Homework 10

Olena Bormashenko

November 4, 2011

1. Let A and B be defined as follows:

A =	1 0 0 0	$2 \\ 5 \\ 0 \\ 0 \\ 0$	${3 \atop {10} \atop {1/5} \atop 0}$	$-1 \\ -11/3 \\ 21 \\ -1$,B =	$\begin{bmatrix} 2\\ 3\\ 7\\ 8 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1/4 \\ 6 \\ 9 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 7 \end{array}$	$\begin{bmatrix} 0\\0\\0\\-1 \end{bmatrix}$	
	Lo	0	0	-1		Γø	9	(-1]	

Calculate $|A^{-1}B^{-1}|$.

Hint: There's a good way and a bad way to do this question, and the bad way is much more painful!!

- 2. Prove that if 0 is an eigenvalue of A, then $A\vec{x} = \vec{0}$ has infinitely many solutions.
- 3. Assume that $A = PDP^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries d_1, d_2, \ldots, d_n along the diagonal. That is,

	d_1	0	•••	0
	0	d_2		0
D =	:	:		:
	0	0		d_n

Let \vec{v}_j be the *j*th column of *P*. Then, prove that \vec{v}_j is an eigenvector of *A* with eigenvalue d_j . (This reinforces the connection between eigenvectors and showing that *A* is similar to a diagonal matrix.)

Hint: Do some algebraic manipulation with the equation $A = PDP^{-1}$ to make the question manageable! Also, you don't have to use this, but it'll make it a little tidier: what was our earlier formula for the *j*th column of a matrix using matrix multiplication?

- 4. Let A be an $m \times n$ matrix with rows $\vec{r_1}, \vec{r_2}, \dots, \vec{r_m}$. Show that if \vec{x} is orthogonal to $\vec{r_i}$ for all *i*, then $A\vec{x} = \vec{0}$.
- 5. Let A be the following matrix:

$$A = \begin{bmatrix} 1 & 0 & a \\ 2 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

Note that one of the entries of A is the variable a. For which values of a does the equation

have infinitely many solutions? For which values of a does it have no solutions?

Hint: What is the handy function that tells us whether A is singular? How does that help?

- 6. Assume that $A = PDP^{-1}$ where P is some nonsingular matrix, and D is a diagonal matrix with entries d_1, d_2, \ldots, d_n along the diagonal. (This is exactly the set up from Question 2.)
 - (a) Use induction to show that for any positive integer k,

$$D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \cdots & 0\\ 0 & d_{2}^{k} & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & d_{n}^{k} \end{bmatrix}$$

(b) Show that

$$A^k = PD^kP^{-1}$$

for any positive integer k.

(c) Use parts (a) and (b) to calculate A^7 , where

$$A = \begin{bmatrix} 1 & 1\\ 3 & -1 \end{bmatrix}$$

Hint: You should probably start by diagonalizing A!

7. BONUS: Let A be an $n \times n$ matrix. Recall that tr(A), the trace of A, is defined to be the sum of the diagonal entries of A: that is, if the entries of A are a_{ij} , then

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

- (a) As usual, let $p_A(x)$ be the characteristic polynomial of A. Use induction to show that $p_A(x)$ is a polynomial of degree n.
- (b) Now, write $p_A(x)$ as

$$p_A(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

That is, c_0 is the constant term in the polynomial, c_1 is the coefficient of x, and in general c_i is the coefficient of x^i .

i. Show that $c_n = 1$ for any $n \times n$ matrix A.

ii. Show that $c_{n-1} = tr(A)$ for any $n \times n$ matrix A.

(c) Now, say that A has the n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, where the list includes repetitions: for example, if the characteristic polynomial was $(x-1)^2(x-2)$, we'd say that the eigenvalues are 1, 1, 2. Use the results above to show that

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A)$$