
Midterm 2: Concepts to Review

Olena Bormashenko

The second midterm will cover Sections 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, and
3.4, with the usual caveat that you only need to know the things covered in lec-
ture (there are a number of concepts we’ve skipped.) I will not explicitly test the
material from the first midterm, but since that material has been continuously
utilized since, you’re expected to know it.

1. Solving Systems of Equations (Sections 2.1 and 2.2) – we did some of this
on the first midterm, but there were a number of things we’ve skipped.
Of course, you’ll be expected to know how to solve linear systems on the
exam, too!

• What the system A~x = ~b corresponds to as an augmented system of
equations: that is, [A|~b].

• If R is a row operation, then R(AB) = R(A)B.

• What a homogoneous system is: that is, the system A~x = ~0.

2. Equivalent Systems, Rank, and Row Space (Section 2.3)

• Two systems are equivalent if they have exactly the same solutions.

• A matrix C is row equivalent to a matrix D if C is obtained from C
with a finite number of row operations.

• Knowing how to ‘reverse’ row operations: this can be used to show
that if C is row equivalent to D, then D is row equivalent to C.

• How to test if two matrices are row equivalent: two matrices are row
equivalent if they have the exact same reduced row echelon form

• The definition of the rank of A:

rank(A) = {number of non-zero rows in the rref of A}
= {number of pivotal columns in the rref of A}

• When a homogeneous system (that is, the system A~x = ~0) has one
or infinitely many solutions:

(a) If rank(A) < n, then the system has a non-trivial solution

(b) If rank(A) = n, then the system has the one solution ~x = ~0.
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• The definition of the row space of a matrix, and how to check whether
a vector is in the row space: the row space of A is the set of linear
combinations of the rows of A.

• If A is row equivalent to B, then the row space of A is equal to the
row space of B.

3. Inverses of Matrices (Section 2.4)

• For a square n× n matrix A, B is the inverse of A if

AB = BA = In

This is denoted by B = A−1.

• If A and B are n×n matrices such that AB = In, then we have that
A and B are inverses: that is, BA = In.

• A square matrix is singular if and only if it does not have an inverse.
If it does have an inverse, then it is nonsingular.

• Inverse properties: Let A and B be nonsingular n×n matrices. Then,

(a) A−1 is nonsingular and (A−1)−1 = A.

(b) AB is nonsingular, and (AB)−1 = B−1A−1

(c) AT is nonsingular and (AT )−1 = (A−1)T .

• For a 2× 2 matrix A,[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
(In fact, you now know that the 1

ad−bc term corresponds to 1
|A| !)

• How to find the inverse of any matrix:

(a) If A is n×n, then augment A with In, getting the system [A|In].

(b) Row reduce A, performing the same operations on both sides of
the augmenting bar

(c) If A row reduces to In, then it has an inverse, and the end result
is [In|A−1].

(d) If the row reduced echelon form of A is not In, then A has no
inverse: it is singular.

• An n× n matrix A is nonsingular if and only if rank(A) = n.

• The system A~x = ~b has a unique solution if and only if A is nonsin-
gular. If A is singular, then it either has no solutions or infinitely
many solutions.

4. Determinants (Sections 3.1, 3.2, and 3.3 – we did it out of order!)

• For a 2× 2 matrix, the determinant is calculated as follows:∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

2



• For bigger matrices, the determinant is calculated using row or col-
umn expansion. Before defining this, define Aij to be the matrix we
get by crossing out row i and column j of A. Then,

Aij = (−1)i+j |Aij |

This is called the (i, j) cofactor of A, while |Aij | is the (i, j) minor of
A.

• Calculating the determinant using row expansion: if A is an n × n
matrix, then for any i,

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ai1Ai1

= (−1)i+1ai1 |Ai1|+ (−1)i+2ai2 |Ai1|+ · · ·+ (−1)i+nain |Ain|

• Calculating the determinant using column expansion: if A is an n×n
matrix, then for any j,

|A| = a1jA1j + a2jAi2 + · · ·+ anjAnj

= (−1)j+1a1j |A1j |+ (−1)j+2a2j |A1j |+ · · ·+ (−1)j+nanj |Anj |

5. Properties of Determinants (Sections 3.1, 3.2, and 3.3)

• |AB| = |A||B| for all n× n matrix A and B.

• |AT | = |A|.
• However, it’s not true that |A+B| = |A|+ |B| in general!

• |A| = 0 if and only if A is singular – that is, doesn’t have an inverse.

• Effects of row operations on the determinant (summary posted as
solutions of the in-class work.)

• For an upper triangular n× n matrix A,

|A| = a11a22 · · · ann

• Using row operations to calculate determinants

• If A is an n×nmatrix, then the following statements are all equivalent
(all imply each other):

(a) A is singular (doesn’t have an inverse)

(b) rank(A) < n

(c) |A| = 0

(d) A~x = ~0 has a nontrivial solution.

(e) A~x = ~b either has no solutions or infinitely many solutions (de-

pending on ~b.)

• Similarly, if A is an n× n matrix, then the following statements are
all equivalent (all imply each other):
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(a) A is nonsingular (has an inverse)

(b) rank(A) = n

(c) |A| 6= 0

(d) A~x = ~0 only has the trivial solution ~x = ~0.

(e) A~x = ~b has exactly one solution for all ~b.

6. Eigenvalues and Eigenvectors (Section 3.4)

• λ is an eigenvalue of A if there exists a nonzero ~x such that A~x = λx.
In that case, ~x is an eigenvector of A with eigenvalue λ.

• The characteristic polynomial of A is defined to be

pA(x) = |xIn −A|

• To find eigenvalues, solve 0 = pA(x).

• To find the eigenvectors corresponding to λ, solve the system

(λIn −A)~x = ~0

7. New Proof Techniques (and of course, you’re responsible for the kind of
direct proofs we’ve been doing before, too.)

• Proof by contrapositive: instead of proving that A implies B, prove
that (not B) implies (not A).

• Proof by induction: to show that some statement holds for any pos-
itive integer n (possibly for all n above a certain number), prove the
following:

(a) Base case: the statement holds for the smallest possible value of
n, often n = 1 but not always.

(b) Inductive step: if you assume that the statement holds for n = k,
then it holds for n = k + 1.

8. Sets: using set notation, giving example of elements of sets and checking
whether things are in sets.
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