
Determinants Under Row Operations

Let the matrices A and B be defined as follows:

A =

[
1 1
2 1

]
, B =

0 1 3
1 0 −1
1 1 0


1. Calculate |A| and |B|.

Solution:

By the definition of a 2 × 2 determinant, |A| = 1 · 1 − 1 · 2 = −1 .
Using row expansion along the first column to calculate |B|,

|B| =

∣∣∣∣∣∣
0 1 3
1 0 −1
1 1 0

∣∣∣∣∣∣ = 0 ·
∣∣∣∣ 0 −1

1 0

∣∣∣∣− 1 ·
∣∣∣∣ 1 3

1 0

∣∣∣∣+ 1 ·
∣∣∣∣ 1 3

0 −1

∣∣∣∣
= −1(−3) + 1(−1) = 2

2. Calculate |R(A)| if R is the row operation Row 1→ 2× Row 1.

Solution:

Clearly,

R(A) =

[
2 2
2 1

]
Therefore, |R(A)| = 2 · 1− 2 · 2 = −2 .

3. Calculate |R(B)| if R is the row operation Row 2→ (−1)× Row 2.

Solution:

Calculating R(B) just like above,

|R(B)| =

∣∣∣∣∣∣
0 1 3
−1 0 1
1 1 0

∣∣∣∣∣∣ = 0 ·
∣∣∣∣ 0 1

1 0

∣∣∣∣− 1 ·
∣∣∣∣ 1 3

1 0

∣∣∣∣+ 1 ·
∣∣∣∣ 1 3

0 1

∣∣∣∣
= −1(3) + 1(1) = −2

4. Make a conjecture about the effect of scalar multiplication on the deter-
minant: that is, if R is the row operation Row i→ c×Row i, what is the
relationship between |C| and |R(C)| for any matrix C?

Solution:

As can be conjectured, |R(C)| = c|C|. (Sorry for the ‘c’ overload!)
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5. Calculate |R(A)| if R is the row operation Row 2→ Row 2− 2× Row 1.

Solution:

Just like before,

|R(A)| =
∣∣∣∣ 1 1

0 −1

∣∣∣∣ = −1

6. Calculate |R(B)| if R is the row operation Row 1→ Row 1− Row 3.

Solution:

Expanding along the second column,

|R(B)| =

∣∣∣∣∣∣
−1 0 3
1 0 −1
1 1 0

∣∣∣∣∣∣ = −0 ·
∣∣∣∣ 1 −1

1 0

∣∣∣∣+ 0 ·
∣∣∣∣ −1 3

1 0

∣∣∣∣− 1 ·
∣∣∣∣ −1 3

1 −1

∣∣∣∣
= −1(1− 3) = 2

7. Make a conjecture about the effect of adding a scalar multiple of a row on
the determinant: that is, if R is the row operation Row i → Row i + c×
Row j, what is the relationship between |C| and |R(C)| for any matrix C?

Solution:

As is demonstrated above, this kind of row operation doesn’t change the
determinant. Hence,

|R(C)| = |C|

8. Calculate |R(A)| if R is the row operation (Swap Row 1 and Row 2).

Solution:

Like above,

|R(A)| =
∣∣∣∣ 2 1

1 1

∣∣∣∣ = 1
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9. Calculate |R(B)| if R is the row operation (Swap Row 1 and Row 3).

Solution:

Expanding along the first column,

|R(B)| =

∣∣∣∣∣∣
1 1 0
1 0 −1
0 1 3

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 0 −1

1 3

∣∣∣∣− 1 ·
∣∣∣∣ 1 0

1 3

∣∣∣∣+ 0 ·
∣∣∣∣ 1 0

0 −1

∣∣∣∣
= 1(1)− 1(3) = −2

10. Make a conjecture about the effect of swapping two rows of a matrix: that
is, if R is the row operation (Swap Row i and Row j), what is the rela-
tionship between |C| and |R(C)| for any matrix C?

Solution:

As can be seen from above,

|R(C)| = −|C|

11. Now, use the answers from 4, 7 and 10 to fill in the following table:

Row Operation Effect

Row i→ c× Row i Determinant is multiplied by c: that is,
|R(C)| = c|C|

Row i→ Row i + c× Row j Determinant doesn’t change: that is,
|R(C)| = |C|

Swap Row i and Row j Determinant switches sign: that is,
|R(C)| = −|C|
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Determinants Of Upper Triangular Matrices

Find the determinants of the following upper triangular matrices: (hint: use
the easiest column to expand along for the 3× 3 matrices!)

1.

[
2 1
0 3

]
Solution: ∣∣∣∣ 2 1

0 3

∣∣∣∣ = 2 · 3− 1 · 0 = 6

2.

[
a11 a12
0 a22

]
Solution: ∣∣∣∣ a11 a12

0 a22

∣∣∣∣ = a11 · a22 − a12 · 0 = a11a22

3.

1 −1 2
0 2 3
0 0 −1


Solution:

Expanding along the first column,∣∣∣∣∣∣
1 −1 2
0 2 3
0 0 −1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 2 3

0 −1

∣∣∣∣− 0 ·
∣∣∣∣ −1 2

0 −1

∣∣∣∣+ 0 ·
∣∣∣∣ −1 2

2 3

∣∣∣∣ = −2

4.

a11 a12 a13
0 a22 a23
0 0 a33


Solution:

Expanding along the first column,∣∣∣∣∣∣
a11 a12 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣ = a11 ·
∣∣∣∣ a22 a23

0 a33

∣∣∣∣− 0 ·
∣∣∣∣ a12 a13

0 a33

∣∣∣∣+ 0 ·
∣∣∣∣ a12 a13
a22 a33

∣∣∣∣
= a11a22a33
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5. Make a conjecture about the determinant of a n×n upper triangular ma-
trix with the entries a11, a22, . . . , ann on the diagonal.

Solution:

As should be apparent from above, this is equal to a11a22 · · · ann – that
is, the product of the entries on the diagonal.

6. Now, prove your conjecture for Question 5 using induction.

Hint: This proof should be very similar to the calculations above – just
expand along the first column!

Solution:

First, a little bit of discussion before the actual proof. Here, the nth
statement is: “For any n× n upper triangular matrix A with entries aij ,
|A| = a11a22 · · · ann.” An inductive argument does two things: it proves
the base case – that is, the case correspond to the smallest value of n, and
then it proves the statement for n = k + 1 assuming the statement for
n = k. Let’s proceed!

Proof:

Base case:
Here, we show that the statement holds for n = 1.

Asssume: A is a 1× 1 upper triangular matrix with entries aij .
Need to show: |A| = a11.

A 1 × 1 matrix A with entries aij is just [a11]. By definition, |A| = a11,
which is precisely what we wanted.

Inductive step:
Here, we show that the statement for n = k implies the statement for
n = k + 1.

Asssume: For any k × k upper triangular matrix A with entries aij ,
|A| = a11a22 · · · akk.
Need to show: For an (k + 1) × (k + 1) upper triangular matrix A with
entries aij , |A| = a11a22 · · · a(k+1)(k+1).
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Let A be a (k + 1) × (k + 1) upper triangular matrix with entries aij .
For ease of visualization, that means that:

A =


a11 a12 · · · a1(k+1)

0 a22 · · · a2(k+1)

...
...

...
...

0 0 · · · a(k+1)(k+1)


Now, to figure out the determinant of A, expand along the first column:

|A| = a11|A11| − a21|A21|+ · · ·+ (−1)k+2a(k+1)1|A(k+1)1|
= a11|A11|+ 0 + · · ·+ 0 = a11|A11|

Now, it should be clear that A11 is a k× k upper triangular matrix: to be
precise,

A11 =


a22 a23 · · · a2(k+1)

0 a33 · · · a3(k+1)

...
...

...
...

0 0 · · · a(k+1)(k+1)


Therefore, our assumption (often called the inductive hypothesis) tells us
that |A11| can be calculated by simply multiplying the entries on the
diagonal. To be precise, |A11| = a22a33 · · · a(k+1)(k+1). Plugging that into
the formula above gets that

|A| = a11(a22 · · · a(k+1)(k+1)) = a11a22 · · · a(k+1)(k+1)

which is precisely what we wanted to show!
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Algorithm For Calculating the Determinant
Using Row Operations

Now use the results from the last two sections to suggest an algorithm for cal-
culating the determinant in an efficient way using row operations:

Algorithm:

1. First, use row operations to bring the matrix into upper triangular form,
recording what each row operation does to the determinant.

2. Then, “undo” the operations recorded in Step 1 to get the determinant of
the original matrix.
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Determinants of Products, Sums, and Scalar
Multiples

For the next questions, let

A =

[
1 1
−1 1

]
, B =

[
1 0
0 2

]
1. Verify that |AB| = |A||B|.

Solution:

Clearly, |A| = 1 · 1 − 1 · (−1) = 2, and |B| = 1 · 2 − 0 · 0 = 2. Multi-
plying,

|AB| =
∣∣∣∣[ 1 1
−1 1

] [
1 0
0 2

]∣∣∣∣ =

∣∣∣∣ 1 2
−1 2

∣∣∣∣ = 2 · 1− 2 · (−1) = 4

which is clearly equal to |A||B| = 2 · 2 = 4, as required.

2. Is |A + B| = |A|+ |B|?

Solution:

Calculating,

|A + B| =
∣∣∣∣[ 1 1
−1 1

]
+

[
1 0
0 2

]∣∣∣∣ =

∣∣∣∣ 2 1
−1 3

∣∣∣∣ = 2 · 3− 1 · (−1) = 7

which is clearly not equal to |A|+ |B| = 4.

3. Is |2A| = 2|A|? Calculating,

|2A| =
∣∣∣∣ 2 2
−2 2

∣∣∣∣ = 2 · 2− 2 · (−2) = 8

which is clearly not equal to 2|A| = 4.

4. For an n × n matrix A, what do you think |2A| actually is? (Hint: row
operations!!)

Solution:

It’s clear that 2A is A with each row multiplied by 2. Since each such
row operation mutliplies the determinant by 2, and there are n rows, we
see that

|2A| = 2n|A|
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