Practice Final for Math 341

Olena Bormashenko

December 10, 2011

1. Define the following vectors and matrices:

$$
\vec{x}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{y}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], C=\left[\begin{array}{ccc}
2 & -3 & 1 \\
3 & 0 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

For each of the following questions, either calculate the quantity in the question or explain why it's impossible.
(a) The unit vector in the direction $\vec{x}+\vec{y}$.
(b) $\operatorname{proj}_{\vec{y}} \vec{x}$.
(c) $A \vec{x}+B \vec{y}$.
(d) $A+2 A C$.
(e) The angle θ between \vec{x} and \vec{y}.
(f) AB
2. Let A be an $m \times 3$ matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(a) Let B be the following matrix:

$$
B=\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
-1 & 0
\end{array}\right]
$$

Write the second column of $A B$ in terms of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
(b) Prove that if $A^{T} \vec{x}=\overrightarrow{0}$, then \vec{x} is orthogonal to \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
3. Prove that if $A B=B A$, then $A^{n} B=B A^{n}$ for all positive integer n.
4. Find all solutions to the following systems of equations. For each system, state how many solutions it has.
(a)

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+2 x_{2}-5 x_{3}=-2
\end{aligned}
$$

(b)

$$
\begin{aligned}
& a+b=0 \\
& a+3 b=0
\end{aligned}
$$

5. Recall that if R is a row operation, then $R(A B)=R(A) B$. Now, let C be the column operation Column $1 \rightarrow 2 \times$ Column 1. Prove or disprove: $C(A B)=C(A) B$ for any matrices A and B (such that $A B$ is defined.)
6. Let A be the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

(a) What is the rank of A ?
(b) What is the determinant of A ? (Hint: this is easiest using the answer from (a).)
(c) Does A have an inverse? If so, calculate it; if not, explain why not.
(d) Let \vec{b} be a vector such that the system $A \vec{x}=\vec{b}$ has the solution \vec{x}_{0}. How many solutions does the system $A \vec{x}=\vec{b}$ have overall?
7. Let A be defined as follows:

$$
A=\left[\begin{array}{ccc}
2 & 1 & -3 \\
0 & 1 & 2 \\
1 & 1 & -1
\end{array}\right]
$$

(a) Calculate A^{-1}.
(b) Calculate $|A|$ using row or column expansion.
8. (a) Find a counterexample to the following statement: If A is an $m \times n$ amtrix, and B is an $n \times m$ matrix, then $A B=I_{m}$ implies $B A=I_{n}$.
(b) If $A^{2}=A$, what are the possible values of $|A|$?
(c) Find the determinant of the following matrix:

$$
A=\left[\begin{array}{ccc}
7 & 2026 & 1251 \\
7 & 2025 & -900 \\
7 & 2026 & 1351
\end{array}\right]
$$

Hint: Don't use row or column expansion!
9. Diagonalize the following matrices A, or show that it is impossible: (That is, we're looking for a diagonal matrix D and a matrix P such that $P^{-1} A P=D$, or trying to show they can't be found.)
(a)

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right]
$$

10. Check whether the following set is a vector space: V is all matrices of the form

$$
A=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]
$$

and the operations are defined as:

$$
\begin{aligned}
A \oplus B & =A B \\
c \odot\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] & =\left[\begin{array}{cc}
1 & a c \\
0 & 1
\end{array}\right]
\end{aligned}
$$

11. Answer the following questions:
(a) Is $W=\{[x, y] \mid x \geq 0, y \geq 0\}$ a subspace of \mathbb{R}^{2} ?
(b) If A is an $m \times n$ matrix, is

$$
W=\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\}
$$

a subspace of \mathbb{R}^{n} ?
(c) Is $W=\{[x, y, 0] \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^{3} ?
(d) Is $W=\left\{A \in \mathcal{M}_{22} \mid A\right.$ is singular $\}$ a subspace of \mathcal{M}_{22} ?
12. Check whether the following sets S are linearly dependent or independent. If they are linearly dependent, write down a linear combination of the elements in S that's equal to $\overrightarrow{0}$.
(a)

$$
S=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

(b)

$$
S=\{[1,-1,1],[0,1,3],[2,1,11]\}
$$

13. Prove that if $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a linearly independent subset of V, then for any \vec{x} in V, there is at most one way to write it as a linear combination of the elements in S.
14. Check whether the following are bases of the given vector spaces. You may use the fact that the dimension of \mathbb{R}^{n} is n.
(a) Is $\{[1,1],[0,1],[2,3]\}$ a basis of \mathbb{R}^{2} ?
(b) Is $\{[1,1,1],[1,2,3],[3,4,5]\}$ a basis of \mathbb{R}^{3} ?
(c) If $\{[3,4],[-1,2]\}$ a basis of \mathbb{R}^{2} ?
15. If we're given that a vector space V contains a set S of size 21 such that S is linearly independent, what does that tell us about the dimension of V ?
16. Check whether the following functions $T: V \rightarrow W$ are linear transormations. If they are, prove it; if they are not, provide a counterexample.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x-y+z \\
2 x-z
\end{array}\right]
$$

(b) $T: \mathcal{M}_{22} \rightarrow \mathbb{R}^{2}$,

$$
T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
a b \\
c d
\end{array}\right]
$$

(c) Let V be a vector space, and let c be a fixed scalar. Then, $T: V \rightarrow V$, given by

$$
T(\vec{v})=c \vec{v}
$$

17. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation satisfying

$$
T\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right], T\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Find the matrix A such that $T(\vec{x})=A \vec{x}$.

