
Final Exam: Concepts to Review

Olena Bormashenko

The final covers everything we did in class so far – it is cumulative. However,
there will be more emphasis on the things covered since the last midterm: that
is, half of Section 3.4, and Sections 4.1, 4.2, 4.3, 4.4, 4.5, 5.1, and a bit of Section
5.2.

This review sheet incorporates the earlier review sheets for the midterms.

1. Fundamental Operations with Vectors (Section 1.1)

• Addition of vectors, multiplying vectors by a scalar.

• The length ‖~x‖ of a vector:

‖[x1, x2, . . . , xn]‖ =
√
x21 + x22 + · · ·+ x2n

• Unit vectors; finding the unit vector in the same direction as a vector
~x.

• Using the properties of addition and scalar multiplication (Theorem
1.3)

• Definition of a linear combination: a vector ~v is a linear combination
of vectors ~v1, . . . , ~vn if it’s possible to find scalars c1, c2, . . . , cn such
that

~v = c1~v1 + · · ·+ cn~vn

2. The dot product (Section 1.5)

• The definition of the dot product of ~x = [x1, x2, . . . , xn] and ~y =
[y1, y2, . . . , yn]:

~x · ~y = [x1, x2, . . . , xn] · [y1, y2, . . . , yn]

= x1y1 + x2y2 + · · ·+ xnyn

• The Cauchy-Schwarz inequality: |~x · ~y| ≤ ‖~x‖‖~y‖.
• The triangle inequality: ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖.
• The angle between two vectors: if θ is the angle between ~x and ~y,

then θ is defined to be between 0 and π and it satisfies

~x · ~y = ‖~x‖ ‖~y‖ cos(θ)
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• Using the dot-product to check for orthogonality, being parallel, be-
ing in opposite directions

• The definition of a projection of ~b onto ~a, denoted by proj~a
~b:

proj~a
~b =

(
~a ·~b
‖~a‖2

)
~a

3. Fundamental Operations with Matrices (Section 1.4)

• Definition of an m× n matrix

• Matrix addition, multiplying matrices by scalars

• Definitions of special matrices: square matrices, diagonal matrices,
identity matrices, upper triangular matrices, lower triangular matri-
ces, zero matrices

• Properties of addition and scalar multiplication of matrices (Theorem
1.11)

• The transpose of a matrix and its properties

4. Matrix Multiplication (Section 1.5)

• How to multiply matrices: if A is an m×n matrix and B is an n× p
matrix, then AB is an m× p matrix such that

(i, j) entry of AB = (row i of A) · (column j of B)

where the · means the dot product

• Matrix multiplication is not commutative: we rarely have AB = BA.

• The following identities:

kth column of AB = A(kth column of B)

kth row of AB = (kth row of A)B

• Fundamental properties of matrix multiplication (Theorem 1.14)

• Powers of square matrices

• Matrix multiplication and transposes: (AB)T = BTAT .

• Linear combinations from matrix multiplication: how to find a linear
combination of the rows of A by multiplying A on the left by a row
vector, how to find a linear combination of the columns of A by
multiplying A on the right by a column vector

5. Systems of Equations (Sections 2.1 and 2.2.)

• Writing down a system of linear equations in augmented matrix form

• Getting the system into row-reduced echelon form
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• Using the row-reduced echelon form to find all solutions to the system

• The criteria for when a system in row-reduced form has

– No solutions

– Exactly one solution

– Infinitely many solutions

• What the system A~x = ~b corresponds to as an augmented system of
equations: that is, [A|~b].

• If R is a row operation, then R(AB) = R(A)B.

• What a homogoneous system is: that is, the system A~x = ~0.

6. Equivalent Systems, Rank, and Row Space (Section 2.3)

• Two systems are equivalent if they have exactly the same solutions.

• A matrix C is row equivalent to a matrix D if C is obtained from C
with a finite number of row operations.

• Knowing how to ‘reverse’ row operations: this can be used to show
that if C is row equivalent to D, then D is row equivalent to C.

• How to test if two matrices are row equivalent: two matrices are row
equivalent if they have the exact same reduced row echelon form

• The definition of the rank of A:

rank(A) = {number of non-zero rows in the rref of A}
= {number of pivotal columns in the rref of A}

• When a homogeneous system (that is, the system A~x = ~0) has one
or infinitely many solutions:

(a) If rank(A) < n, then the system has a non-trivial solution

(b) If rank(A) = n, then the system has the one solution ~x = ~0.

• The definition of the row space of a matrix, and how to check whether
a vector is in the row space: the row space of A is the set of linear
combinations of the rows of A.

• If A is row equivalent to B, then the row space of A is equal to the
row space of B.

7. Inverses of Matrices (Section 2.4)

• For a square n× n matrix A, B is the inverse of A if

AB = BA = In

This is denoted by B = A−1.

• If A and B are n×n matrices such that AB = In, then we have that
A and B are inverses: that is, BA = In.
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• A square matrix is singular if and only if it does not have an inverse.
If it does have an inverse, then it is nonsingular.

• Inverse properties: Let A and B be nonsingular n×n matrices. Then,

(a) A−1 is nonsingular and (A−1)−1 = A.

(b) AB is nonsingular, and (AB)−1 = B−1A−1

(c) AT is nonsingular and (AT )−1 = (A−1)T .

• For a 2× 2 matrix A,[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
(In fact, you now know that the 1

ad−bc term corresponds to 1
|A| !)

• How to find the inverse of any matrix:

(a) If A is n×n, then augment A with In, getting the system [A|In].

(b) Row reduce A, performing the same operations on both sides of
the augmenting bar

(c) If A row reduces to In, then it has an inverse, and the end result
is [In|A−1].

(d) If the row reduced echelon form of A is not In, then A has no
inverse: it is singular.

• An n× n matrix A is nonsingular if and only if rank(A) = n.

• The system A~x = ~b has a unique solution if and only if A is nonsin-
gular. If A is singular, then it either has no solutions or infinitely
many solutions.

8. Determinants (Sections 3.1, 3.2, and 3.3 – we did it out of order!)

• For a 2× 2 matrix, the determinant is calculated as follows:∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

• For bigger matrices, the determinant is calculated using row or col-
umn expansion. Before defining this, define Aij to be the matrix we
get by crossing out row i and column j of A. Then,

Aij = (−1)i+j |Aij |

This is called the (i, j) cofactor of A, while |Aij | is the (i, j) minor of
A.

• Calculating the determinant using row expansion: if A is an n × n
matrix, then for any i,

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ai1Ai1
= (−1)i+1ai1 |Ai1|+ (−1)i+2ai2 |Ai1|+ · · ·+ (−1)i+nain |Ain|
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• Calculating the determinant using column expansion: if A is an n×n
matrix, then for any j,

|A| = a1jA1j + a2jAi2 + · · ·+ anjAnj
= (−1)j+1a1j |A1j |+ (−1)j+2a2j |A1j |+ · · ·+ (−1)j+nanj |Anj |

9. Properties of Determinants (Sections 3.1, 3.2, and 3.3)

• |AB| = |A||B| for all n× n matrix A and B.

• |AT | = |A|.
• However, it’s not true that |A+B| = |A|+ |B| in general!

• |A| = 0 if and only if A is singular – that is, doesn’t have an inverse.

• Effects of row operations on the determinant (summary posted as
solutions of the in-class work.)

• For an upper triangular n× n matrix A,

|A| = a11a22 · · · ann

• Using row operations to calculate determinants

• If A is an n×nmatrix, then the following statements are all equivalent
(all imply each other):

(a) A is singular (doesn’t have an inverse)

(b) rank(A) < n

(c) |A| = 0

(d) A~x = ~0 has a nontrivial solution.

(e) A~x = ~b either has no solutions or infinitely many solutions (de-

pending on ~b.)

• Similarly, if A is an n× n matrix, then the following statements are
all equivalent (all imply each other):

(a) A is nonsingular (has an inverse)

(b) rank(A) = n

(c) |A| 6= 0

(d) A~x = ~0 only has the trivial solution ~x = ~0.

(e) A~x = ~b has exactly one solution for all ~b.

10. Sets: using set notation, giving example of elements of sets and checking
whether things are in sets.

11. Eigenvalues and Eigenvectors (Section 3.4)

• λ is an eigenvalue of A if there exists a nonzero ~x such that A~x = λx.
In that case, ~x is an eigenvector of A with eigenvalue λ.
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• The characteristic polynomial of A is defined to be

pA(x) = |xIn −A|

• To find eigenvalues, solve 0 = pA(x).

• The eigenspace Eλ is {~x A~x = λ~x}. To find all vectors in Eλ, solve

(λIn −A)~x = ~0

• A matrix B is similar to a matrix A if there exists some (nonsingular)
matrix P such that P−1AP = B.

• Diagonalizing a matrix means finding a diagonal matrix D such that
A is similar to D. Here’s the algorithm for an n× n matrix A:

(a) Find the eigenvalues of A.

(b) For each eigenvalue λ of A, write Eλ as the span of a number of
vectors. These vectors will be called the fundamental eigenvec-
tors for λ. (Indeed, to be a set of fundamental eigenvectors, the
vectors have to be linearly independent. But doing it the way
we’ve learned in class always results in that!)

(c) Count the total number of fundamental eigenvectors you got
from all the eigenvalues. If you got fewer than n, the matrix
is not diagonalizable.

(d) If you get precisely n fundamental eigenvectors, then let P be
the matrix whose ith column is the ith fundamental eigenvec-
tor. Then, we have that P−1AP = D, where D is a diagonal
matrix with the ith entry on the diagonal corresponding to the
eigenvalue of the ith column of P .

• The algebraic multiplicity of an eigenvalue λ of A is the highest power
of (x−λ) that divides the characteristic polynomial pA(x). We have
the following inequality:

1 ≤ # of fundamental e.vectors of λ ≤ alg. multiplicity of λ

• A matrix is diagonalizable precisely if the number of fundamental
eigenvectors corresponding to λ is equal to the algebraic multiplicity
of λ for all λ.

• Using diagonalization to compute large powers of a matrix (you saw
this on the homework.)

12. Vector Spaces (Section 4.1)

• Checking the ten properties of vector spaces to see whether something
is or is not a vector space. (The properties are on page 204 – it’ll
take me too long to copy them!)

• Using the properties to prove identities such as 0~v = ~v.
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• Definitions of some common vector spaces: Rn,Mmn, vector spaces
of functions

13. Subspaces (Section 4.2)

• W is a subspace of a vector space V if it’s a non-empty subset of V
(that is, every element of W is contained in V , and W contains at
least one element), and if it’s closed under vector addition and scalar
multiplication.

• To be more precise, we need to have that for all ~x, ~y ∈ W , and for
all scalars c,

(1) ~x+ ~y is in W

(2) c~x is in W

• Knowing how to check whether something is a subspace

14. Span (Section 4.3)

• Let S be a subset of a vector space V . Then ~v is a finite linear
combination of the vectors in S if we can write

~v = a1~v1 + a2~v2 + · · ·+ an~vn

for some vectors ~v1, ~v2, . . . , ~vn in S and some scalars a1, a2, . . . , an.

• The span of S is the set of all finite linear combinations of S. This
is written as span(S).

• span({}) is defined to be {~0}.
• Method for simplifying span: Let S be a finite subset of Rn containing
k vectors. Then, a way to write span(S) in a simpler way is as follows:

(1) Make a matrix A whose rows are the elements of S. In that case,
the span of S is just the row space of A.

(2) Find the row-reduced echelon form of A, call it B. Since row
operations do not change the row space, span(S) is the row space
of B. Since the zero rows of B don’t contribute anything to the
row space, we see that the simplified form of span(S) is

span(S) = span(non-zero rows of B)

15. Linear Dependendence and Independence (Section 4.4):

• Let S = {~v1, ~v2, . . . , ~vn} be a finite subset of a vector space V . Then,
S is linearly dependent if there exist scalars a1, a2, . . . , an which
aren’t all 0, such that

a1~v1 + · · ·+ an~vn = ~0

• S is linearly independent if it is NOT linearly dependent.
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• Rephrasing, S is linearly independent if a1~v1 + · · ·+an~vn = ~0 implies
that a1 = a2 = · · · = an = 0.

• Test for linear independence: let S = {~v1, ~v2, . . . , ~vn} be a finite
subset of Rn.

(1) Let A be a matrix whose columns are the elements of S. Then,
the equation a1~v1 + · · ·+ an~vn = ~0 is in augmented matrix form
[A |~0 ].

(2) Find B, the row-reduced echelon form of A. If B has a pivot
in every column, then the system [B |~0 ] which is equivalent to
[A |~0 ] only has the solution a1 = a2 = · · · = an = 0, so S is
linearly independent. Otherwise, S is linearly dependent.

• If k > n, then any set of k vectors in Rn is linearly dependent. This
is easy to see because in the set up above, the system [A |~0 ] will have
more columns than rows, and hence will have a column without a
pivot.

• An infinite set S is linearly dependent if there exists a finite sub-
set of S which is linearly dependent. An infinite set S is linearly
independent if every finite subset of S is linearly independent.

16. Basis and Dimension (Section 4.5)

• Let B be a subset of a vector space V . Then B is a basis for V if
the span of B is V (often stated as B spans V ), and if B is linearly
independent.

• If V has a basis B with finitely many elements, then all bases of
V have exactly the same number of elements: that is, if B1 is a
different basis of V , then |B1| = |B|. (Here, |X| denotes the number
of elements in a set X.)

• Let V be a vector space. If V has a basis B with finitely many
elements, then we say that V is finite-dimensional with dimension
|B|. As noted above, this number won’t depend on the basis chosen.

• If V has no finite basis, then we say that V is infinite dimensional.

• If B is a basis of V , then every element of V can be written as a
linear combination of the elements of B in a unique way.

• The dimension of Rn is n, since the standard basis {~e1, ~e2, . . . , ~en}
has n elements.

• A shortcut for checking whether something is a basis: if we know the
dimension of V is n, then a subset B of V :

– Can’t be a basis of V unless |B| = n

– If |B| = n, then to check whether it’s a basis it’s enough to check
either that it’s linearly independent or that it spans V . You
don’t need to check both.
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17. Linear Transformations (Sections 5.1 and 5.2, what we’ve done of them.)

• Let V and W be vector spaces. A function T : V → W is a linear
transformation if for all ~x, ~y in V and all scalars c,

(1) T (~x+ ~y) = T (~x) + T (~y).

(2) T (c~x) = cT (~x).

• Checking whether functions are linear transformations

• If T is a linear transformation from Rn to Rm, then there exists
an m × n matrix A such that T (~x) = A~x for all vectors ~x in Rn.
Furthermore, the ith column of the matrix A is T (~ei).

18. Proofs, proofs, proofs!

• Some general hints:

– Write down what you’re starting from and what you’re proving

– Making sure to start from the assumption, and work towards the
conclusion

– Explain your steps as if you had to explain what’s going on to a
classmate

• Proof Techniques:

– Proof by contrapositive: instead of proving that A implies B,
prove that (not B) implies (not A).

– Proof by induction: to show that some statement holds for any
positive integer n (possibly for all n above a certain number),
prove the following:

(1) Base case: the statement holds for the smallest possible value
of n, often n = 1 but not always.

(2) Inductive step: if you assume that the statement holds for
n = k, then it holds for n = k + 1.
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