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Show your work for all the problems. Good luck!

(1) Let A and B be defined as follows:

A =

[
1 1 2
1 2 3

]
, B =

[
0 2 2
1 3 4

]
(a) [5 pts] Demonstrate that A and B are row equivalent by providing a sequence of row operations

leading from A to B.

Solution:

As usual, a good way to do this is to row reduce both A and B. Since they are row equivalent,
they will have the same row reduced echelon form, which can be used to solve the question.
Accordingly, we row reduce A:[

1 1 2
1 2 3

]
R2:R2−R1−−−−−−→

[
1 1 2
0 1 1

]
R1:R1−R2−−−−−−→

[
1 0 1
0 1 1

]
Now, we row reduce B:[

0 2 2
1 3 4

]
Swap R1 and R2−−−−−−−−−−→

[
1 3 4
0 2 2

]
R2:

1
2
×R2−−−−−−→

[
1 3 4
0 1 1

]
R1:R1−3R2−−−−−−−→

[
1 0 1
0 1 1

]
To get from A to B, perform the operations getting A to the common row-reduced echelon
form, then reverse the operations that went into row reducing B. Therefore, a possible sequence
of row operations is:

R2 → R2 −R1, R1 → R1 −R2, R1 → R1 + 3R2, R2 → 2×R2, Swap R1 and R2

(b) [5 pts] Check whether [1, 4, 5] is in the row space of A and if it is, write it as a linear combi-
nation of the rows.

Solution:

A vector is in the row space of a matrix if it can be written a linear combination of the
rows. Therefore, we need to solve for c1 and c2 such that

[1, 4, 5] = c1[1, 1, 2] + c2[1, 2, 3]

This simplifies to
[1, 4, 5] = [c1 + c2, c1 + 2c2, 2c1 + 3c2]

Writing this down as an augmented system and solving, we get 1 1 1
1 2 4
2 3 5

 R2:R2−R1,R3:R3−2R2−−−−−−−−−−−−−−→

 1 1 1
0 1 3
0 1 3

 R1:R1−R2,R3:R3−R2−−−−−−−−−−−−−−→

 1 0 −2
0 1 3
0 0 0


This corresponds to c1 = −2, c2 = 3. Therefore, [1, 4, 5] is in the row space of A, and

[1, 4, 5] = −2[1, 1, 2] + 3[1, 2, 3]
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(2) Let A be an m×n matrix with rows ~r1, ~r2, . . . , ~rm. Let R1 be the row operation Row 1→ 2×Row1,
and R2 be the row operation Swap Rows 1 and 2.
(a) [5 pts] What is the first row of R1(R2(A)) in terms of ~r1, ~r2, . . . , ~rm? (Hint: Think a little

before deciding which row operations to do first!)

Solution:

We know that

A =


~r1
~r2
...
~rm


Therefore,

R2(A) =


~r2
~r1
...
~rm

 and so R1(R2(A)) = R1



~r2
~r1
...
~rm


 =


2~r2
~r1
...
~rm


Thus, the first row of R1(R2(A)) is 2~r2 .

(b) [5 pts] What is the first row of R2(R1(A)) in terms of ~r1, ~r2, . . . , ~rm?

Solution:

Using the expression for A from part (a), we see that

R1(A) =


2~r1
~r2
...
~rm

 and so R2(R1(A)) = R2




2~r1
~r2
...
~rm


 =


~r2
2~r1
...
~rm


Thus, the first row of R2(R1(A)) is 2~r2 .

(c) [5 pts] Prove that if ~x and ~y are both in the row space of A, then so is ~x+ ~y.

Proof:
Assumptions: ~x and ~y are both in the row space of A .
Need to show: ~x+ ~y is in the row space of A.

Since ~x is in the row space of A, it is a linear combination of the rows of A. Since the
rows of A are ~r1, ~r2, . . . , ~rn, here exist constants c1, c2, · · · , cn such that

~x = c1~r1 + · · ·+ cn~rn

Similarly, since ~y is in the row space of A, there exist constants d1, d2, · · · , dn such that

~y = d1~r1 + · · ·+ dn~rn

Therefore,

~x+ ~y = (c1~r1 + · · ·+ cn~rn) + (d1~r1 + · · ·+ dn~rn)

= (c1 + d1)~r1 + · · ·+ (cn + dn)~rn

Since c1 + d1, c2 + d2, . . . , cn + dn are clearly all constants, the above expression shows that
~x+ ~y is in the row space of A, as required. �
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(3) Let A be defined as below:

A =

−1 0 1
2 1 0
−1 1 2


(a) [5 pts] Calculate A−1 if A is nonsingular, or prove that it is singular.

Solution:

As usual, we augment A with the identity matrix and row reduce A: if A row reduces to
the identity matrix, then the final result is [In|A−1], and otherwise A is singular. −1 0 1 1 0 0

2 1 0 0 1 0
−1 1 2 0 0 1

 R2:R2+2R1−−−−−−−→

 −1 0 1 1 0 0
0 1 2 2 1 0
−1 1 2 0 0 1


R3:R3−R1−−−−−−→

 −1 0 1 1 0 0
0 1 2 2 1 0
0 1 1 −1 0 1


R1:(−1)×R1−−−−−−−−→

 1 0 −1 −1 0 0
0 1 2 2 1 0
0 1 1 −1 0 1


R3:R3−R2−−−−−−→

 1 0 −1 −1 0 0
0 1 2 2 1 0
0 0 −1 −3 −1 1


R1:R1−R3−−−−−−→

 1 0 0 2 1 −1
0 1 2 2 1 0
0 0 −1 −3 −1 1


R1:R2+2R3−−−−−−−→

 1 0 0 2 1 −1
0 1 0 −4 −1 2
0 0 −1 −3 −1 1


R3:(−1)×R3−−−−−−−−→

 1 0 0 2 1 −1
0 1 0 −4 −1 2
0 0 1 3 1 −1


Therefore, A is nonsingular, and

A−1 =

 2 1 −1
−4 −1 2
3 1 −1


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(b) [5 pts] Calculate |A| by using row or column expansion.

Solution:

Expanding along the first row, we have that∣∣∣∣∣∣
−1 0 1
2 1 0
−1 1 2

∣∣∣∣∣∣ = (−1) ·
∣∣∣∣ 1 0

1 2

∣∣∣∣+ 0 ·
∣∣∣∣ 2 0
−1 2

∣∣∣∣+ 1 ·
∣∣∣∣ 2 1
−1 1

∣∣∣∣
= −2 + 3 = 1

(c) [5 pts] Calculate |A| using row reduction (feel free to reuse your work from part (a) for this!)

Solution:

From part (a), we know the sequence of row reductions that gets A into row reduced row
echelon form. Tracking what those row reductions do to the determinant, we get that

|A| R2:R2+2R1−−−−−−−→ |A| R3:R3−R1−−−−−−→ |A| R1:(−1)×R1−−−−−−−−→ −|A| R3:R3−R2−−−−−−→ −|A|
R1:R1−R3−−−−−−→ −|A| R2:R2+2R3−−−−−−−→ −|A| R3:(−1)×R3−−−−−−−−→ |A|

Therefore, the determinant of the row reduced echelon form of A is precisely |A|, and hence

|A| =

∣∣∣∣∣∣
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ = 1

Note that we got the same answer as in part (b), as expected!
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(4) Define A to be the following matrix:

A =

[
1 2
0 1

]
(a) [5 pts] Find the characteristic polynomial of A.

Solution:

By definition, the characteristic polynomial of A is

pA(x) = |xIn −A| =
∣∣∣∣x [1 0

0 1

]
−
[
1 2
0 1

]∣∣∣∣ =

∣∣∣∣ x− 1 −2
0 x− 1

∣∣∣∣
= (x− 1)(x− 1) = (x− 1)2

(b) [5 pts] Find the eigenvalues of A.

Solution:

The eigenvalues of A are the roots of the characteristic polynomial of A. Therefore, setting
pA(x) to 0, we get

0 = (x− 1)2 ⇒ x = 1

Therefore, the only eigenvalue of A is λ = 1 .

(c) [5 pts] Pick an eigenavalue of A, and find the fundamental eigevenctors for that eigenvalue.

Solution:

A only has the one eigenvalue 1, therefore we need to find the fundamental eigenvector for it.
To find that, solve the system (λI −A)~x = ~0. Since λ = 1,

λI −A =

[
1 0
0 1

]
−
[
1 2
0 1

]
=

[
0 2
0 0

]
Thus, the system (λI − A)~x = ~0 corresponds to the following augmented matrix (which row
reduces very simply): [

0 2 0
0 0 0

]
R1:1/2×R1−−−−−−−→

[
0 1 0
0 0 0

]
This system clearly corresponds to

c1 = c1

c2 = 0

Therefore,

E1 = {~x | A~x = ~x} =

{[
c1
0

]
c1 ∈ R

}
=

{
c1

[
1
0

]
c1 ∈ R

}
Thus, the fundamental eigenvector is

[
1
0

]
. (Of course, any scalar multiple of this is also

correct!)
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(5) Define the permanent per(A) of a matrix A very similarly to the determinant: for a 1 × 1 matrix
A = [a11], per(A) = a11, and for an n× n matrix it is defined recursively as

per(A) = a11per(A11) + a12per(A12) + · · ·+ a1nper(A1n)

where Aij is defined as usual to be the matrix A with row i and column j crossed out. As you can
see, we define it using expansion along the first row, except that the sum doesn’t alternate the way
it does with determinants.

For example,

per

[
1 2
2 3

]
= 1 · per([3]) + 2 · per([2]) = 1 · 3 + 2 · 2 = 7

(a) [5 pts] Calculate the permanent of the following matrix:

A =

[
1 2
−1 4

]
Solution:

per

[
1 2
−1 4

]
= 1 · per([4]) + 2 · per([−1]) = 1 · 4 + 2 · (−1) = 2

(b) [5 pts] Prove that if per(A) 6= 0, then at least one entry of the first row of A is nonzero.

Proof:
Let’s use the contrapositive. The contrapositive of “C implies D” is “not D implies not C.”
Our original statement translates to: “per(A) 6= 0 implies that at least one entry of the first
row of A is nonzero.” Therefore, the contrapositive is “All of the entries of the first row of A
being 0 implies that per(A) = 0.”

Assume: The first row of A is 0.
Need to show: per(A) = 0.

By definition,

per(A) = a11per(A11) + a12per(A12) + · · ·+ a1nper(A1n)

= 0 · per(A11) + 0 · per(A12) + · · ·+ 0 · per(A1n) = 0

as required. �
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(c) [5 pts] Prove that if A is an n × n matrix all of whose entries are positive, then per(A) is
positive as well. (This is NOT true for the determinant, by the way!)

Proof:
This proof uses induction on n. The nth statement is “For any n × n matrix A all of whose
entries are positive, per(A) is positive as well.”

Base case:
Show that the statement holds for n = 1.

Asssume: A is a 1× 1 matrix with positive entries.
Need to show: per(A) > 0.

Let A be a 1× 1 matrix. Then, we can say that A = [a11]. In that case,

per(A) = a11 > 0

as required.

Inductive step:
Here, we show that the statement for n = k implies the statement for n = k + 1.

Asssume: If A is a k × k matrix with positive entries, then per(K) > 0.
Need to show: If A is a (k + 1)× (k + 1) matrix with positive entries, then per(K) > 0.

Let A be a (k + 1)× (k + 1) matrix with entries aij . By definition,

per(A) = a11per(A11) + a12per(A12) + · · ·+ a1(k+1)per(A1(k+1))

By the inductive hypothesis, since Aij is a k × k matrix, per(Aij) > 0 for each i and j.
Furthermore, we know that aij > 0 for each i and j. Since the product of a pair of positive
numbers is positive, this shows that

a11per(A11) > 0, a12per(A12) > 0, . . . , a1(k+1)per(A1(k+1)) > 0

Adding up k + 1 positive numbers clearly leads to a positive number, and thus we get that
per(A) > 0, as required.

�
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(6) Consider the set SA =
{
~x | A~x = [1, 1]T

}
(a) [5 pts] Let A be defined as

A =

[
1 1 1
0 1 0

]
Without solving any linear systems, check whether ~x = [1,−1, 1] is in SA.

Solution:

By definition, ~x is in SA if

A~x =

[
1
1

]
Therefore, we just need to check whether A~x is correct. Checking,

A~x =

[
1 1 1
0 1 0

] [
1
1

]
=

[
1
−1

]
6=
[
1
1

]
Therefore, ~x is not in SA.

(b) [5 pts] Now let A be some 2 × n matrix (not necessarily the matrix in part (a), although it
is some fixed matrix.) If the set SA contains infinitely many vectors, what does that tell you

about the set of solutions to the system A~x = ~0?

Solution:

From equivalences we learned earlier in the course, the fact that SA contains infinitely many

vectors means precisely that the set of solutions to A~x = ~0 is infinite.
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(7) BONUS: Row operations can actually be thought of as matrix multiplication on the left: to be
precise, for every row operation R, there exists a matrix MR such that MRA = R(A). In this
question, we will explore how that works.
(a) [2 pts] Let

H =

0 1 0
1 0 0
0 0 1


If A is a 3×n matrix, then HA is equal to R(A) for some row operation R. What is that row
operation? You don’t need to prove it. (Hint: Try some examples!)

Solution:

To try an example, let

A =

1 2 3
4 5 6
7 8 9


Then,

HA =

0 1 0
1 0 0
0 0 1

1 2 3
4 5 6
7 8 9

 =

4 5 6
1 2 3
7 8 9


Clearly, HA is A with rows 1 and 2 swapped. Therefore,

R = Swap Rows 1 and 2

(b) [4 pts] Find a n×m matrix G such that for every n×n matrix A, GA = R(A), where the row
operation R is Row i→ Row i+ c · Row j. (You don’t need to prove that it works!)

Solution:

We define the matrix G entry by entry. If the (k, l) entry of G is gkl (we’re not using i
and j since those letters were already used for something specific), then we have that

gkl =


1 k = l

c (k, l) = (i, j)

0 otherwise

If this is too much notation, what the above description says is that G is equal to In everywhere
except at the (i, j) entry, and that gij = c.
As an example, say that we want a 3 × 3 matrix G that performs the row operation R =
Row 2→ Row 2+5 ·Row 1. According to the above description, G will be precisely I3, except
that g21 = 5. Thus,

G =

1 0 0
5 1 0
0 0 1


Let’s check that this works. Define

A =

1 −1 0
1 1 1
3 4 5


Then, we have that

GA =

1 0 0
5 1 0
0 0 1

1 −1 0
1 1 1
3 4 5

 =

1 −1 0
6 −4 1
3 4 5


which is precisely R(A), as expected.
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(c) [4 pts] Prove that your answer from part (b) works.

Solution:

Let G be defined as above. We need to show that for any n × m matrix A, GA = R(A),
where R is the row operation Row i→ Row i+ c ·Row j. We’ll work this out entry by entry.
Let the (k, l) entry of A be akl (we don’t use the letters i and j because they’ve been used
already, like before.) Then,

R(A) =


a11 a12 · · · a1n
...

...
...

...
ai1 + caj1 ai2 + caj2 · · · ain + cajn

...
...

...
...

an1 an2 · · · ann


To be precise, we have that

(k, l) entry of R(A) =

{
akl if k 6= i

ail + cajl if k = i

Let us now show that the (k, l) entry of GA is the same. As usual,

(k, l) entry of GA = (row k of G) · (column l of A)

If k 6= i, then it’s clear that the kth row of G is just [0, 0, . . . , 1, . . . , 0] where the 1 is in the
kth place. Therefore, if k 6= i,

(k, l) entry of GA = [0, . . . , 1, . . . , 0] · [a1l, a2l, . . . , anl] = akl

If k = i, then the kth row of G is the ith row of G, which is all 0s except a 1 in the ith place
and a c in the jth place. Therefore,

(i, l) entry of GA = [0, . . . , 1, . . . , c, . . . , 0] · [a1l, a2l, . . . , anl] = ail + cajl

Therefore, we see that

(k, l) entry of GA =

{
akl if k 6= i

ail + cajl if k = i

which is precisely what we got for the (k, l) entry of R(A). Therefore, R(A) = GA, as required.


