Homework 7

Olena Bormashenko

October 17, 2011

Note: You should use the contrapositive for some (but not all) of the proofs!

1. Find the inverses of the following matrices:
(a) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}a_{11} & 0 \\ 0 & a_{22}\end{array}\right]$, if a_{11}, a_{22} are both non-zero.
(c) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right]$
(d) $\left[\begin{array}{ccccc}a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n n}\end{array}\right]$, if $a_{11}, a_{22}, \ldots, a_{n n}$ are all non-zero.
2. Show that if $A \vec{x}=\overrightarrow{0}$ has a non-trivial solution, then A is singular.
3. (a) Give an example to show that $A+B$ can be singular if A and B are both nonsingular.
(b) Give an example to show that $A+B$ can be nonsingular if A and B are both singular.
Hint: 2×2 matrices should suffice for this one!
4. For the matrix A below, and for the values of (i, j) provided, calculate the (i, j) submatrix $A_{i j}$ and the (i, j) minor $\left|A_{i j}\right|$.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
4 & 7 & -1 \\
-1 & 10 & 3
\end{array}\right]
$$

(a) $(i, j)=(1,1)$
(b) $(i, j)=(2,3)$
(c) $(i, j)=(3,1)$
5. Calculate the determinants of the following matrices, using the methods learned in class:
(a) $\left[\begin{array}{cc}1 & 3 \\ -3 & 2\end{array}\right]$.
(b) $\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 4 & 5 \\ 3 & -1 & 1\end{array}\right]$.
(c) $\left[\begin{array}{cccc}1 & 0 & -2 & 0 \\ -1 & 3 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$.

Hint: I recommend being judicious in the choice of row/column to expand along!
6. Show that if A has a row that's all 0 s , then $|A|=0$.
7. Prove that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)
$$

(This kind of matrix is called a Vandermonde matrix.)
8. Show that if $|B|<0$, then B can't be written as A^{2} for any matrix A.
9. For the sets specified below, do the following:

- Give an example of an element of the set
- Check whether the element provided is in the set
(a) $S=\{\vec{x} \mid \vec{x} \cdot[1,1,0]=0\}$. Element to check: $\vec{v}=[1,1,1]$.
(b) $S=\{A \mid A$ is a matrix of rank 1$\}$. Element to check: $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & -1\end{array}\right]$.
(c) $S=\left\{c_{1}[1,1,1]+c_{2}[0,1,1] \mid c_{1}, c_{2} \in \mathbb{R}\right\}$. Element to check: $\vec{v}=$ $[1,2,1]$.

