Midterm 1: Concepts to Review

Olena Bormashenko

The first midterm will cover Sections 1.1, 1.2, 1.4, 1.5, and what we've done of 2.1 and 2.2 – that is, row-reducing matrices and using the row-reduced echelon form to find all solutions of a set of equations.

- 1. Fundamental Operations with Vectors (Section 1.1)
 - Definition of a vector
 - Addition of vectors, multiplying vectors by a scalar.
 - The length $\|\vec{x}\|$ of a vector:

$$||[x_1, x_2, \dots, x_n]|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

- Unit vectors; finding the unit vector in the same direction as a vector \vec{x} .
- Using the properties of addition and scalar multiplication (Theorem 1.3)
- Definition of a linear combination: a vector \vec{v} is a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_n$ if it's possible to find scalars c_1, c_2, \ldots, c_n such that

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$$

- 2. The dot product (Section 1.5)
 - The definition of the dot product of $\vec{x} = [x_1, x_2, \dots, x_n]$ and $\vec{y} = [y_1, y_2, \dots, y_n]$:

$$\vec{x} \cdot \vec{y} = [x_1, x_2, \dots, x_n] \cdot [y_1, y_2, \dots, y_n]$$

= $x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

- The Cauchy-Schwarz inequality: $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$.
- The triangle inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.
- The angle between two vectors: if θ is the angle between \vec{x} and \vec{y} , then θ is defined to be between 0 and π and it satisfies

$$\vec{x} \cdot \vec{y} = \|\vec{x}\| \, \|\vec{y}\| \cos(\theta)$$

- Using the dot-product to check for orthogonality, being parallel, being in opposite directions
- The definition of a projection of \vec{b} onto \vec{a} , denoted by $\text{proj}_{\vec{a}}\vec{b}$:

$$\operatorname{proj}_{\vec{a}}\vec{b} = \left(\frac{\vec{a}\cdot\vec{b}}{\left\|\vec{a}\right\|^2}\right)\vec{a}$$

- 3. Fundamental Operations with Matrices (Section 1.4)
 - Definition of an $m \times n$ matrix
 - Matrix addition, multiplying matrices by scalars
 - Definitions of special matrices: square matrices, diagonal matrices, identity matrices, upper triangular matrices, lower triangular matrices, zero matrices
 - Properties of addition and scalar multiplication of matrices (Theorem 1.11)
 - The transpose of a matrix and its properties
- 4. Matrix Multiplication (Section 1.5)
 - How to multiply matrices: if A is an $m \times n$ matrix and B is an $n \times p$ matrix, then AB is an $m \times p$ matrix such that

(i, j) entry of $AB = (row i of A) \cdot (column j of B)$

where the \cdot means the dot product

- Matrix multiplication is **not** commutative: we rarely have AB = BA.
- The following identities:

kth column of
$$AB = A(k$$
th column of $B)$
kth row of $AB = (k$ th column of $A)B$

- Fundamental properties of matrix multiplication (Theorem 1.14)
- Powers of square matrices
- Matrix multiplication and transposes: $(AB)^T = B^T A^T$.
- Linear combinations from matrix multiplication: how to find a linear combination of the rows of A by multiplying A on the left by a row vector, how to find a linear combination of the columns of A by multiplying A on the right by a column vector
- 5. Systems of Equations (Sections 2.1 and 2.2, what we've covered of them.)
 - Writing down a system of linear equations in augmented matrix form
 - Getting the system into row-reduced echelon form

- Using the row-reduced echelon form to find all solutions to the system
- The criteria for when a system in row-reduced form has
 - No solutions
 - Exactly one solution
 - Infinitely many solutions
- 6. And last but definitely not least... PROOFS! Being able to do the kinds of relatively short proofs we've done on the homework.
 - Write down what you're starting from and what you're proving
 - Making sure to start from the assumption, and work towards the conclusion
 - Explain your steps as if you had to explain what's going on to a classmate