Solutions to Systems of Equations from September 15th

Olena Bormashenko

September 20, 2011

Find all solutions to the following systems of equations:
1.

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
2 x_{1}+3 x_{2}+x_{3} & =5 \\
-x_{2}-x_{3} & =-1
\end{aligned}
$$

Solution: Putting this in augmented matrix form, we get

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
2 & 3 & 1 & 5 \\
0 & -1 & -1 & -1
\end{array}\right]
$$

We work on the columns from left to right. The leftmost unfinished column that contains the first non-zero entry of a row is column 1, since it contains the first non-zero entries of rows 1 and 2 . It already has a 1 in it from the first row, so we will use that 1 to cancel out the other non-zero entries of this column:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
2 & 3 & 1 & 5 \\
0 & -1 & -1 & -1
\end{array}\right] \xrightarrow{R_{2}: R_{2}-2 R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & -1 & -1 & -1
\end{array}\right]
$$

The first column is now done. The next column that contains the first non-zero entry of a row is column 2 , which contains the first non-zero entries of both rows 2 and 3 . Use the 1 in row 2 to cancel out the other non-zero entries of column 2 :

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & -1 & -1 & -1
\end{array}\right] \xrightarrow{R_{3}: R_{3}+R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] } \\
& \xrightarrow{R_{1}: R_{1}-R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This is now in row-reduced echelon form, since there are no more unfinished columns which contains the first non-zero entry of a row. Rewriting this as equations again, we see that they are:

$$
\begin{array}{r}
x_{1}-x_{3}=1 \\
x_{2}+x_{3}=1 \\
0=0
\end{array}
$$

(Note that the last equation comes from $0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=0$.) Now, the variables corresponding to pivots are the dependent variables, and the variables not corresponding to pivots are the independent variables. Therefore, the only independent variable is x_{3}, so we solve for everything in terms of x_{3}, getting:

$$
\begin{aligned}
x_{1} & =1+x_{3} \\
x_{2} & =1-x_{3} \\
x_{3} & =x_{3}
\end{aligned}
$$

Rewriting this in vector form, all solutions to the above system can be written as $\left[1+x_{3}, 1-x_{3}, x_{3}\right]$ for any value of x_{3}.
While this is not a necessary part of the solution, let's check that this solution works for any value of x_{3} by plugging it back into the original equations:

$$
\begin{aligned}
\left(1+x_{3}\right)+\left(1-x_{3}\right) & =2 \\
2\left(1+x_{3}\right)+3\left(1-x_{3}\right)+x_{3} & =5 \\
-\left(1-x_{3}\right)-x_{3} & =-1
\end{aligned}
$$

so we see that all the x_{3} 's cancel out, and it works.
2.

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3}=16 \\
& 3 x_{1}+2 x_{2}+x_{4}=16 \\
& 2 x_{1}+12 x_{3}-5 x_{4}=5
\end{aligned}
$$

Solution: Rewriting this as an augmented matrix, we get

$$
\left[\begin{array}{cccc|c}
2 & 1 & 3 & 0 & 16 \\
3 & 2 & 0 & 1 & 16 \\
2 & 0 & 12 & -5 & 5
\end{array}\right]
$$

As noted in the algorithm, we work column by column. What is the first column that contains the first non-zero entry of a row? Clearly, column 1 contains the first non-zero entry of rows 1,2 and 3 . Therefore, we need
to get the first column into shape. We need to get a pivotal 1 into this column. Therefore, we do:

$$
\left[\begin{array}{cccc|c}
2 & 1 & 3 & 0 & 16 \\
3 & 2 & 0 & 1 & 16 \\
2 & 0 & 12 & -5 & 5
\end{array}\right] \xrightarrow{R_{2}: R_{2}-R_{1}}\left[\begin{array}{cccc|c}
2 & 1 & 3 & 0 & 16 \\
1 & 1 & -3 & 1 & 0 \\
2 & 0 & 12 & -5 & 5
\end{array}\right]
$$

We now have a pivotal 1 in row 2 . Use this 1 to cancel the other non-zero entries in column 1:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
2 & 1 & 3 & 0 & 16 \\
1 & 1 & -3 & 1 & 0 \\
2 & 0 & 12 & -5 & 5
\end{array}\right] \xrightarrow{R_{1}: R_{1}-2 R_{2}}\left[\begin{array}{cccc|c}
0 & -1 & 9 & -2 & 16 \\
1 & 1 & -3 & 1 & 0 \\
2 & 0 & 12 & -5 & 5
\end{array}\right] } \\
& \xrightarrow{R_{3}: R_{3}-2 R_{2}}\left[\begin{array}{cccc|c}
0 & -1 & 9 & -2 & 16 \\
1 & 1 & -3 & 1 & 0 \\
0 & -2 & 18 & -7 & 5
\end{array}\right]
\end{aligned}
$$

Finally, do a row swap to get the pivotal 1 in the correct position:

$$
\left[\begin{array}{cccc|c}
0 & -1 & 9 & -2 & 16 \\
1 & 1 & -3 & 1 & 0 \\
0 & -2 & 18 & -7 & 5
\end{array}\right] \xrightarrow{\text { Swap } R_{1}, R_{2}}\left[\begin{array}{cccc|c}
1 & 1 & -3 & 1 & 0 \\
0 & -1 & 9 & -2 & 16 \\
0 & -2 & 18 & -7 & 5
\end{array}\right]
$$

Now, on to the next column. The leftmost column that contains the first non-zero entry of a row is column 2 , since it contains the first non-zero entries of both rows 2 and 3 . To get a pivotal 1 in this column, it suffices to multiply row 2 by -1 . Then we can continue to use Row 2 to cancel out other non-zero entries in column 1. Proceeding:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & 1 & -3 & 1 & 0 \\
0 & -1 & 9 & -2 & 16 \\
0 & -2 & 18 & -7 & 5
\end{array}\right] \xrightarrow{R_{2}: R_{2} \times(-1)}\left[\begin{array}{cccc|c}
1 & 1 & -3 & 1 & 0 \\
0 & 1 & -9 & 2 & -16 \\
0 & -2 & 18 & -7 & 5
\end{array}\right] } \\
& \xrightarrow{R_{1}: R_{1}-R_{2}}\left[\begin{array}{cccc|c}
1 & 0 & 6 & -1 & 16 \\
0 & 1 & -9 & 2 & -16 \\
0 & -2 & 18 & -7 & 5
\end{array}\right] \\
& \xrightarrow{R_{3}: R_{3}+2 R_{2}}\left[\begin{array}{cccc|c}
1 & 0 & 6 & -1 & 16 \\
0 & 1 & -9 & 2 & -16 \\
0 & 0 & 0 & -3 & -27
\end{array}\right]
\end{aligned}
$$

Now, moving on to the next column. Note that this column is not column 3: column 3 doesn't contain the first non-zero entry of any row! The only remaining column containing the first non-zero entry of a row is column 4 , and this only contains the first non-zero entry of row 3 . Therefore, this row will have to by definition contain our pivotal 1 . Start by diving this
row by -3 , and proceed like above:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & 0 & 6 & -1 & 16 \\
0 & 1 & -9 & 2 & -16 \\
0 & 0 & 0 & -3 & -27
\end{array}\right] \xrightarrow{R_{3}: R_{3} /(-3)}\left[\begin{array}{cccc|c}
1 & 0 & 6 & -1 & 16 \\
0 & 1 & -9 & 2 & -16 \\
0 & 0 & 0 & 1 & 9
\end{array}\right] } \\
& \xrightarrow{R_{1}: R_{1}+R_{3}}\left[\begin{array}{cccc|c}
1 & 0 & 6 & 0 & 25 \\
0 & 1 & -9 & 2 & -16 \\
0 & 0 & 0 & 1 & 9
\end{array}\right] \\
& \xrightarrow{R_{2}: R_{2}-2 R_{3}}\left[\begin{array}{cccc|c}
1 & 0 & 6 & 0 & 25 \\
0 & 1 & -9 & 0 & -34 \\
0 & 0 & 0 & 1 & 9
\end{array}\right]
\end{aligned}
$$

The matrix is now in row-reduced echelon form. Rewriting this as a system of equations again, we get:

$$
\begin{aligned}
x_{1}+6 x_{3} & =25 \\
+x_{2}-9 x_{3} & =-34 \\
x_{4} & =9
\end{aligned}
$$

Recalling that the variables corresponding to pivotal columns are dependent, while the remaning variables are independent, we see that the only independent variable is x_{3}. Solving for everything in terms of x_{3} :

$$
\begin{aligned}
& x_{1}=25-6 x_{3} \\
& x_{2}=-34+9 x_{3} \\
& x_{3}=x_{3} \\
& x_{4}=9
\end{aligned}
$$

Therefore, all solutions can be written in the form above: writing this concisely as a vector, we see that solutions are all of the form $\left[25-6 x_{3},-34+\right.$ $\left.9 x_{3}, x_{3}, 9\right]$.
Note: If you want, check that this works by plugging it back into the original system, just like in the solution above!
3.

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=0 \\
-x_{1}+2 x_{3}=1 \\
x_{1}+4 x_{2}+4 x_{3}=2
\end{array}
$$

Solution: Rewriting this in augmented matrix form:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
-1 & 0 & 2 & 1 \\
1 & 4 & 4 & 2
\end{array}\right]
$$

Now, using Row 1 to get column 1 in shape:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
-1 & 0 & 2 & 1 \\
1 & 4 & 4 & 2
\end{array}\right] } & \xrightarrow{R_{2}: R_{2}+R_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 2 & 3 & 1 \\
1 & 4 & 4 & 2
\end{array}\right] \\
& \xrightarrow{R_{3}: R_{3}-R_{1}}\left[\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
0 & 2 & 3 & 1 \\
0 & 2 & 3 & 2
\end{array}\right]
\end{aligned}
$$

The next column that contains the non-zero entry of a row is column 2. In order to get a pivotal 1 into this column, divide row 2 by 2 :

$$
\left[\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
0 & 2 & 3 & 1 \\
0 & 2 & 3 & 2
\end{array}\right] \xrightarrow{R_{2}: R_{2} / 2}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 1 & 3 / 2 & 1 / 2 \\
0 & 2 & 3 & 2
\end{array}\right]
$$

(Note that if you pay attention, it's already clear at the last step that there are no solutions: why? We're still going to continue row-reducing, just to see what happens.)
Now, use Row 2 to cancel out the non-zero entries in column 2:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 1 & 3 / 2 & 1 / 2 \\
0 & 2 & 3 & 2
\end{array}\right] } & \xrightarrow{R_{3}: R_{3}-2 R_{2}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 1 & 3 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{1}: R_{1}-2 R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & -2 & -1 \\
0 & 1 & 3 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

This is now in row-reduced echelon form. The equations correspond to:

$$
\begin{aligned}
x_{1}+x_{3} & =0 \\
x_{2}-2 x_{3} & =-1 \\
0 & =1
\end{aligned}
$$

Clearly, the last equation is impossible, implying that there are no solutions to the system of equations.

