Practice Final for Math 341

Olena Bormashenko

December 10, 2011

1. Define the following vectors and matrices:

$$\vec{x} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \vec{y} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 & 3\\0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1\\2 & -1 \end{bmatrix}, C = \begin{bmatrix} 2 & -3 & 1\\3 & 0 & -1\\1 & 1 & 1 \end{bmatrix}$$

For each of the following questions, either calculate the quantity in the question or explain why it's impossible.

- (a) The unit vector in the direction $\vec{x} + \vec{y}$.
- (b) $\operatorname{proj}_{\vec{y}} \vec{x}$.
- (c) $A\vec{x} + B\vec{y}$.
- (d) A + 2AC.
- (e) The angle θ between \vec{x} and \vec{y} .
- (f) AB
- 2. Let A be an $m \times 3$ matrix with columns $\vec{v}_1, \vec{v}_2, \vec{v}_3$.
 - (a) Let B be the following matrix:

$$B = \begin{bmatrix} 1 & 2\\ 3 & 4\\ -1 & 0 \end{bmatrix}$$

Write the second column of AB in terms of \vec{v}_1, \vec{v}_2 and \vec{v}_3 .

- (b) Prove that if $A^T \vec{x} = \vec{0}$, then \vec{x} is orthogonal to \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .
- 3. Prove that if AB = BA, then $A^n B = BA^n$ for all positive integer n.
- 4. Find all solutions to the following systems of equations. For each system, state how many solutions it has.
 - (a)

 $\begin{aligned} x_1 + x_2 &+ x_3 &= 1 \\ x_1 + 2x_2 - 5x_3 &= -2 \end{aligned}$

$$\begin{aligned} a+b &= 0\\ a+3b &= 0 \end{aligned}$$

- 5. Recall that if R is a row operation, then R(AB) = R(A)B. Now, let C be the column operation Column $1 \rightarrow 2 \times \text{Column } 1$. Prove or disprove: C(AB) = C(A)B for any matrices A and B (such that AB is defined.)
- 6. Let A be the following matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- (a) What is the rank of A?
- (b) What is the determinant of A? (Hint: this is easiest using the answer from (a).)
- (c) Does A have an inverse? If so, calculate it; if not, explain why not.
- (d) Let \vec{b} be a vector such that the system $A\vec{x} = \vec{b}$ has the solution \vec{x}_0 . How many solutions does the system $A\vec{x} = \vec{b}$ have overall?
- 7. Let A be defined as follows:

$$A = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

- (a) Calculate A^{-1} .
- (b) Calculate |A| using row or column expansion.
- 8. (a) Find a counterexample to the following statement: If A is an $m \times n$ amtrix, and B is an $n \times m$ matrix, then $AB = I_m$ implies $BA = I_n$.
 - (b) If $A^2 = A$, what are the possible values of |A|?
 - (c) Find the determinant of the following matrix:

$$A = \begin{bmatrix} 7 & 2026 & 1251 \\ 7 & 2025 & -900 \\ 7 & 2026 & 1351 \end{bmatrix}$$

Hint: Don't use row or column expansion!

9. Diagonalize the following matrices A, or show that it is impossible: (That is, we're looking for a diagonal matrix D and a matrix P such that $P^{-1}AP = D$, or trying to show they can't be found.)

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

(b)

(a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

10. Check whether the following set is a vector space: V is all matrices of the form

$$A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

and the operations are defined as:

$$A \oplus B = AB$$
$$c \odot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & ac \\ 0 & 1 \end{bmatrix}$$

- 11. Answer the following questions:
 - (a) Is $W = \{ [x, y] | x \ge 0, y \ge 0 \}$ a subspace of \mathbb{R}^2 ?
 - (b) If A is an $m \times n$ matrix, is

$$W = \{\vec{x} \mid A\vec{x} = \vec{0}\}$$

a subspace of \mathbb{R}^n ?

- (c) Is $W = \{[x, y, 0] \mid x, y \in \mathbb{R}\}$ a subspace of \mathbb{R}^3 ?
- (d) Is $W = \{A \in \mathcal{M}_{22} \mid A \text{ is singular}\}$ a subspace of \mathcal{M}_{22} ?
- 12. Check whether the following sets S are linearly dependent or independent. If they are linearly dependent, write down a linear combination of the elements in S that's equal to $\vec{0}$.
 - (a)

$$S = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$

(b)

$$S = \{[1, -1, 1], [0, 1, 3], [2, 1, 11]\}$$

- 13. Prove that if $S = {\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}}$ is a linearly independent subset of V, then for any \vec{x} in V, there is at most one way to write it as a linear combination of the elements in S.
- 14. Check whether the following are bases of the given vector spaces. You may use the fact that the dimension of \mathbb{R}^n is n.

- (a) Is $\{[1,1], [0,1], [2,3]\}$ a basis of \mathbb{R}^2 ?
- (b) Is $\{[1, 1, 1], [1, 2, 3], [3, 4, 5]\}$ a basis of \mathbb{R}^3 ?
- (c) If $\{[3,4], [-1,2]\}$ a basis of \mathbb{R}^2 ?
- 15. If we're given that a vector space V contains a set S of size 21 such that S is linearly independent, what does that tell us about the dimension of V?
- 16. Check whether the following functions $T: V \to W$ are linear transormations. If they are, prove it; if they are not, provide a counterexample.

(a)
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
,
 $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - y + z \\ 2x - z \end{bmatrix}$
(b) $T : \mathcal{M}_{22} \to \mathbb{R}^2$,

$$T\begin{bmatrix}a&b\\c&d\end{bmatrix} = \begin{bmatrix}ab\\cd\end{bmatrix}$$

(c) Let V be a vector space, and let c be a fixed scalar. Then, $T:V\to V,$ given by

$$T(\vec{v}) = c\vec{v}$$

17. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation satisfying

$$T\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}2\\3\end{bmatrix}, T\begin{bmatrix}2\\-1\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}$$

Find the matrix A such that $T(\vec{x}) = A\vec{x}$.