Final Exam: Concepts to Review

Olena Bormashenko

The final covers everything we did in class so far – it is cumulative. However, there will be more emphasis on the things covered since the last midterm: that is, half of Section 3.4, and Sections 4.1, 4.2, 4.3, 4.4, 4.5, 5.1, and a bit of Section 5.2.

This review sheet incorporates the earlier review sheets for the midterms.

- 1. Fundamental Operations with Vectors (Section 1.1)
 - Addition of vectors, multiplying vectors by a scalar.
 - The length $\|\vec{x}\|$ of a vector:

$$||[x_1, x_2, \dots, x_n]|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

- Unit vectors; finding the unit vector in the same direction as a vector \vec{x} .
- Using the properties of addition and scalar multiplication (Theorem 1.3)
- Definition of a linear combination: a vector \vec{v} is a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_n$ if it's possible to find scalars c_1, c_2, \ldots, c_n such that

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$$

- 2. The dot product (Section 1.5)
 - The definition of the dot product of $\vec{x} = [x_1, x_2, \dots, x_n]$ and $\vec{y} = [y_1, y_2, \dots, y_n]$:

$$\vec{x} \cdot \vec{y} = [x_1, x_2, \dots, x_n] \cdot [y_1, y_2, \dots, y_n]$$

= $x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

- The Cauchy-Schwarz inequality: $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$.
- The triangle inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.
- The angle between two vectors: if θ is the angle between \vec{x} and \vec{y} , then θ is defined to be between 0 and π and it satisfies

$$\vec{x} \cdot \vec{y} = \|\vec{x}\| \, \|\vec{y}\| \cos(\theta)$$

- Using the dot-product to check for orthogonality, being parallel, being in opposite directions
- The definition of a projection of \vec{b} onto \vec{a} , denoted by $\text{proj}_{\vec{a}}\vec{b}$:

$$\operatorname{proj}_{\vec{a}}\vec{b} = \left(\frac{\vec{a}\cdot\vec{b}}{\left\|\vec{a}\right\|^2}\right)\vec{a}$$

- 3. Fundamental Operations with Matrices (Section 1.4)
 - Definition of an $m \times n$ matrix
 - Matrix addition, multiplying matrices by scalars
 - Definitions of special matrices: square matrices, diagonal matrices, identity matrices, upper triangular matrices, lower triangular matrices, zero matrices
 - Properties of addition and scalar multiplication of matrices (Theorem 1.11)
 - The transpose of a matrix and its properties
- 4. Matrix Multiplication (Section 1.5)
 - How to multiply matrices: if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then AB is an $m \times p$ matrix such that

(i, j) entry of $AB = (row i of A) \cdot (column j of B)$

where the \cdot means the dot product

- Matrix multiplication is **not** commutative: we rarely have AB = BA.
- The following identities:

kth column of
$$AB = A(k$$
th column of $B)$
kth row of $AB = (k$ th row of $A)B$

- Fundamental properties of matrix multiplication (Theorem 1.14)
- Powers of square matrices
- Matrix multiplication and transposes: $(AB)^T = B^T A^T$.
- Linear combinations from matrix multiplication: how to find a linear combination of the rows of A by multiplying A on the left by a row vector, how to find a linear combination of the columns of A by multiplying A on the right by a column vector
- 5. Systems of Equations (Sections 2.1 and 2.2.)
 - Writing down a system of linear equations in augmented matrix form
 - Getting the system into row-reduced echelon form

- Using the row-reduced echelon form to find all solutions to the system
- The criteria for when a system in row-reduced form has
 - No solutions
 - Exactly one solution
 - Infinitely many solutions
- What the system $A\vec{x} = \vec{b}$ corresponds to as an augmented system of equations: that is, $[A|\vec{b}]$.
- If R is a row operation, then R(AB) = R(A)B.
- What a homogoneous system is: that is, the system $A\vec{x} = \vec{0}$.
- 6. Equivalent Systems, Rank, and Row Space (Section 2.3)
 - Two systems are *equivalent* if they have exactly the same solutions.
 - A matrix C is row equivalent to a matrix D if C is obtained from C with a finite number of row operations.
 - Knowing how to 'reverse' row operations: this can be used to show that if C is row equivalent to D, then D is row equivalent to C.
 - How to test if two matrices are row equivalent: two matrices are row equivalent if they have the exact same reduced row echelon form
 - The definition of the *rank* of A:

 $rank(A) = \{number of non-zero rows in the rref of A\} \\ = \{number of pivotal columns in the rref of A\}$

- When a homogeneous system (that is, the system $A\vec{x} = \vec{0}$) has one or infinitely many solutions:
 - (a) If rank(A) < n, then the system has a non-trivial solution
 - (b) If rank(A) = n, then the system has the one solution $\vec{x} = \vec{0}$.
- The definition of the *row space* of a matrix, and how to check whether a vector is in the row space: the row space of A is the set of linear combinations of the rows of A.
- If A is row equivalent to B, then the row space of A is equal to the row space of B.
- 7. Inverses of Matrices (Section 2.4)
 - For a square $n \times n$ matrix A, B is the *inverse* of A if

$$AB = BA = I_n$$

This is denoted by $B = A^{-1}$.

• If A and B are $n \times n$ matrices such that $AB = I_n$, then we have that A and B are inverses: that is, $BA = I_n$.

- A square matrix is *singular* if and only if it does not have an inverse. If it does have an inverse, then it is *nonsingular*.
- Inverse properties: Let A and B be nonsingular $n \times n$ matrices. Then,
 - (a) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$.
 - (b) AB is nonsingular, and $(AB)^{-1} = B^{-1}A^{-1}$
 - (c) A^T is nonsingular and $(A^T)^{-1} = (A^{-1})^T$.
- For a 2×2 matrix A,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(In fact, you now know that the $\frac{1}{ad-bc}$ term corresponds to $\frac{1}{|A|}$!)

- How to find the inverse of any matrix:
 - (a) If A is $n \times n$, then augment A with I_n , getting the system $[A|I_n]$.
 - (b) Row reduce A, performing the same operations on both sides of the augmenting bar
 - (c) If A row reduces to I_n , then it has an inverse, and the end result is $[I_n|A^{-1}]$.
 - (d) If the row reduced echelon form of A is not I_n , then A has no inverse: it is singular.
- An $n \times n$ matrix A is nonsingular if and only if rank(A) = n.
- The system $A\vec{x} = \vec{b}$ has a unique solution if and only if A is nonsingular. If A is singular, then it either has no solutions or infinitely many solutions.
- 8. Determinants (Sections 3.1, 3.2, and 3.3 we did it out of order!)
 - For a 2×2 matrix, the determinant is calculated as follows:

$$\left|\begin{array}{cc}a&b\\c&d\end{array}\right|=ad-bc$$

• For bigger matrices, the determinant is calculated using row or column expansion. Before defining this, define A_{ij} to be the matrix we get by crossing out row *i* and column *j* of *A*. Then,

$$\mathcal{A}_{ij} = (-1)^{i+j} |A_{ij}|$$

This is called the (i, j) cofactor of A, while $|A_{ij}|$ is the (i, j) minor of A.

• Calculating the determinant using row expansion: if A is an $n \times n$ matrix, then for any i,

$$|A| = a_{i1}\mathcal{A}_{i1} + a_{i2}\mathcal{A}_{i2} + \dots + a_{i1}\mathcal{A}_{i1}$$

= $(-1)^{i+1}a_{i1} |A_{i1}| + (-1)^{i+2}a_{i2} |A_{i1}| + \dots + (-1)^{i+n}a_{in} |A_{in}|$

• Calculating the determinant using column expansion: if A is an $n \times n$ matrix, then for any j,

$$|A| = a_{1j}\mathcal{A}_{1j} + a_{2j}\mathcal{A}_{i2} + \dots + a_{nj}\mathcal{A}_{nj}$$

= $(-1)^{j+1}a_{1j} |A_{1j}| + (-1)^{j+2}a_{2j} |A_{1j}| + \dots + (-1)^{j+n}a_{nj} |A_{nj}|$

- 9. Properties of Determinants (Sections 3.1, 3.2, and 3.3)
 - |AB| = |A||B| for all $n \times n$ matrix A and B.
 - $|A^T| = |A|$.
 - However, it's not true that |A + B| = |A| + |B| in general!
 - |A| = 0 if and only if A is singular that is, doesn't have an inverse.
 - Effects of row operations on the determinant (summary posted as solutions of the in-class work.)
 - For an upper triangular $n \times n$ matrix A,

$$|A| = a_{11}a_{22}\cdots a_{nn}$$

- Using row operations to calculate determinants
- If A is an $n \times n$ matrix, then the following statements are all equivalent (all imply each other):
 - (a) A is singular (doesn't have an inverse)
 - (b) $\operatorname{rank}(A) < n$
 - (c) |A| = 0
 - (d) $A\vec{x} = \vec{0}$ has a nontrivial solution.
 - (e) $A\vec{x} = \vec{b}$ either has no solutions or infinitely many solutions (depending on \vec{b} .)
- Similarly, if A is an $n \times n$ matrix, then the following statements are all equivalent (all imply each other):
 - (a) A is nonsingular (has an inverse)
 - (b) $\operatorname{rank}(A) = n$
 - (c) $|A| \neq 0$
 - (d) $A\vec{x} = \vec{0}$ only has the trivial solution $\vec{x} = \vec{0}$.
 - (e) $A\vec{x} = \vec{b}$ has exactly one solution for all \vec{b} .
- 10. Sets: using set notation, giving example of elements of sets and checking whether things are in sets.
- 11. Eigenvalues and Eigenvectors (Section 3.4)
 - λ is an eigenvalue of A if there exists a nonzero \vec{x} such that $A\vec{x} = \lambda x$. In that case, \vec{x} is an eigenvector of A with eigenvalue λ .

• The characteristic polynomial of A is defined to be

$$p_A(x) = |xI_n - A|$$

- To find eigenvalues, solve $0 = p_A(x)$.
- The eigenspace E_{λ} is $\{\vec{x} \mid A\vec{x} = \lambda\vec{x}\}$. To find all vectors in E_{λ} , solve

$$(\lambda I_n - A)\vec{x} = \vec{0}$$

- A matrix B is similar to a matrix A if there exists some (nonsingular) matrix P such that $P^{-1}AP = B$.
- Diagonalizing a matrix means finding a diagonal matrix D such that A is similar to D. Here's the algorithm for an $n \times n$ matrix A:
 - (a) Find the eigenvalues of A.
 - (b) For each eigenvalue λ of A, write E_λ as the span of a number of vectors. These vectors will be called the fundamental eigenvectors for λ. (Indeed, to be a set of fundamental eigenvectors, the vectors have to be linearly independent. But doing it the way we've learned in class always results in that!)
 - (c) Count the total number of fundamental eigenvectors you got from all the eigenvalues. If you got fewer than n, the matrix is not diagonalizable.
 - (d) If you get precisely n fundamental eigenvectors, then let P be the matrix whose *i*th column is the *i*th fundamental eigenvector. Then, we have that $P^{-1}AP = D$, where D is a diagonal matrix with the *i*th entry on the diagonal corresponding to the eigenvalue of the *i*th column of P.
- The algebraic multiplicity of an eigenvalue λ of A is the highest power of $(x \lambda)$ that divides the characteristic polynomial $p_A(x)$. We have the following inequality:

 $1 \leq \#$ of fundamental e. vectors of $\lambda \leq$ alg. multiplicity of λ

- A matrix is diagonalizable precisely if the number of fundamental eigenvectors corresponding to λ is equal to the algebraic multiplicity of λ for all λ .
- Using diagonalization to compute large powers of a matrix (you saw this on the homework.)
- 12. Vector Spaces (Section 4.1)
 - Checking the ten properties of vector spaces to see whether something is or is not a vector space. (The properties are on page 204 it'll take me too long to copy them!)
 - Using the properties to prove identities such as $0\vec{v} = \vec{v}$.

- Definitions of some common vector spaces: $\mathbb{R}^n, \mathcal{M}_{mn}$, vector spaces of functions
- 13. Subspaces (Section 4.2)
 - W is a subspace of a vector space V if it's a non-empty subset of V (that is, every element of W is contained in V, and W contains at least one element), and if it's closed under vector addition and scalar multiplication.
 - To be more precise, we need to have that for all $\vec{x}, \vec{y} \in W$, and for all scalars c,
 - (1) $\vec{x} + \vec{y}$ is in W
 - (2) $c\vec{x}$ is in W
 - Knowing how to check whether something is a subspace
- 14. Span (Section 4.3)
 - Let S be a subset of a vector space V. Then \vec{v} is a finite linear combination of the vectors in S if we can write

$$\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_n\vec{v}_n$$

for some vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ in S and some scalars a_1, a_2, \ldots, a_n .

- The span of S is the set of all finite linear combinations of S. This is written as span(S).
- span({}) is defined to be $\{\vec{0}\}$.
- Method for simplifying span: Let S be a finite subset of \mathbb{R}^n containing k vectors. Then, a way to write span(S) in a simpler way is as follows:
 - (1) Make a matrix A whose rows are the elements of S. In that case, the span of S is just the row space of A.
 - (2) Find the row-reduced echelon form of A, call it B. Since row operations do not change the row space, $\operatorname{span}(S)$ is the row space of B. Since the zero rows of B don't contribute anything to the row space, we see that the simplified form of $\operatorname{span}(S)$ is

 $\operatorname{span}(S) = \operatorname{span}(\operatorname{non-zero} \operatorname{rows} \operatorname{of} B)$

- 15. Linear Dependendence and Independence (Section 4.4):
 - Let $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ be a finite subset of a vector space V. Then, S is linearly dependent if there exist scalars a_1, a_2, \dots, a_n which aren't all 0, such that

$$a_1\vec{v}_1 + \dots + a_n\vec{v}_n = \vec{0}$$

• S is linearly independent if it is NOT linearly dependent.

- Rephrasing, S is linearly independent if $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = \vec{0}$ implies that $a_1 = a_2 = \cdots = a_n = 0$.
- Test for linear independence: let $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ be a finite subset of \mathbb{R}^n .
 - (1) Let A be a matrix whose columns are the elements of S. Then, the equation $a_1\vec{v}_1 + \cdots + a_n\vec{v}_n = \vec{0}$ is in augmented matrix form $[A \mid \vec{0}]$.
 - (2) Find *B*, the row-reduced echelon form of *A*. If *B* has a pivot in every column, then the system $[B | \vec{0}]$ which is equivalent to $[A | \vec{0}]$ only has the solution $a_1 = a_2 = \cdots = a_n = 0$, so *S* is linearly independent. Otherwise, *S* is linearly dependent.
- If k > n, then any set of k vectors in \mathbb{R}^n is linearly dependent. This is easy to see because in the set up above, the system $[A \mid \vec{0}]$ will have more columns than rows, and hence will have a column without a pivot.
- An infinite set S is linearly dependent if there exists a finite subset of S which is linearly dependent. An infinite set S is linearly independent if every finite subset of S is linearly independent.
- 16. Basis and Dimension (Section 4.5)
 - Let \mathcal{B} be a subset of a vector space V. Then \mathcal{B} is a basis for V if the span of \mathcal{B} is V (often stated as \mathcal{B} spans V), and if \mathcal{B} is linearly independent.
 - If V has a basis \mathcal{B} with finitely many elements, then all bases of V have exactly the same number of elements: that is, if \mathcal{B}_1 is a different basis of V, then $|\mathcal{B}_1| = |\mathcal{B}|$. (Here, |X| denotes the number of elements in a set X.)
 - Let V be a vector space. If V has a basis \mathcal{B} with finitely many elements, then we say that V is finite-dimensional with dimension $|\mathcal{B}|$. As noted above, this number won't depend on the basis chosen.
 - If V has no finite basis, then we say that V is infinite dimensional.
 - If \mathcal{B} is a basis of V, then every element of V can be written as a linear combination of the elements of \mathcal{B} in a unique way.
 - The dimension of \mathbb{R}^n is n, since the standard basis $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ has n elements.
 - A shortcut for checking whether something is a basis: if we know the dimension of V is n, then a subset \mathcal{B} of V:
 - Can't be a basis of V unless $|\mathcal{B}| = n$
 - If $|\mathcal{B}| = n$, then to check whether it's a basis it's enough to check either that it's linearly independent or that it spans V. You don't need to check both.

- 17. Linear Transformations (Sections 5.1 and 5.2, what we've done of them.)
 - Let V and W be vector spaces. A function $T: V \to W$ is a linear transformation if for all \vec{x}, \vec{y} in V and all scalars c,
 - (1) $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}).$
 - (2) $T(c\vec{x}) = cT(\vec{x}).$
 - Checking whether functions are linear transformations
 - If T is a linear transformation from \mathbb{R}^n to \mathbb{R}^m , then there exists an $m \times n$ matrix A such that $T(\vec{x}) = A\vec{x}$ for all vectors \vec{x} in \mathbb{R}^n . Furthermore, the *i*th column of the matrix A is $T(\vec{e_i})$.
- 18. Proofs, proofs, proofs!
 - Some general hints:
 - Write down what you're starting from and what you're proving
 - Making sure to start from the assumption, and work towards the conclusion
 - Explain your steps as if you had to explain what's going on to a classmate
 - Proof Techniques:
 - Proof by contrapositive: instead of proving that A implies B, prove that (not B) implies (not A).
 - Proof by induction: to show that some statement holds for any positive integer n (possibly for all n above a certain number), prove the following:
 - (1) Base case: the statement holds for the smallest possible value of n, often n = 1 but not always.
 - (2) Inductive step: if you assume that the statement holds for n = k, then it holds for n = k + 1.