Midterm 1: Concepts to Review

Olena Bormashenko

The first midterm will cover Sections 1.1, 1.2, 1.4, 1.5, and what we've done of 2.1 and 2.2 - that is, row-reducing matrices and using the row-reduced echelon form to find all solutions of a set of equations.

1. Fundamental Operations with Vectors (Section 1.1)

- Definition of a vector
- Addition of vectors, multiplying vectors by a scalar.
- The length $\|\vec{x}\|$ of a vector:

$$
\left\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

- Unit vectors; finding the unit vector in the same direction as a vector \vec{x}.
- Using the properties of addition and scalar multiplication (Theorem 1.3)
- Definition of a linear combination: a vector \vec{v} is a linear combination of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ if it's possible to find scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}
$$

2. The dot product (Section 1.5)

- The definition of the dot product of $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\vec{y}=$ $\left[y_{1}, y_{2}, \ldots, y_{n}\right]$:

$$
\begin{aligned}
\vec{x} \cdot \vec{y} & =\left[x_{1}, x_{2}, \ldots, x_{n}\right] \cdot\left[y_{1}, y_{2}, \ldots, y_{n}\right] \\
& =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
\end{aligned}
$$

- The Cauchy-Schwarz inequality: $|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\|$.
- The triangle inequality: $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$.
- The angle between two vectors: if θ is the angle between \vec{x} and \vec{y}, then θ is defined to be between 0 and π and it satisfies

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos (\theta)
$$

- Using the dot-product to check for orthogonality, being parallel, being in opposite directions
- The definition of a projection of \vec{b} onto \vec{a}, denoted by $\operatorname{proj}_{\vec{a}} \vec{b}$:

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^{2}}\right) \vec{a}
$$

3. Fundamental Operations with Matrices (Section 1.4)

- Definition of an $m \times n$ matrix
- Matrix addition, multiplying matrices by scalars
- Definitions of special matrices: square matrices, diagonal matrices, identity matrices, upper triangular matrices, lower triangular matrices, zero matrices
- Properties of addition and scalar multiplication of matrices (Theorem 1.11)
- The transpose of a matrix and its properties

4. Matrix Multiplication (Section 1.5)

- How to multiply matrices: if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then $A B$ is an $m \times p$ matrix such that

$$
(i, j) \text { entry of } A B=(\text { row } i \text { of } A) \cdot(\text { column } j \text { of } B)
$$

where the • means the dot product

- Matrix multiplication is not commutative: we rarely have $A B=B A$.
- The following identities:

$$
\begin{aligned}
k \mathrm{th} \text { column of } A B & =A(k \mathrm{th} \text { column of } B) \\
k \mathrm{th} \text { row of } A B & =(k \mathrm{th} \text { column of } A) B
\end{aligned}
$$

- Fundamental properties of matrix multiplication (Theorem 1.14)
- Powers of square matrices
- Matrix multiplication and transposes: $(A B)^{T}=B^{T} A^{T}$.
- Linear combinations from matrix multiplication: how to find a linear combination of the rows of A by multiplying A on the left by a row vector, how to find a linear combination of the columns of A by multiplying A on the right by a column vector

5. Systems of Equations (Sections 2.1 and 2.2, what we've covered of them.)

- Writing down a system of linear equations in augmented matrix form
- Getting the system into row-reduced echelon form
- Using the row-reduced echelon form to find all solutions to the system
- The criteria for when a system in row-reduced form has
- No solutions
- Exactly one solution
- Infinitely many solutions

6. And last but definitely not least... PROOFS! Being able to do the kinds of relatively short proofs we've done on the homework.

- Write down what you're starting from and what you're proving
- Making sure to start from the assumption, and work towards the conclusion
- Explain your steps as if you had to explain what's going on to a classmate

