
Proof or non-Proof?

Note: I’ve fixed all the typos that I remember noticing in class! I’ve probably
introduced new ones in the solutions, though. . .

The following are four attempted proofs of the statement: “If AB = BA,
then A and B are square.” Some of them are fully correct, and some are not
(I’m not saying how many!) Which ones are which? What’s wrong with the
ones that aren’t proofs? Feel free to work in groups!

Proof 1:
We will do this proof by contrapositive. Accordingly, here’s what we’re proving:

Assumptions: A and B are both not square.

Need to show: AB 6= BA.

Let A be m× n , and B be n × p. Then,

AB is m× p

BA is n× n

Since A is not square, m 6= n. Therefore, the number of rows of AB is not equal
to the number of rows of BA, and hence AB 6= BA, as required.

Issues:

1. That is not the correct statement of the contrapositive – the correct nega-
tion of “A and B are square” is “One of A and B is not square.”

2. Why are we assuming that the number of columns of A is equal to the
number of rows of B?

Proof 2:
Assumptions: AB = BA
Need to show: A and B are both square.

Let A be m × n , and B be n × p. Then, since BA is defined, we must
have p = m. Therefore, A is m× n and B is n×m. Therefore,

AB is m×m

BA is n× n

Since those are equal, we must have m = n. Thus, A and B are both n×n and
hence are square, as required.

Issues:

1. Again, why are we assuming that the number of columns of A is equal to
the number of rows of B? In a basic proof like this, we need to justify
that!
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Proof 3:
Assumptions: AB = BA
Need to show: A and B are both square.

Let A be m × n, and B be p × q. Since AB is defined, n = p. Since BA
is defined, q = m. Therefore, we have that B is n×m. Thus,

AB is m×m

BA is n× n

Since those are equal, we must have m = n. Thus, A and B are both n×n and
hence are square, as required.

This is a correct proof!

Proof 4:
Assumptions: AB = BA
Need to show: A and B are both square.

Let A be m × n, and B be p × q. Since AB is defined, n = p. Since BA
is defined, q = n. Therefore, we have that B is n×m. Thus,

AB is m×m

BA is n× n

Therefore, AB and BA are both square, so we’re done.

Issues:

1. This is a perfectly logical sequence of steps, but it’s concluding statement
isn’t right! We weren’t supposed to show that AB and BA are square –
we were supposed to show that A and B are square.
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The Joy of Sets

Vectors:

For each of the following sets, do the following:

• Give an example of an element of the set (or show that it’s empty.)

• Check whether the column vector ~x =
[
1 1 1

]T
is in it.

Hint: at least one of the above two tasks should be easy for each set!

1.
S1 = {~x ∈ R3 | ~x orthogonal to [1, 0, 0]T }

• A vector [x1, x2, x3]T in in the set ifx1

x2

x3

 ·
1

0
0

 = 0

which works out precisely to x1 = 0. Thus, an example of an element

in this set is [0, 1, 1]T .

• Checking, [1, 1, 1]T · [0, 0, 1]T = 1, and therefore [1, 1, 1]T is not or-

thogonal to [1, 0, 0]T . Thus, [1, 1, 1]T is not in the set.

2.
S2 = {~x ∈ R3 |A~x = ~0}

where A =

[
1 0 −1
1 2 −3

]
.

• A vector [x1, x2, x3]T in in the set if

A~x =

[
1 0 −1
1 2 −3

]x1

x2

x3

 ·
1

0
0

 =

[
0
0

]
which works out to

x1 − x3 = 0

x1 + 2x2 − 3x3 = 0

Rewriting this as an augmented matrix and row-reducing, this works
out to x1 = x3, x2 = x3, and therefore all solutions are of the
form [x3, x3, x3]. Thus, an example of an element in this set is

[−1,−1,−1]T .

• Checking, A[1, 1, 1]T = [0, 0]T , therefore [1, 1, 1]T is in the set. (You
can also notice that it matches the general form found previously.)
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3.
S3 = {c1~v + c2 ~w | c1, c2 ∈ R}

where ~v = [2, 4, 6]T , ~w = [0, 1, 2]T .

• A vector [x1, x2, x3]T in in the set ifx1

x2

x3

 = c1~v + c2 ~w = c1

2
4
6

+ c2

0
1
2


for some choice of scalars c1 and c2. Thus, picking arbitrary c1 and
c2 provides us with an example of a member of the set. Let’s pick

c1 = 1/2, c2 = 0. Then, ~x = [1, 2, 3]T is an example of an element

in the set.

• Here, the questions is whether [1, 1, 1]T can be written as c1~v + c2 ~w
for some choice of c1, c2. Setting it up, we need to see if there exist
solutions c1, c2 to the following system:1

1
1

 = c1

2
4
6

+ c2

0
1
2

 =

 2c1
4c1 + c2
6c1 + 2c2


This is simply a system of linear equations. Solving, we get that
c1 = 1/2, c2 = −1, so1

1
1

 = 1/2

2
4
6

+ (−1)

0
1
2


and therefore [1, 1, 1]T is in the set.

4.
S4 = {~x ∈ R4 | ‖~x‖ =

√
3}

• A vector ~x = [x1, x2, x3, x4]T in in the set if

√
3 = ‖~x‖ =

√
x2
1 + x2

2 + x2
3 + x2

4

which simplifies precisely to x2
1 + x2

2 + x2
3 + x2

4 = 3. Therefore, an

example of a member of this set is [1, 0, 1, 1]T .

• Since [1, 1, 1]T is not in R4, it is not a member of this set.

5.
S5 = {~x ∈ R3 | ~x in the column space of A}

where A =

2 0
4 1
6 2

.
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• A vector is in the column space of a matrix if it can be written as a
linear combination of the columns. Therefore, ~x = [x1, x2, x3]T is in
this set if x1

x2

x3

 = c1

2
4
6

+ c2

0
1
2


for some scalars c1, c2. It should be easy to see that this is the same
condition as for the set S3 above, and therefore S5 = S3 and all

our reasoning for that set applies here. Therefore, [1, 2, 3]T is an

example of an element of this set, and

• [1, 1, 1]T is an element of the set.

Matrices:

For each of the following sets, do the following:

• Give an example of an element of the set (or show that it’s empty.)

• Check whether the matrix

A =

[
1 1 1
1 2 3

]
is in it.

Hint: as above, one of the above two tasks should be easy for each set!

1.
R1 = {C | rank(C) = 2}

• The rank of a matrix is the number of non-zero rows in its row-
reduced echelon form. Accordingly, an example of a matrix in R1

is [
1 0 1
0 1 −1

]
(For simplicity, I chose a matrix which is already row-reduced.)

• The rref of A is [
1 0 −1
0 1 2

]
Clearly, rank(A) = 2, so A is in R1.

2.
R2 = {C | C is a 2× 3 matrix, rank(C) = 3}

• Since the rank of a matrix is the number of nonzero rows in its rref,
and a 2× 3 matrix only has 2 rows, it’s impossible for its rank to be
3. Hence, this set is empty.
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• Since the set is empty, A is not in it.

3.
R3 = {C | C is row equivalent to B}

where B =

[
1 0 1
0 1 3

]
.

• Any matrix produced from B by row operations is row equivalent
to B. Therefore, doing the row operation R2 : R1 + R2 we get the
following matrix which is in the set:[

1 0 1
1 1 4

]

• As we learned in class, two matrices are row-equivalent if and only if
that have the same rref. Since the rref if A is[

1 0 −1
0 1 2

]
and the rref of B is B (it’s already row-reduced), it follows that A

and B are not row-equivalent. Therefore, A is not in the set.

4.

R4 =

{
C =

[
a b
c d

]
a + b = 0, c + d = 0

}
• We just need to pick a, b, c, d to satisfy the constraints. Letting a =

1, c = 0 we get the following matrix as an example:[
1 −1
0 0

]

• A isn’t even 2× 2: it’s clearly not in the set.

5.
R5 =

{
C C symmetric, C−1 has first row equal to [1, 1, 1]

}
• As seen in the homework, C is symmetric if and only if C−1 is sym-

metric. Furthermore, given C−1 we can calculate C by taking the
inverse of C−1. Therefore, we can take a symmetric C−1 whose first
row is [1, 1, 1] and invert it to get an example of a matrix in the set.
For example, we can take

C−1 =

1 1 1
1 1 0
1 0 0
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Inverting, we get

C =

0 0 1
0 1 −1
1 −1 0


which is clearly an example of a matrix in the set. (It’s clearly sym-
metric, and we chose its inverse to have [1, 1, 1] as the first row.)

• A is not square and hence has no inverse. Therefore, it is not in the
set.
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Contrapositive Proofs

Do the following proofs by contrapositive:

1. Prove that if ~x · ~y 6= 0, then ‖~x‖2 + ‖~y‖2 6= ‖~x + ~y‖2.

Proof:
Since we’re doing the contrapositive, instead of proving A implies B, we
prove that (not B) implies (not A). Here, the statements A and B are as
follows:

A : ~x · ~y 6= 0

B : ‖~x‖2 + ‖~y‖2 6= ‖~x + ~y‖2

These are easy to negate, resulting in the following set up:

Assumptions: ‖~x‖2 + ‖~y‖2 = ‖~x + ~y‖2.
Need to show: ~x · ~y = 0

We are given that
‖~x‖2 + ‖~y‖2 = ‖~x + ~y‖2

Rewriting everything in terms of dot products and simplifying:

~x · ~x + ~y · ~y = (~x + ~y) · (~x + ~y) = ~x · ~x + 2~x · ~y + ~y · ~y
⇒ 0 = 2~x · ~y
⇒ 0 = ~x · ~y

as required.

2. Prove that if A is a non-zero 2 × 2 matrix, then either A

[
1
0

]
or A

[
0
1

]
is

non-zero.

Proof:
We need to negate both statements, like in the first question. Note that

not

(
either A

[
1
0

]
or A

[
0
1

]
is non-zero

)
=

(
A

[
1
0

]
and A

[
0
1

]
are both ~0

)
Therefore, the set up is as follows:

Assumptions: A is 2× 2, A

[
1
0

]
and A

[
0
1

]
are both ~0.

Need to show: A is the zero matrix.

Let

A =

[
a b
c d

]
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Then the assumption says that[
0
0

]
=

[
a b
c d

] [
1
0

]
=

[
a
c

]
and that [

0
0

]
=

[
a b
c d

] [
0
1

]
=

[
b
d

]
These clearly combine to state that a = 0, c = 0, b = 0 and d = 0, hence
A is the zero matrix, as required.

3. Prove that if ~x ∈ Rn, and A~x = ~0 for every n× n matrix A, then ~x is the
zero vector.

Proof:
Assumptions: ~x ∈ Rn, and ~x 6= ~0.
Need to show: There exists an n× n matrix A such that A~x 6= ~0.

Let A be the n × n matrix all of whose rows are equal to ~xT . Then,
by the rules of matrix multiplication,

Entry i of A~x = (Row i of A) · ~x = ~x · ~x = ‖~x‖2

Therefore,

A~x =


‖~x‖2

‖~x‖2
...

‖~x‖2

 6= ~0

so we’re done.

4. Prove that if A is a singular n× n matrix, then A2 6= In.

Proof:
Assumptions: A is n× n, and A2 = In.
Need to show: A is non-singular.

As we know, to show that B is the inverse of A (provided both are
n × n), we just need to check that AB = In. Now, since we have that
A ·A = A2 = In, we can conclude that A is the inverse of A, and hence A
is non-singular.
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5. Challenge: Assume that A is an m×n matrix and B is an n×m matrix
such that AB = Im and BA = In. Show that m = n.

Hint: Due to symmetry, m < n and n < m are equivalent. So we can
assume that m < n. This can be used to show that there exists a non-
trivial solution to A~x = ~0. Show that this implies that BA 6= In.

Proof:
Assumptions: m 6= n.
Need to show: Either AB 6= Im or BA 6= In.

There are two possibilities for m 6= n: either m < n or n < m. Let
us first consider the case m < n, and show that BA 6= In.

Since m < n, the system of equations A~x = ~0 has more variables than
equations, and therefore there exists a a non-trivial solution ~x0. Thus,
A~x0 = ~0, so

(BA)~x0 = B(A~x0) = A~0 = ~0

Hence, ~x0 is a nontrivial solution to (BA)~x = ~0. This means that BA 6=
In, as In~x = ~0 only has the trivial solution.

Now, consider the case n < m. It should be clear that the above argument
with the roles of A and B switched will result in showing that AB 6= Im.
(This is what is meant by the cases m < n and n < m are entirely
symmetric.) Thus, in both cases we can show that either AB 6= Im or
BA 6= In, so we’re done.
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