Practice Midterm 2 for Math 341

Olena Bormashenko

October 28, 2011

1. Let A and B be defined as follows:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 3 & 5 \\
1 & 6 & 11
\end{array}\right]
$$

(a) Demonstrate that A and B row equivalent by providing a sequence of row operations leading from A to B.
(b) Check whether $\vec{x}=[1,2,3]$ is in the row space of A, and if it is, write it as a linear combination of the rows of A.
(c) Is \vec{x} in the row space of B ? (You shouldn't need many calculations here...)
2. Prove that $R(A B)=R(A) B$ if R is the row operation Row $1 \rightarrow 2 \times$ Row 1 .

Hint: Show that the (i, j) entry of $R(A B)$ is equal to the (i, j) entry of $R(A) B$. You'll have to consider $i=1$ and $i \neq 1$ separately!
3. Let A be defined as follows:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
5 & 3 & 11 \\
-2 & 1 & 0
\end{array}\right]
$$

In that case (you do not need to check this!), the row reduced echelon form of A is

$$
\operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

(a) What is the rank of A ?
(b) Is A singular or nonsingular?
(c) Check that if $\vec{b}=[2,3,1]^{T}$, then $\vec{x}=[0,1,0]^{T}$ solves the system $A \vec{x}=\vec{b}$.
(d) Using the information from parts (a), (b), and (c), without doing any calculations, how many solutions does $A \vec{x}=\vec{b}$ have? (Here, \vec{b} is defined as in part (c).)
4. Prove that if A is an $n \times n$ diagonal matrix whose row-reduced echelon form is I_{n}, then none of the diagonal entries of A are 0 .
5. Let A be defined as below:

$$
A=\left[\begin{array}{lll}
1 & 3 & 1 \\
1 & 1 & 2 \\
2 & 3 & 4
\end{array}\right]
$$

(a) Calculate A^{-1} if A is nonsingular, or prove that it is singular.
(b) Calculate $|A|$ by using row or column expansion.
(c) Calculate $|A|$ using row reduction (feel free to reuse your work from part (a) for this!)

6 . Let A and B satisfy the following:

$$
A=\left[\begin{array}{ccc}
0 & ? & ? \\
1 & ? & ? \\
-1 & ? & ?
\end{array}\right], B=\left[\begin{array}{lll}
1 & 2 & 3 \\
? & ? & ? \\
? & ? & ?
\end{array}\right]
$$

That is, we know some entries of A and B but not others.
(a) Prove that A and B are not inverses of each other.
(b) Show that $\vec{x}=[1,2,1]$ is not in the set $\{\vec{x} \mid \vec{x} A=c[0,1,1], c$ in $\mathbb{R}\}$.

Note: Pay attention to the order of multiplication in the definition of that set!!
7. Let A be the matrix defined as

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
0 & -1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

(a) What is the characteristic polynomial $p_{A}(x)$ of A ?
(b) What are the eigenvalues of A ?
(c) Pick an eigenvalue of A, and write down the fundamental eigenvectors for that eigenvalue.
8. Prove that if

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

then

$$
A^{n}=\left[\begin{array}{cc}
1 & 2 n \\
0 & 1
\end{array}\right]
$$

for all positive integers n.

