Homework 10

Olena Bormashenko

November 4, 2011

1. Let A and B be defined as follows:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 5 & 10 & -11 / 3 \\
0 & 0 & 1 / 5 & 21 \\
0 & 0 & 0 & -1
\end{array}\right], B=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
3 & 1 / 4 & 0 & 0 \\
7 & 6 & 2 & 0 \\
8 & 9 & 7 & -1
\end{array}\right]
$$

Calculate $\left|A^{-1} B^{-1}\right|$.
Hint: There's a good way and a bad way to do this question, and the bad way is much more painful!!
2. Prove that if 0 is an eigenvalue of A, then $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions.
3. Assume that $A=P D P^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries $d_{1}, d_{2}, \ldots, d_{n}$ along the diagonal. That is,

$$
D=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]
$$

Let \vec{v}_{j} be the j th column of P. Then, prove that \vec{v}_{j} is an eigenvector of A with eigenvalue d_{j}. (This reinforces the connection between eigenvectors and showing that A is similar to a diagonal matrix.)
Hint: Do some algebraic manipulation with the equation $A=P D P^{-1}$ to make the question manageable! Also, you don't have to use this, but it'll make it a little tidier: what was our earlier formula for the j th column of a matrix using matrix multiplication?
4. Let A be an $m \times n$ matrix with rows $\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{m}$. Show that if \vec{x} is orthogonal to \vec{r}_{i} for all i, then $A \vec{x}=\overrightarrow{0}$.
5. Let A be the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & a \\
2 & 1 & 2 \\
1 & 1 & -1
\end{array}\right]
$$

Note that one of the entries of A is the variable a. For which values of a does the equation

$$
A \vec{x}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

have infinitely many solutions? For which values of a does it have no solutions?
Hint: What is the handy function that tells us whether A is singular? How does that help?
6. Assume that $A=P D P^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries $d_{1}, d_{2}, \ldots, d_{n}$ along the diagonal. (This is exactly the set up from Question 2.)
(a) Use induction to show that for any positive integer k,

$$
D^{k}=\left[\begin{array}{cccc}
d_{1}^{k} & 0 & \cdots & 0 \\
0 & d_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}^{k}
\end{array}\right]
$$

(b) Show that

$$
A^{k}=P D^{k} P^{-1}
$$

for any positive integer k.
(c) Use parts (a) and (b) to calculate A^{7}, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]
$$

Hint: You should probably start by diagonalizing A !
7. BONUS: Let A be an $n \times n$ matrix. Recall that $\operatorname{tr}(A)$, the trace of A, is defined to be the sum of the diagonal entries of A : that is, if the entries of A are $a_{i j}$, then

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

(a) As usual, let $p_{A}(x)$ be the characteristic polynomial of A. Use induction to show that $p_{A}(x)$ is a polynomial of degree n.
(b) Now, write $p_{A}(x)$ as

$$
p_{A}(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}
$$

That is, c_{0} is the constant term in the polynomial, c_{1} is the coefficient of x, and in general c_{i} is the coefficient of x^{i}.
i. Show that $c_{n}=1$ for any $n \times n$ matrix A.
ii. Show that $c_{n-1}=\operatorname{tr}(A)$ for any $n \times n$ matrix A.
(c) Now, say that A has the n eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, where the list includes repetitions: for example, if the characteristic polynomial was $(x-1)^{2}(x-2)$, we'd say that the eigenvalues are $1,1,2$. Use the results above to show that

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{tr}(A)
$$

