow \BbbR 3 be a continuous function. Then by the
Stokes single-layer velocity and pressure potentials on \Gamma with density \psi we mean

(4.1)

Ui[\Gamma , \psi ](x) =

\int 
\Gamma 

Eij(x, y)\psi j(y) dAy,

P [\Gamma , \psi ](x) =

\int 
\Gamma 

\Pi j(x, y)\psi j(y) dAy.

Here (Eij , \Pi j) is a fundamental solution of the Stokes equations referred to as a
stokeslet; it is a solution of the free-space equations with a singular (Dirac) force at
the point y [7, 32]. Using the notation z = x - y, and | \cdot | for the Euclidean norm, an
explicit expression for this solution is

Eij(x, y) =
\delta ij
| z| 

+
zizj
| z| 3

, \Pi j(x, y) =
2zj
| z| 3

.(4.2)

We remark that, due to the linearity of the free-space equations, the above solution
is defined up to an arbitrary choice of normalization. The choice of normalization
naturally affects various constants in the developments that follow, but is not crucial
in any way; the choice adopted here is taken from [7].

For any continuous density \psi , the potentials (U [\Gamma , \psi ], P [\Gamma , \psi ]) are smooth at each
x /\in \Gamma . Moreover, by virtue of their definitions as a linear combination of stokeslets,
they satisfy the Stokes equations (2.1) at each x /\in \Gamma . While we consider the Stokes
potentials with a density in the space of continuous functions, they could also be
considered on various Sobolev spaces [16], but such generality will not be exploited
here. The velocity potential U [\Gamma , \psi ] is finite for all x \in D - \cup \Gamma \cup D+. In the special
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case when x \in \Gamma , the corresponding integral is only weakly singular, and hence exists
as an improper integral in the usual sense [12] provided that \Gamma is a Lyapunov surface.
The restriction of U [\psi , \Gamma ] to \Gamma is denoted by U [\psi , \Gamma ]. This restriction is a continuous
function on \Gamma ; moreover, for any x0 \in \Gamma , the following pointwise limit relations hold
[25]:

lim
x\rightarrow x0

x\in D+

U [\Gamma , \psi ](x) = U [\Gamma , \psi ](x0),(4.3)

lim
x\rightarrow x0

x\in D - 

U [\Gamma , \psi ](x) = U [\Gamma , \psi ](x0).(4.4)

Standard arguments [12] can be used to show that both of the above limits converge
uniformly in x0 \in \Gamma .

4.2. Lemmata. We begin by summarizing a solvability result for the resistance
and mobility problems outlined in section 2.5 for the exterior Stokes system in (2.1)--
(2.8). Various forms and special cases of the result have been described elsewhere
[8, 16, 25, 31]. Here we consider a form that is convenient for our purposes.

Lemma 4.1. Let a closed, bounded Lyapunov surface \Gamma , a reference point c, and
a k-times (k \geq 2) continuously differentiable far-field flow (u\infty , p\infty ) be given. Then
the resistance problem and mobility problem for \Gamma are each uniquely solvable, and the
unique flow (u+, p+) is k-times continuously differentiable in D+. Assuming \sigma + =
\sigma [u+, p+] is continuous up to \Gamma , the fields (u+, p+) can be represented by single-layer
potentials with a continuous density \psi in the form

(4.5) u+(x) = u\infty (x) + U [\Gamma , \psi ](x), p+(x) = p\infty (x) + P [\Gamma , \psi ](x), x \in D+.

Moreover, the above representation holds with

(4.6) \psi (x) =  - 1

8\pi 
h+(x), x \in \Gamma ,

and implies the boundary integral relation

(4.7)
1

8\pi 

\int 
\Gamma 

E(x, y)h+(y) dAy = u\infty (x) - V  - \Omega \times (x - c), x \in \Gamma .

We next examine the single-layer integral in (4.7). Before considering a general
tubular surface \Gamma r as described in section 2.6, we first consider an open, straight
cylindrical surface \Gamma r,str and examine the matrix-valued function

(4.8) E(x) =
1

8\pi 

\int 
\Gamma r,str

E(x, y) dAy, x \in \Gamma r,str.

We will be interested in characterizing the limit of this function as r \rightarrow 0+. As we
will see, the results obtained for this function will be fundamental.

To begin, let \{ e1, e2, e3\} be the standard basis for \BbbR 3, and consider the axial curve
\gamma (s) = se3, where s \in [ - L,L], and the surface defined by

\Gamma r,str = \{ x \in \BbbR 3 | x = r cos \theta e1 + r sin \theta e2 + s e3,

0 \leq \theta < 2\pi ,  - L < s < L\} .
(4.9)

Given two points x, y \in \Gamma r,str we use the notation x = xr(\theta x, sx) and y = yr(\theta y, sy) to
denote their representations in the coordinates (\theta , s). Notice that xr(\theta x, sx) \rightarrow \gamma (sx)
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and yr(\theta y, sy) \rightarrow \gamma (sy) uniformly on [0, 2\pi ) \times ( - L,L) as r \rightarrow 0+. At any point
y = yr(\theta y, sy) we can parameterize an infinitesimal area element as dAy = rd\theta ydsy.
In view of (2.12) and the fact that \gamma \prime (sx) \equiv e3, we consider the constant, diagonal
matrices

(4.10) gstr = diag

\biggl( 
1, 1,

1

2

\biggr) 
, g - 1

str = diag(1, 1, 2).

Lemma 4.2. Let E denote the single-layer integral ( 4.8) for the straight cylindrical
surface \Gamma r,str. For each x = xr(\theta x, sx) on \Gamma r,str we have the pointwise result

(4.11) lim
r\rightarrow 0+

1

| r ln(r)| 
E(xr(\theta x, sx)) =

1

2
g - 1
str , (\theta x, sx) \in [0, 2\pi )\times ( - L,L).

The above limit converges in the L1-norm. Finite jumps occur at the endpoints sx =
\pm L in the sense that

(4.12) lim
r\rightarrow 0+

1

| r ln(r)| 
E(xr(\theta x, sx)) =

1

4
g - 1
str , (\theta x, sx) \in [0, 2\pi )\times \{ \pm L\} .

The above result shows that E(xr(\theta x, sx))/| r ln(r)| converges to a function in the
L1-norm as r \rightarrow 0+, with the function being constant on the domain (\theta x, sx) \in 
[0, 2\pi ) \times ( - L,L). In particular, we have E(xr(\theta x, sx)) \rightarrow 0 and | r ln(r)| \rightarrow 0, with a
well-defined ratio in the limit. The factor of | r ln(r)| arises naturally in the analysis
due to the cylindrical geometry and the definition of the stokeslet function E(x, y) in
(4.2).

The result in Lemma 4.2 can be generalized to the case of an open, curved cylin-
drical surface \Gamma r,crv. To state the result, let \gamma (s) \in \BbbR 3 be a given axial curve, where
s \in [ - L,L] is an arclength parameter. At each point \gamma (s), let \{ d1(s), d2(s), d3(s)\} 
be a given orthonormal frame or basis for \BbbR 3, defined such that d3(s) = \gamma \prime (s), so
that d1(s) and d2(s) are perpendicular to the curve at each point. This local frame
is needed only to parameterize the cylindrical surface, and is allowed to twist around
\gamma \prime (s) in an arbitrary way; for simplicity, we suppose the frame is twist-free as detailed
below. Within this setup we consider the surface defined by

\Gamma r,crv = \{ x \in \BbbR 3 | x = r cos \theta d1(s) + r sin \theta d2(s) + \gamma (s),

0 \leq \theta < 2\pi ,  - L < s < L\} .
(4.13)

Similar to before, given two points x, y \in \Gamma r,crv, we use the notation x = xr(\theta x, sx)
and y = yr(\theta y, sy) to denote their representations in the coordinates (\theta , s). At any
point y = yr(\theta y, sy) we can parameterize an infinitesimal area element as dAy =
Jr(\theta y, sy) rd\theta ydsy, where Jr(\theta y, sy) is a Jacobian factor given by

(4.14) Jr(\theta y, sy) = 1 - (u \cdot d2)(sy)r cos \theta y + (u \cdot d1)(sy)r sin \theta y.

Here u(s) \in \BbbR 3 is the Darboux vector (angular velocity in s) for the local frame,
which by definition satisfies the kinematical equations

(4.15) d\prime i(s) = u(s)\times di(s), s \in ( - L,L), i = 1, 2, 3.

The constraint that d3(s) = \gamma \prime (s) implies u(s) = \gamma \prime (s) \times \gamma \prime \prime (s) + \beta (s)\gamma \prime (s), where
\beta (s) \in \BbbR corresponds to an arbitrary twist rate around \gamma \prime (s). For convenience, we
suppose the given frame is twist-free in the sense that \beta (s) \equiv 0. Thus u is determined
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by the curve \gamma , and the local frame di is determined by the integration of (4.15) up
to an arbitrary choice of frame at s = 0.

We assume that \gamma \prime is Lipschitz continuous, which implies that u is defined almost
everywhere and uniformly bounded, and hence the frame vectors di are Lipschitz
continuous. We note that \Gamma r,crv is a well-defined Lyapunov surface for all r \in (0, a\gamma ),
where a\gamma > 0 is the injectivity radius of \gamma . Similar to before, we note that xr(\theta x, sx) \rightarrow 
\gamma (sx), yr(\theta y, sy) \rightarrow \gamma (sy), and Jr(\theta y, sy) \rightarrow 1 uniformly on [0, 2\pi )\times ( - L,L) as r \rightarrow 0+.
In view of (2.12), we consider the matrices

(4.16) g(s) = Id - 1

2
(\gamma \prime \otimes \gamma \prime )(s), g - 1(s) = Id + (\gamma \prime \otimes \gamma \prime )(s),

and analogous to (4.8), we consider the integral

(4.17) E(x) =
1

8\pi 

\int 
\Gamma r,crv

E(x, y) dAy, x \in \Gamma r,crv.

Lemma 4.3. Let E denote the single-layer integral ( 4.17) for the curved cylindrical
surface \Gamma r,crv with axial curve \gamma , and assume that \gamma \prime is Lipschitz continuous. For each
x = xr(\theta x, sx) on \Gamma r,crv we have the pointwise result

(4.18) lim
r\rightarrow 0+

1

| r ln(r)| 
E(xr(\theta x, sx)) =

1

2
g - 1(sx), (\theta x, sx) \in [0, 2\pi )\times ( - L,L).

The above limit converges in the L1-norm. When \gamma is open, finite jumps occur at the
endpoints sx = \pm L in the sense that

(4.19) lim
r\rightarrow 0+

1

| r ln(r)| 
E(xr(\theta x, sx)) =

1

4
g - 1(sx), (\theta x, sx) \in [0, 2\pi )\times \{ \pm L\} .

When \gamma is closed, the limit in ( 4.18) holds at all points.

Thus, just as before, the ratio E(xr(\theta x, sx))/| r ln(r)| converges to a function in
the L1-norm as r \rightarrow 0+, but now the function is generally not constant on the domain
(\theta x, sx) \in [0, 2\pi )\times ( - L,L). Instead, the limiting function depends on the unit tangent
field along the axial curve as encapsulated in the matrix g - 1(s). The above results
reduce to those in Lemma 4.2 in the case when the surface is a straight cylinder, with
axial curve \gamma (s) = se3 and unit tangent \gamma \prime (s) \equiv e3.

We now return to (4.7) and state a final technical result for the single-layer integral

(4.20) S(x) =
1

8\pi 

\int 
\Gamma r

E(x, y)h+(y) dAy, x \in \Gamma r.

We consider a general tubular surface \Gamma r with axial curve \gamma as described in section
2.6. The curve \gamma may be open or closed; if open, we suppose that \Gamma r is capped by
hemispheres of radius r centered at the endpoints. In either case, we consider the
decomposition \Gamma r = \Gamma r, - \cup \Gamma r,crv \cup \Gamma r,+, where \Gamma r,crv is as defined in (4.13), and \Gamma r,\pm 
denote the remaining portions of the surface as previously described. Following (2.9)
and (2.10), we consider a rescaled traction field, which is defined on the cylindrical
portion of the surface by

(4.21) \Phi (r, x) = | r ln(r)| h+(x), r \in (0, a\gamma ), x \in \Gamma r,crv,

and, in the open case, on the hemispherical caps by

(4.22) \Phi (r, x) = rh+(x), r \in (0, a\gamma ), x \in \Gamma r, - \cup \Gamma r,+.
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566 OSCAR GONZALEZ

Moreover, for points x = xr(\theta x, sx) on \Gamma r,crv, we introduce the circumferential average
\Phi (r, sx) defined by

(4.23) \Phi (r, sx) =
1

2\pi 

\int 2\pi 

0

\Phi (r, xr(\theta , sx)) d\theta .

Last, let g(s) and g - 1(s) denote the matrices given in (4.16).

Lemma 4.4. Let S denote the single-layer integral ( 4.20) for the tubular surface
\Gamma r with axial curve \gamma , and assume that \gamma \prime is Lipschitz continuous. If the traction
function \Phi is bounded in \cup r\Gamma r and H\"older continuous in \cup r\Gamma r,crv, then for each x =
xr(\theta x, sx) on \Gamma r,crv we have

(4.24) lim
r\rightarrow 0+

S(xr(\theta x, sx)) =
1

2
g - 1(sx)\Phi 0(sx), (\theta x, sx) \in [0, 2\pi )\times ( - L,L),

where \Phi 0(sx) is the bounded, continuous function defined by

(4.25) \Phi 0(sx) = lim
r\rightarrow 0+

\Phi (r, sx).

The first limit above converges in the L1-norm, whereas the second converges uni-
formly. The pointwise limit in ( 4.24) remains bounded at the endpoints sx = \pm L and
finite jumps may occur, depending on whether the axial curve \gamma is open or closed. The
pointwise limit in ( 4.25) can be extended continuously to sx = \pm L.

In view of Lemmas 4.2 and 4.3, the factor of | r ln(r)| for the traction field in
(4.21) is a distinguished scaling that arises naturally on the cylindrical subset \Gamma r,crv.
Since h+ = \Phi /| r ln(r)| and \Phi is assumed to be bounded, we note that the scale factor
represents the maximum growth rate for the traction field on \Gamma r,crv as r \rightarrow 0+. When
the axial curve \gamma is open, the factor of r in (4.22) is a scaling that also arises naturally,
but other scalings could be assumed, leading to slightly different versions of Lemma
4.4. For instance, the factor of r could be replaced with r\alpha , and for \alpha < 2 the same
results in (4.24) and (4.25) would hold, with convergence in the same norms, but at
the expense of unbounded pointwise limits in (4.24) at the endpoints sx = \pm L. A
more general scaling such as r\alpha on \Gamma r,\pm might arise under different assumptions about
the ends in the open case, but would not affect the results stated in Theorems 2.1--
2.3 provided that \alpha < 2; we remark that end-effects may dominate, and a different
analysis would be required if \alpha \geq 2. In contrast, when the axial curve \gamma is closed,
there are no ends to consider, and the scaling in (4.21) is natural at all points.

4.3. Proof of Lemmas 4.1--4.3. Here we briefly outline the essential ideas in
the proofs of Lemmas 4.1--4.3. Full details of the proofs are given in the Supplementary
Material (SMM129205.pdf [local/web 47KB]); they are omitted here for reasons of
space.

The solvability result in Lemma 4.1 is obtained by introducing the shifted fields
w+ = u+ - u\infty and q+ = p+ - p\infty , and considering the decomposition w+ = \widetilde w+ - \widehat w+

and q+ = \widetilde q+  - \widehat q+, where ( \widetilde w+, \widetilde q+) and ( \widehat w+, \widehat q+) satisfy the exterior boundary-value
problems

\Delta \widetilde w+ = \nabla \widetilde q+, \Delta \widehat w+ = \nabla \widehat q+, x \in D+,
\nabla \cdot \widetilde w+ = 0, \nabla \cdot \widehat w+ = 0, x \in D+,\widetilde w+ = V +\Omega \times (x - c), \widehat w+ = u\infty , x \in \Gamma ,\widetilde w+, \widetilde q+ \rightarrow 0, 0, \widehat w+, \widehat q+ \rightarrow 0, 0, | x| \rightarrow \infty .

(4.26)
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Well-known potential theory results [5, 7, 8, 16, 25, 31, 32] for the systems in (4.26)
imply that the second system is uniquely solvable and generates well-defined resultant
loads on \Gamma by regularity of the far field velocity; moreover, due to the rigid body form
of the data, the first system is also uniquely solvable when either velocities or resultant
loads on \Gamma are prescribed. The solvability of a general resistance or mobility problem
then follows by superposition. The representation result in Lemma 4.1 is obtained by
considering an auxiliary interior problem for fields (w - , q - ), namely

\Delta w - = \nabla q - , x \in D - ,
\nabla \cdot w - = 0, x \in D - ,
w - = V +\Omega \times (x - c) - u\infty , x \in \Gamma .

(4.27)

Well-known results for the exterior problem, based on the fundamental solution of the
Stokes equations and the divergence theorem, imply that the solution of the systems in
(4.26) and hence the overall exterior fields (w+, q+) possess a natural representation
involving both the single- and double-layer Stokes potentials. Similarly, since the
condition

\int 
\Gamma 
w - \cdot \nu dAx = 0 is satisfied, the interior fields (w - , q - ) also possess such

a representation. By combining the representations for (w+, q+) and (w - , q - ), and
using the fact that w+ = w - on \Gamma , the double-layer terms can be eliminated to obtain
a purely single-layer representation as claimed.

The result in Lemma 4.2 is obtained by combining (4.2) with (4.8) and considering
the function

(4.28) E(x) = I(x) +A(x),

where

(4.29) Iij(x) =
1

8\pi 

\int 
\Gamma 

\delta ij
| x - y| 

dAy, Aij(x) =
1

8\pi 

\int 
\Gamma 

(x - y)i(x - y)j
| x - y| 3

dAy.

At the moment, we consider the case when \Gamma = \Gamma r,str, which is a straight cylindrical
surface as described in section 4.2. By properties of weakly singular integrals, the
components Iij(x) and Aij(x) are well defined and continuous functions of x \in \Gamma r,str

for each r > 0, and we seek to characterize their limits as r \rightarrow 0+. The result
follows from an examination of the single independent component of Iij , and the
six independent components of Aij . Working in cylindrical coordinates, and scaling
the axial coordinate by r, we find that each of these component surface integrals
can be transformed into a line integral of an elliptic-type function, and its pointwise
limit as r \rightarrow 0+ can be explicitly investigated. Specifically, we find that each of the
components 1

r Iij and 1
rAij either remains bounded, or diverges at a rate proportional

to | ln(r)| as r \rightarrow 0+. This result establishes the distinguished nature of the scaling
| r ln(r)| , and we obtain a pointwise limit result for each of the components 1

| r ln(r)| Iij
and 1

| r ln(r)| Aij . A dominating function is then identified for each of these components
to establish L1-convergence via the dominated convergence theorem.

To obtain the result in Lemma 4.3, we again consider the functions in (4.28) and
(4.29), but with \Gamma = \Gamma r,crv, which is a curved cylindrical surface with axial curve
\gamma . In this case, integrals over \Gamma r,crv can be transformed into integrals over \Gamma r,str

using a natural mapping between these two surfaces. A key observation is that, for
values of r below the injectivity radius of \gamma , this mapping satisfies a two-sided or
bi-Lipschitz type bound, so that the chord length between a pair of points on \Gamma r,crv is
uniformly bounded above and below by the chord length between the corresponding
pair on \Gamma r,str. Hence the resulting integrals have the same weakly singular integrands
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as considered before, up to bounded multiplicative factors with well-defined limits as
r \rightarrow 0+. The results for \Gamma r,crv then follow from those for \Gamma r,str. The result is first
established under the assumption that the curve \gamma is open; however, aside from the
assumption of a positive injectivity radius, the result relies only on local properties of
the curve, and hence also applies to the case when \gamma is closed.

4.4. Proof of Lemma 4.4. We consider the decomposition \Gamma r = \Gamma r, - \cup \Gamma r,crv \cup 
\Gamma r,+, where \Gamma r,crv is as defined in (4.13), and \Gamma r,\pm denote the remaining portions of
the surface associated with the points \gamma (\pm L) as previously described. We assume
that the axial curve \gamma of \Gamma r,crv is open; the case when \gamma is closed will be discussed
later. We also consider the rescaled traction field \Phi (r, x), defined in (4.21) and (4.22)
for each r \in (0, a\gamma ) and x \in \Gamma r. Moreover, we consider the circumferential average
\Phi (r, sx), defined in (4.23) for each point x = xr,crv(\theta x, sx) on \Gamma r,crv. The assumption
that \Phi (r, x) is bounded in \cup r\Gamma r and H\"older continuous in \cup r\Gamma r,crv implies that, for
every r \in (0, a\gamma ) and \widetilde r \in (0, a\gamma ), and y \in \Gamma r, x \in \Gamma r,crv, and \widetilde x \in \Gamma \widetilde r,crv, we have

(4.30) | \Phi (r, y)| \leq C, | \Phi (r, x) - \Phi (\widetilde r, \widetilde x)| \leq C| x - \widetilde x| \lambda ,
where C > 0 and 0 < \lambda < 1 are fixed constants.

From (4.30) we deduce some useful results for the circumferential average \Phi (r, sx).
Specifically, for every r \in (0, a\gamma ), and sx \in ( - L,L) and s\widehat x \in ( - L,L), we find by
straightforward arguments that

(4.31) | \Phi (r, x) - \Phi (r, sx)| \leq Cr\lambda , | \Phi (r, sx) - \Phi (r, s\widehat x)| \leq C| sx  - s\widehat x| \lambda .
Also, since it is bounded and uniformly continuous on \cup r\Gamma r,crv, the function \Phi (r, x)
can be extended with the same properties to the closure of this domain, which includes
all points x = xr,crv(\theta x, sx) under the limit r \rightarrow 0+. From this we can deduce that
the function defined by

(4.32) \Phi 0(sx) = lim
r\rightarrow 0+

\Phi (r, sx)

is bounded and continuous for sx \in ( - L,L), and the above limit converges uniformly.
Moreover, \Phi 0(sx) can be extended continuously to sx = \pm L.

We next consider the single-layer integral S(x) in (4.20). Using the decomposition
\Gamma r = \Gamma r, - \cup \Gamma r,crv \cup \Gamma r,+, and the definition of the rescaled traction field \Phi (r, x) in
(4.21) and (4.22), we have

S(x) =
1

8\pi | r ln(r)| 

\int 
\Gamma r,crv

E(x, y)\Phi (r, y) dAy

+
1

8\pi r\alpha 

\int 
\Gamma r, - \cup \Gamma r,+

E(x, y)\Phi (r, y) dAy.

(4.33)

For generality, we use a scaling of r\alpha in place of r in (4.22), and examine the effect
of the exponent \alpha > 0; the case of interest is \alpha = 1. The above is a well-defined and
continuous function of x \in \Gamma r for r > 0. For each point on the cylindrical subset
\Gamma r,crv, we seek to characterize the limit as r \rightarrow 0+.

We consider the first term in (4.33). To begin, let x = xr,crv(\theta x, sx) \in \Gamma r,crv be
given, and consider the decomposition

(4.34)
1

8\pi | r ln(r)| 

\int 
\Gamma r,crv

E(x, y)\Phi (r, y) dAy = S(0)(x) + S(1)(x) + S(2)(x),

D
ow

nl
oa

de
d 

07
/1

4/
21

 to
 1

46
.6

.1
39

.6
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOKESIAN HYDRODYNAMICS OF A RIGID FILAMENT 569

where

(4.35) S(0)(x) =
1

8\pi | r ln(r)| 

\int 
\Gamma r,crv

E(x, y)[\Phi (r, y) - \Phi (r, sy)] dAy,

(4.36) S(1)(x) =
1

8\pi | r ln(r)| 

\int 
\Gamma r,crv

E(x, y)[\Phi (r, sy) - \Phi (r, sx)] dAy,

(4.37) S(2)(x) =
1

8\pi | r ln(r)| 

\int 
\Gamma r,crv

E(x, y)\Phi (r, sx) dAy.

For the term S(0)(x), we use the first inequality in (4.31), together with the bound
| E(x, y)| \leq C/| x  - y| , which follows from (4.2), and the function I11(x) from (4.29)
with \Gamma = \Gamma r,crv, to get

(4.38) | S(0)(x)| \leq Cr\lambda I11(x)

| r ln(r)| 
.

The function 1
| r ln(r)| I11(x) was considered in the proof of Lemma 4.3, where it was

shown to have a bounded pointwise limit for each (\theta x, sx) \in [0, 2\pi )\times ( - L,L), including
sx = \pm L, and converge in the L1-norm. For the function S(0)(x) we then obtain,
in view of the factor Cr\lambda , the pointwise limit limr\rightarrow 0+ S

(0)(xr,crv(\theta x, sx)) = 0 for
(\theta x, sx) \in [0, 2\pi ) \times ( - L,L), including sx = \pm L, and we note that this convergence
holds in the L1-norm. For the term S(1)(x), we use the second inequality in (4.31),
together with the bounds | E(x, y)| \leq C/| x - y| and | sx  - sy| \leq | x - y| , to get

(4.39) | S(1)(x)| \leq C

| r ln(r)| 

\int 
\Gamma r,crv

| sx  - sy| \lambda  - 1 dAy \leq C

| ln(r)| 
,

where the second inequality above follows from a direct integration, using the fact
that the Jacobian in (4.14) is bounded. From this we obtain the pointwise limit
limr\rightarrow 0+ S

(1)(xr,crv(\theta x, sx)) = 0 for (\theta x, sx) \in [0, 2\pi ) \times ( - L,L), including sx = \pm L,
which converges uniformly. For the term S(2)(x), we can move \Phi (r, sx) outside of the
integral and use (4.17) to write

(4.40) S(2)(x) =
1

| r ln(r)| 
E(x)\Phi (r, sx).

Using the result of Lemma 4.3 and the fact that \Phi (r, sx) \rightarrow \Phi 0(sx) uniformly, we
obtain the pointwise limit limr\rightarrow 0+ S

(2)(xr,crv(\theta x, sx)) =
1
2g

 - 1(sx)\Phi 0(sx) for (\theta x, sx) \in 
[0, 2\pi )\times ( - L,L), which converges in the L1-norm. And from Lemma 4.3 we note that
the pointwise limit would be 1

4g
 - 1(sx)\Phi 0(sx) at sx = \pm L.

We next consider the second term in (4.33), and decompose the integral into two
parts corresponding to \Gamma r,+ and \Gamma r, - . To obtain a result for \Gamma r,+, we temporarily shift
the origin of coordinates to the point \gamma (L), and we let \Sigma 1,+ be the unit hemisphere
corresponding to \Gamma r,+, and \Sigma 1 the unit sphere; all centered at the origin. In this
way, we obtain the parameterization y = r\xi , where y \in \Gamma r,+ and \xi \in \Sigma 1,+, and the
area element relation dAy = r2dA\xi . For any point x \in \Gamma r,crv we then get, using the
inequalities | \Phi (r, x)| \leq C and | E(x, y)| \leq C/| x - y| , and the inclusion \Sigma 1,+ \subset \Sigma 1,

1

8\pi r\alpha 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Gamma r,+

E(x, y)\Phi (r, y) dAy

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

r\alpha 

\int 
\Gamma r,+

1

| x - y| 
dAy \leq Cr1 - \alpha 

\int 
\Sigma 1

1

| (x/r) - \xi | 
dA\xi .

(4.41)
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By properties of weakly singular integrals, the function f(z) :=
\int 
\Sigma 1

1
| z - \xi | dA\xi is con-

tinuous and uniformly bounded for all z \in \BbbR 3; indeed, it is harmonic in the exterior
of \Sigma 1, and is constant on and within the interior of \Sigma 1. It also satisfies the bound
f(z) \leq C/| z| for all | z| \not = 0, so that f(z) \rightarrow 0 as | z| \rightarrow \infty . We next consider
any point x = xr,crv(\theta x, sx) on \Gamma r,crv, and for convenience we temporarily shift the
parameter interval from sx \in ( - L,L) to sx \in ( - 2L, 0). Using the fact that \gamma \prime is
Lipschitz continuous, together with the fact that \gamma has a positive injectivity radius,
we get the pointwise bound f(xr,crv(\theta x, sx)/r) \leq Cr/

\sqrt{} 
r2 + s2x. Moreover, by direct

integration over (\theta x, sx), we get the L1-norm bound | | f | | \leq C| r ln(r)| . We can now
examine the right-hand side of (4.41), which takes the form Cr1 - \alpha f(xr,crv(\theta x, sx)/r).
Provided that 2 - \alpha > 0, the right-hand side of (4.41) vanishes for each sx \in ( - 2L, 0)
as r \rightarrow 0+, and moreover, the L1-norm vanishes. At the endpoint sx = 0, we have
the bound Cr1 - \alpha f(xr,crv(\theta x, 0)/r) \leq Cr2 - \alpha /

\surd 
r2 = Cr1 - \alpha , which implies the point-

wise limit at sx = 0 vanishes if 1 - \alpha > 0, must be bounded if \alpha = 1, and may
be unbounded if 1 - \alpha < 0. Note that identical results would be obtained if \Gamma r,+ is
replaced by \Gamma r, - in (4.41), and the origin is temporarily shifted to \gamma ( - L). From this
we deduce that the second term in (4.33) has a vanishing limit in the L1-norm as
r \rightarrow 0+ provided that \alpha < 2. Furthermore, the pointwise limits at the endpoints will
vanish if \alpha < 1, must be bounded if \alpha = 1, and may be unbounded if \alpha > 1.

By combining the above results for the terms in (4.33) we obtain the following
limit for each point x = xr,crv(\theta x, sx) \in \Gamma r,crv, which converges in the L1-norm,

(4.42) lim
r\rightarrow 0+

S(xr,crv(\theta x, sx)) =
1

2
g - 1(sx)\Phi 0(sx), (\theta x, sx) \in [0, 2\pi )\times ( - L,L).

In establishing the above result, we assumed that the curve \gamma was open with a Lipschitz
unit tangent field, and also non-self-intersecting, so that its injectivity radius was
positive. However, similar to the proof of Lemma 4.3, we note that the above result
relies only on local properties of \gamma and \Phi 0, and hence also applies to the case when
the curve is closed, provided it has a Lipschitz unit tangent at the closure point, and
is non-self-intersecting except for the closure point. In this case, the closure point is
not special in any way, and the value of the limit is 1

2g
 - 1(sx)\Phi 0(sx) for all sx.

4.5. Proof of Theorems 2.1--2.3. Consider either of the resistance or mobility
problems for the tubular surface \Gamma r, with body velocities (Vr, \Omega r) and external loads
(F ext

r , T ext
r ). Under the assumptions of Theorems 2.1--2.3, the resistance and mobility

problems for \Gamma r are uniquely solvable as established in Lemma 4.1, and the boundary-
integral relation in (4.7) holds. And this relation can be expressed in terms of the
integral S(x) in (4.20), and the rescaled traction field \Phi (r, x) in (4.21) and (4.22).

For concreteness, we suppose the axial curve \gamma is open; when \gamma is closed, the
situation is more straightforward since \Gamma r,\pm would then have zero measure, and hence
no contribution in the developments below due to the boundedness of the rescaled
traction. From (2.7) and (2.8) we have

(4.43) F ext
r =  - 

\int 
\Gamma r

h+(x) dAx, T ext
r =  - 

\int 
\Gamma r

(x - c)\times h+(x) dAx.

Making use of the decomposition \Gamma r = \Gamma r, - \cup \Gamma r,crv \cup \Gamma r,+, employing spherical co-
ordinates (\theta , \phi ) in each of the hemispherical caps \Gamma r, - and \Gamma r,+ with area element
dAx = r2 sin\phi xd\theta xd\phi x, along with curvilinear cylindrical coordinates (\theta , s) in \Gamma r,crv

with area element dAx = Jr(\theta x, sx) rd\theta xdsx, where Jr(\theta x, sx) is as defined in (4.14),
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and introducing the traction function \Phi (r, x) following (4.21) and (4.22), we get

 - | ln(r)| F ext
r =

\int 
\Gamma r, - \cup \Gamma r,+

\Phi (r, x) r2 - \alpha | ln(r)| sin\phi xd\theta xd\phi x

+

\int 
\Gamma r,crv

\Phi (r, x)Jr(\theta x, sx) d\theta xdsx

(4.44)

and

 - | ln(r)| T ext
r =

\int 
\Gamma r, - \cup \Gamma r,+

(x - c)\times \Phi (r, x) r2 - \alpha | ln(r)| sin\phi xd\theta xd\phi x

+

\int 
\Gamma r,crv

(x - c)\times \Phi (r, x)Jr(\theta x, sx) d\theta xdsx.

(4.45)

As before, for generality, we have used a scaling of r\alpha in place of r in (4.22), and in
view of the discussion following Lemma 4.4 we suppose \alpha < 2. Using the fact that
\Phi (r, x) is bounded uniformly for r \in (0, a\gamma ) and x \in \Gamma r, and that Jr(\theta x, sx) \rightarrow 1 and
x = xr,crv(\theta x, sx) \rightarrow \gamma (sx) and \Phi (r, sx) \rightarrow \Phi 0(sx) uniformly in (\theta x, sx) as r \rightarrow 0+,
where \Phi (r, sx) is the circumferential average of \Phi (r, x) on \Gamma r,crv considered in Lemma
4.4, we deduce that

lim
r\rightarrow 0+

 - | ln(r)| F ext
r = 2\pi 

\int L

 - L

\Phi 0(sx) dsx,

lim
r\rightarrow 0+

 - | ln(r)| T ext
r = 2\pi 

\int L

 - L

(\gamma (sx) - c)\times \Phi 0(sx) dsx.

(4.46)

Combining (4.7) and (4.20), and restricting attention to points x = xr,crv(\theta x, sx)
on \Gamma r,crv we have

(4.47) S(xr,crv(\theta x, sx)) = u\infty (xr,crv(\theta x, sx)) - Vr  - \Omega r \times (xr,crv(\theta x, sx) - c).

Multiplying (4.47) by the matrix g(sx), integrating over (\theta x, sx), and using the fact
that x = xr,crv(\theta x, sx) \rightarrow \gamma (sx) uniformly in (\theta x, sx) as r \rightarrow 0+, and also that
S(xr,crv(\theta x, sx)) \rightarrow 1

2g
 - 1(sx)\Phi 0(sx) in the L1-norm in (\theta x, sx) as r \rightarrow 0+ as estab-

lished in Lemma 4.4, which holds for any \alpha < 2, we obtain

1

2

\int L

 - L

\Phi 0(sx) dsx =

\int L

 - L

g(sx)u
\infty (\gamma (sx)) dsx

 - 
\int L

 - L

g(sx)V0 dsx  - 
\int L

 - L

g(sx)[(\gamma (sx) - c)\times ]T\Omega 0 dsx.

(4.48)

Here we use the notation V0 and \Omega 0 to indicate the limits of Vr and \Omega r as r \rightarrow 0+.
In a similar way, multiplying (4.47) by the matrix [(\gamma (sx) - c)\times ]g(sx), we obtain

1

2

\int L

 - L

(\gamma (sx) - c)\times \Phi 0(sx) dsx =

\int L

 - L

[(\gamma (sx) - c)\times ]g(sx)u
\infty (\gamma (sx)) dsx

 - 
\int L

 - L

[(\gamma (sx) - c)\times ]g(sx)V0 dsx

 - 
\int L

 - L

[(\gamma (sx) - c)\times ]g(sx)[(\gamma (sx) - c)\times ]T\Omega 0 dsx.

(4.49)
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Combining the above two equations with (4.46), and using the matrix notation
introduced in (2.11), we obtain

lim
r\rightarrow 0+

| ln(r)| 
4\pi 

\biggl( 
F ext
r

T ext
r

\biggr) 
= lim

r\rightarrow 0+
G

\biggl( 
Vr
\Omega r

\biggr) 
 - 

\Biggl( \int L

 - L
g(s)u\infty (\gamma (s)) ds\int L

 - L
[(\gamma (s) - c)\times ]g(s)u\infty (\gamma (s)) ds

\Biggr) 
.

(4.50)

The result in Theorem 2.3 follows from (4.50), and the results in Theorems 2.1 and 2.2
follow as special cases. For the free mobility problem considered in Theorem 2.1, the
external loads are fixed so that (F ext

r , T ext
r ) \equiv (0, 0) for all r, and we obtain the result

in (2.14). For the pure resistance problem considered in Theorem 2.2, the far-field flow
vanishes so that u\infty \equiv 0, and the body velocities are fixed so that (Vr, \Omega r) \equiv (V,\Omega )
for all r, and we obtain the result in (2.16).

As a final remark, we make an observation about the relation in (4.47), which
holds for x = xr,crv(\theta x, sx) on \Gamma r,crv with r \in (0, a\gamma ). For the left-hand side, we note
that S(xr,crv(\theta x, sx)) \rightarrow 1

2g
 - 1(sx)\Phi 0(sx) as r \rightarrow 0+, where \Phi 0(s) can be interpreted

as a limiting, rescaled force distribution along the axial curve \gamma (s). Hence (4.47)
implies a pointwise relation between a local force-like quantity and a velocity akin
to those considered in resistive-force and slender-body theories. We remark that this
limiting pointwise relation has restricted applicability, since the left-hand side may
converge only in the L1-norm. Moreover, in view of the discussion following Lemma
4.4, the pointwise limit of the left-hand side may be unbounded at the endpoints
in the open case when more general scalings r\alpha are considered in (4.22). For rigid
bodies, we only consider moments of the relation in (4.47), which are well-defined
under L1-convergence.
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