MATH 341 MIDTERM 2

11/01/2011
Bormashenko

Name: \qquad

Show your work for all the problems. Good luck!

(1) Let A and B be defined as follows:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3
\end{array}\right], B=\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 3 & 4
\end{array}\right]
$$

(a) [5 pts] Demonstrate that A and B are row equivalent by providing a sequence of row operations leading from A to B.

Solution:

As usual, a good way to do this is to row reduce both A and B. Since they are row equivalent, they will have the same row reduced echelon form, which can be used to solve the question. Accordingly, we row reduce A :

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3
\end{array}\right] \xrightarrow{R_{2}: R_{2}-R_{1}}\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R_{1}: R_{1}-R_{2}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Now, we row reduce B :

$$
\left[\begin{array}{lll}
0 & 2 & 2 \\
1 & 3 & 4
\end{array}\right] \xrightarrow{\text { Swap } R_{1} \text { and } R_{2}}\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 2 & 2
\end{array}\right] \xrightarrow{R_{2}: \frac{1}{2} \times R_{2}}\left[\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R_{1}: R_{1}-3 R_{2}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

To get from A to B, perform the operations getting A to the common row-reduced echelon form, then reverse the operations that went into row reducing B. Therefore, a possible sequence of row operations is:

$$
R_{2} \rightarrow R_{2}-R_{1}, R_{1} \rightarrow R_{1}-R_{2}, R_{1} \rightarrow R_{1}+3 R_{2}, R_{2} \rightarrow 2 \times R_{2}, \text { Swap } R_{1} \text { and } R_{2}
$$

(b) [5 pts] Check whether $[1,4,5]$ is in the row space of A and if it is, write it as a linear combination of the rows.

Solution:

A vector is in the row space of a matrix if it can be written a linear combination of the rows. Therefore, we need to solve for c_{1} and c_{2} such that

$$
[1,4,5]=c_{1}[1,1,2]+c_{2}[1,2,3]
$$

This simplifies to

$$
[1,4,5]=\left[c_{1}+c_{2}, c_{1}+2 c_{2}, 2 c_{1}+3 c_{2}\right]
$$

Writing this down as an augmented system and solving, we get

$$
\left[\begin{array}{ll|l}
1 & 1 & 1 \\
1 & 2 & 4 \\
2 & 3 & 5
\end{array}\right] \xrightarrow{R_{2}: R_{2}-R_{1}, R_{3}: R_{3}-2 R_{2}}\left[\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 1 & 3
\end{array}\right] \xrightarrow{R_{1}: R_{1}-R_{2}, R_{3}: R_{3}-R_{2}}\left[\begin{array}{cc|c}
1 & 0 & -2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

This corresponds to $c_{1}=-2, c_{2}=3$. Therefore, $[1,4,5]$ is in the row space of A, and

$$
[1,4,5]=-2[1,1,2]+3[1,2,3]
$$

(2) Let A be an $m \times n$ matrix with rows $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{m}$. Let R_{1} be the row operation Row $1 \rightarrow 2 \times$ Row 1 , and R_{2} be the row operation Swap Rows 1 and 2 .
(a) [5 pts] What is the first row of $R_{1}\left(R_{2}(A)\right)$ in terms of $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{m}$? (Hint: Think a little before deciding which row operations to do first!)

Solution:

We know that

$$
A=\left[\begin{array}{c}
\vec{r}_{1} \\
\vec{r}_{2} \\
\vdots \\
\vec{r}_{m}
\end{array}\right]
$$

Therefore,

$$
R_{2}(A)=\left[\begin{array}{c}
\vec{r}_{2} \\
\vec{r}_{1} \\
\vdots \\
\vec{r}_{m}
\end{array}\right] \text { and so } R_{1}\left(R_{2}(A)\right)=R_{1}\left(\left[\begin{array}{c}
\vec{r}_{2} \\
\vec{r}_{1} \\
\vdots \\
\vec{r}_{m}
\end{array}\right]\right)=\left[\begin{array}{c}
2 \vec{r}_{2} \\
\vec{r}_{1} \\
\vdots \\
\vec{r}_{m}
\end{array}\right]
$$

Thus, the first row of $R_{1}\left(R_{2}(A)\right)$ is $2 \vec{r}_{2}$.
(b) [5 pts] What is the first row of $R_{2}\left(R_{1}(A)\right)$ in terms of $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{m}$?

Solution:

Using the expression for A from part (a), we see that

$$
R_{1}(A)=\left[\begin{array}{c}
2 \vec{r}_{1} \\
\vec{r}_{2} \\
\vdots \\
\vec{r}_{m}
\end{array}\right] \text { and so } R_{2}\left(R_{1}(A)\right)=R_{2}\left(\left[\begin{array}{c}
2 \vec{r}_{1} \\
\vec{r}_{2} \\
\vdots \\
\vec{r}_{m}
\end{array}\right]\right)=\left[\begin{array}{c}
\vec{r}_{2} \\
2 \vec{r}_{1} \\
\vdots \\
\vec{r}_{m}
\end{array}\right]
$$

Thus, the first row of $R_{2}\left(R_{1}(A)\right)$ is $2 \overrightarrow{r_{2}}$.
(c) [5 pts] Prove that if \vec{x} and \vec{y} are both in the row space of A, then so is $\vec{x}+\vec{y}$.

Proof:

Assumptions: \vec{x} and \vec{y} are both in the row space of A.
Need to show: $\vec{x}+\vec{y}$ is in the row space of A.
Since \vec{x} is in the row space of A, it is a linear combination of the rows of A. Since the rows of A are $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}$, here exist constants $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
\vec{x}=c_{1} \vec{r}_{1}+\cdots+c_{n} \vec{r}_{n}
$$

Similarly, since \vec{y} is in the row space of A, there exist constants $d_{1}, d_{2}, \cdots, d_{n}$ such that

$$
\vec{y}=d_{1} \vec{r}_{1}+\cdots+d_{n} \vec{r}_{n}
$$

Therefore,

$$
\begin{aligned}
\vec{x}+\vec{y} & =\left(c_{1} \vec{r}_{1}+\cdots+c_{n} \vec{r}_{n}\right)+\left(d_{1} \vec{r}_{1}+\cdots+d_{n} \vec{r}_{n}\right) \\
& =\left(c_{1}+d_{1}\right) \vec{r}_{1}+\cdots+\left(c_{n}+d_{n}\right) \vec{r}_{n}
\end{aligned}
$$

Since $c_{1}+d_{1}, c_{2}+d_{2}, \ldots, c_{n}+d_{n}$ are clearly all constants, the above expression shows that $\vec{x}+\vec{y}$ is in the row space of A, as required.
(3) Let A be defined as below:

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right]
$$

(a) [5 pts] Calculate A^{-1} if A is nonsingular, or prove that it is singular.

Solution:

As usual, we augment A with the identity matrix and row reduce A : if A row reduces to the identity matrix, then the final result is $\left[I_{n} \mid A^{-1}\right]$, and otherwise A is singular.

$$
\begin{aligned}
{\left[\begin{array}{ccc|ccc}
-1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{R_{2}: R_{2}+2 R_{1}}\left[\begin{array}{ccc|ccc}
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
-1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{3}: R_{3}-R_{1}}\left[\begin{array}{ccc|ccc}
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}:(-1) \times R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{3}: R_{3}-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 0 & -1 & -3 & -1 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}: R_{1}-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & 1 & -1 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 0 & -1 & -3 & -1 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}: R_{2}+2 R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & 1 & -1 \\
0 & 1 & 0 & -4 & -1 & 2 \\
0 & 0 & -1 & -3 & -1 & 1
\end{array}\right] \\
& \xrightarrow{R_{3}:(-1) \times R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & 1 & -1 \\
0 & 1 & 0 & -4 & -1 & 2 \\
0 & 0 & 1 & 3 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Therefore, A is nonsingular, and

$$
A^{-1}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -1 & 2 \\
3 & 1 & -1
\end{array}\right]
$$

(b) [5 pts] Calculate $|A|$ by using row or column expansion.

Solution:

Expanding along the first row, we have that

$$
\begin{aligned}
\left|\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right| & =(-1) \cdot\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right|+0 \cdot\left|\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right|+1 \cdot\left|\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right| \\
& =-2+3=1
\end{aligned}
$$

(c) [5 pts] Calculate $|A|$ using row reduction (feel free to reuse your work from part (a) for this!)

Solution:

From part (a), we know the sequence of row reductions that gets A into row reduced row echelon form. Tracking what those row reductions do to the determinant, we get that

$$
\begin{aligned}
&|A| \xrightarrow{R_{2}: R_{2}+2 R_{1}}|A| \xrightarrow{R_{3}: R_{3}-R_{1}}|A| \xrightarrow{R_{1}:(-1) \times R_{1}}-|A| \xrightarrow{R_{3}: R_{3}-R_{2}}-|A| \\
& \quad \xrightarrow{R_{1}: R_{1}-R_{3}}-|A| \xrightarrow{R_{2}: R_{2}+2 R_{3}}-|A| \xrightarrow{R_{3}:(-1) \times R_{3}}|A|
\end{aligned}
$$

Therefore, the determinant of the row reduced echelon form of A is precisely $|A|$, and hence

$$
|A|=\left|\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right|=\square
$$

Note that we got the same answer as in part (b), as expected!
(4) Define A to be the following matrix:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

(a) [5 pts] Find the characteristic polynomial of A.

Solution:

By definition, the characteristic polynomial of A is

$$
\begin{aligned}
p_{A}(x) & =\left|x I_{n}-A\right|=\left|x\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{cc}
x-1 & -2 \\
0 & x-1
\end{array}\right| \\
& =(x-1)(x-1)=(x-1)^{2}
\end{aligned}
$$

(b) $[5 \mathrm{pts}]$ Find the eigenvalues of A.

Solution:

The eigenvalues of A are the roots of the characteristic polynomial of A. Therefore, setting $p_{A}(x)$ to 0 , we get

$$
0=(x-1)^{2} \Rightarrow x=1
$$

Therefore, the only eigenvalue of A is $\lambda=1$.
(c) [5 pts] Pick an eigenavalue of A, and find the fundamental eigevenctors for that eigenvalue.

Solution:

A only has the one eigenvalue 1 , therefore we need to find the fundamental eigenvector for it. To find that, solve the system $(\lambda I-A) \vec{x}=\overrightarrow{0}$. Since $\lambda=1$,

$$
\lambda I-A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

Thus, the system $(\lambda I-A) \vec{x}=\overrightarrow{0}$ corresponds to the following augmented matrix (which row reduces very simply):

$$
\left[\begin{array}{ll|l}
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}: 1 / 2 \times R_{1}}\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This system clearly corresponds to

$$
\begin{aligned}
& c_{1}=c_{1} \\
& c_{2}=0
\end{aligned}
$$

Therefore,

$$
E_{1}=\{\vec{x} \mid A \vec{x}=\vec{x}\}=\left\{\left.\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right] \right\rvert\, c_{1} \in \mathbb{R}\right\}=\left\{\left.c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \right\rvert\, c_{1} \in \mathbb{R}\right\}
$$

Thus, the fundamental eigenvector is $\begin{aligned} & {\left[\begin{array}{l}1 \\ 0\end{array}\right] \text {. (Of course, any scalar multiple of this is also }}\end{aligned}$ correct!)
(5) Define the permanent $\operatorname{per}(A)$ of a matrix A very similarly to the determinant: for a 1×1 matrix $A=\left[a_{11}\right], \operatorname{per}(A)=a_{11}$, and for an $n \times n$ matrix it is defined recursively as

$$
\operatorname{per}(A)=a_{11} \operatorname{per}\left(A_{11}\right)+a_{12} \operatorname{per}\left(A_{12}\right)+\cdots+a_{1 n} \operatorname{per}\left(A_{1 n}\right)
$$

where $A_{i j}$ is defined as usual to be the matrix A with row i and column j crossed out. As you can see, we define it using expansion along the first row, except that the sum doesn't alternate the way it does with determinants.

For example,

$$
\operatorname{per}\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]=1 \cdot \operatorname{per}([3])+2 \cdot \operatorname{per}([2])=1 \cdot 3+2 \cdot 2=7
$$

(a) [5 pts] Calculate the permanent of the following matrix:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]
$$

Solution:

$$
\operatorname{per}\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]=1 \cdot \operatorname{per}([4])+2 \cdot \operatorname{per}([-1])=1 \cdot 4+2 \cdot(-1)=2
$$

(b) [5 pts] Prove that if $\operatorname{per}(A) \neq 0$, then at least one entry of the first row of A is nonzero.

Proof:

Let's use the contrapositive. The contrapositive of " C implies D " is "not D implies not C." Our original statement translates to: " $\operatorname{per}(A) \neq 0$ implies that at least one entry of the first row of A is nonzero." Therefore, the contrapositive is "All of the entries of the first row of A being 0 implies that $\operatorname{per}(A)=0$."

Assume: The first row of A is 0 .
Need to show: $\operatorname{per}(A)=0$.
By definition,

$$
\begin{aligned}
\operatorname{per}(A) & =a_{11} \operatorname{per}\left(A_{11}\right)+a_{12} \operatorname{per}\left(A_{12}\right)+\cdots+a_{1 n} \operatorname{per}\left(A_{1 n}\right) \\
& =0 \cdot \operatorname{per}\left(A_{11}\right)+0 \cdot \operatorname{per}\left(A_{12}\right)+\cdots+0 \cdot \operatorname{per}\left(A_{1 n}\right)=0
\end{aligned}
$$

as required.
(c) [5 pts] Prove that if A is an $n \times n$ matrix all of whose entries are positive, then $\operatorname{per}(A)$ is positive as well. (This is NOT true for the determinant, by the way!)

Proof:

This proof uses induction on n. The nth statement is "For any $n \times n$ matrix A all of whose entries are positive, $\operatorname{per}(A)$ is positive as well."

Base case:

Show that the statement holds for $n=1$.
Asssume: A is a 1×1 matrix with positive entries.
Need to show: $\operatorname{per}(A)>0$.
Let A be a 1×1 matrix. Then, we can say that $A=\left[a_{11}\right]$. In that case,

$$
\operatorname{per}(A)=a_{11}>0
$$

as required.

Inductive step:

Here, we show that the statement for $n=k$ implies the statement for $n=k+1$.
Asssume: If A is a $k \times k$ matrix with positive entries, then $\operatorname{per}(K)>0$.
Need to show: If A is a $(k+1) \times(k+1)$ matrix with positive entries, then $\operatorname{per}(K)>0$.
Let A be a $(k+1) \times(k+1)$ matrix with entries $a_{i j}$. By definition,

$$
\operatorname{per}(A)=a_{11} \operatorname{per}\left(A_{11}\right)+a_{12} \operatorname{per}\left(A_{12}\right)+\cdots+a_{1(k+1)} \operatorname{per}\left(A_{1(k+1)}\right)
$$

By the inductive hypothesis, since $A_{i j}$ is a $k \times k$ matrix, $\operatorname{per}\left(A_{i j}\right)>0$ for each i and j. Furthermore, we know that $a_{i j}>0$ for each i and j. Since the product of a pair of positive numbers is positive, this shows that

$$
a_{11} \operatorname{per}\left(A_{11}\right)>0, a_{12} \operatorname{per}\left(A_{12}\right)>0, \ldots, a_{1(k+1)} \operatorname{per}\left(A_{1(k+1)}\right)>0
$$

Adding up $k+1$ positive numbers clearly leads to a positive number, and thus we get that $\operatorname{per}(A)>0$, as required.
(6) Consider the set $S_{A}=\left\{\vec{x} \mid A \vec{x}=[1,1]^{T}\right\}$
(a) [5 pts] Let A be defined as

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Without solving any linear systems, check whether $\vec{x}=[1,-1,1]$ is in S_{A}.

Solution:

By definition, \vec{x} is in S_{A} if

$$
A \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Therefore, we just need to check whether $A \vec{x}$ is correct. Checking,

$$
A \vec{x}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Therefore, \vec{x} is not in S_{A}.
(b) [5 pts] Now let A be some $2 \times n$ matrix (not necessarily the matrix in part (a), although it is some fixed matrix.) If the set S_{A} contains infinitely many vectors, what does that tell you about the set of solutions to the system $A \vec{x}=\overrightarrow{0}$?

Solution:

From equivalences we learned earlier in the course, the fact that S_{A} contains infinitely many vectors means precisely that the set of solutions to $A \vec{x}=\overrightarrow{0}$ is infinite.
(7) BONUS: Row operations can actually be thought of as matrix multiplication on the left: to be precise, for every row operation R, there exists a matrix M_{R} such that $M_{R} A=R(A)$. In this question, we will explore how that works.
(a) $[2 \mathrm{pts}]$ Let

$$
H=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If A is a $3 \times n$ matrix, then $H A$ is equal to $R(A)$ for some row operation R. What is that row operation? You don't need to prove it. (Hint: Try some examples!)

Solution:

To try an example, let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Then,

$$
H A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right]
$$

Clearly, $H A$ is A with rows 1 and 2 swapped. Therefore,

$$
R=\text { Swap Rows } 1 \text { and } 2
$$

(b) [4 pts] Find a $n \times m$ matrix G such that for every $n \times n$ matrix $A, G A=R(A)$, where the row operation R is Row $i \rightarrow$ Row $i+c \cdot$ Row j. (You don't need to prove that it works!)

Solution:

We define the matrix G entry by entry. If the (k, l) entry of G is $g_{k l}$ (we're not using i and j since those letters were already used for something specific), then we have that

$$
g_{k l}= \begin{cases}1 & k=l \\ c & (k, l)=(i, j) \\ 0 & \text { otherwise }\end{cases}
$$

If this is too much notation, what the above description says is that G is equal to I_{n} everywhere except at the (i, j) entry, and that $g_{i j}=c$.
As an example, say that we want a 3×3 matrix G that performs the row operation $R=$ Row $2 \rightarrow$ Row $2+5 \cdot$ Row 1 . According to the above description, G will be precisely I_{3}, except that $g_{21}=5$. Thus,

$$
G=\left[\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let's check that this works. Define

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 1 \\
3 & 4 & 5
\end{array}\right]
$$

Then, we have that

$$
G A=\left[\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 1 \\
3 & 4 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
6 & -4 & 1 \\
3 & 4 & 5
\end{array}\right]
$$

which is precisely $R(A)$, as expected.
(c) [4 pts] Prove that your answer from part (b) works.

Solution:

Let G be defined as above. We need to show that for any $n \times m$ matrix $A, G A=R(A)$, where R is the row operation Row $i \rightarrow$ Row $i+c$. Row j. We'll work this out entry by entry. Let the (k, l) entry of A be $a_{k l}$ (we don't use the letters i and j because they've been used already, like before.) Then,

$$
R(A)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1}+c a_{j 1} & a_{i 2}+c a_{j 2} & \cdots & a_{i n}+c a_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

To be precise, we have that

$$
(k, l) \text { entry of } R(A)= \begin{cases}a_{k l} & \text { if } k \neq i \\ a_{i l}+c a_{j l} & \text { if } k=i\end{cases}
$$

Let us now show that the (k, l) entry of $G A$ is the same. As usual,

$$
(k, l) \text { entry of } G A=(\text { row } k \text { of } \mathrm{G}) \cdot(\text { column } l \text { of } \mathrm{A})
$$

If $k \neq i$, then it's clear that the k th row of G is just $[0,0, \ldots, 1, \ldots, 0]$ where the 1 is in the k th place. Therefore, if $k \neq i$,

$$
(k, l) \text { entry of } G A=[0, \ldots, 1, \ldots, 0] \cdot\left[a_{1 l}, a_{2 l}, \ldots, a_{n l}\right]=a_{k l}
$$

If $k=i$, then the k th row of G is the i th row of G, which is all 0 s except a 1 in the i th place and a c in the j th place. Therefore,

$$
(i, l) \text { entry of } G A=[0, \ldots, 1, \ldots, c, \ldots, 0] \cdot\left[a_{1 l}, a_{2 l}, \ldots, a_{n l}\right]=a_{i l}+c a_{j l}
$$

Therefore, we see that

$$
(k, l) \text { entry of } G A= \begin{cases}a_{k l} & \text { if } k \neq i \\ a_{i l}+c a_{j l} & \text { if } k=i\end{cases}
$$

which is precisely what we got for the (k, l) entry of $R(A)$. Therefore, $R(A)=G A$, as required.

