
Pigeonhole Principle Solutions

1. Show that if we take n+ 1 numbers from the set {1, 2, . . . , 2n}, then some
pair of numbers will have no factors in common.

Solution: Note that consecutive numbers (such as 3 and 4) don’t have
any factors in common. Therefore, it suffices to show that we’d have a
pair of numbers that are consecutive.

Let our pigeonholes be the following sets:

{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

Here, our pigeons are the n + 1 numbers we’re choosing from the set
{1, 2, . . . , 2n}. By the pigeonhole principle, two of our n + 1 numbers
will be in the same pigeonhole – and since the above sets were chosen to
contain pairs of consecutive numbers, this means that we’ll have a pair of
consecutive numbers. This means we’ll have a pair of numbers with no
factors in common.

2. Show that if we take n+ 1 numbers from the set {1, 2, . . . , 2n}, then there
will be some pair in which one number is a multiple of the other one.

Solution: Here, our pigeonholes are a little more complicated. To be
precise, for each odd numbers 2m − 1 in the set {1, 2, . . . , 2n}, we make
the set

Sm = {2m− 1, 2(2m− 1), 4(2m− 1), . . . , 2k(2m− 1), . . . }

That is, Sm contains the odd number 2m−1 and any number that can be
obtained by multiplying 2m − 1 by a power of 2. Then, our pigeonholes
are defined to be the sets S1, S2, . . . , Sn.

The above is a lot of notation. The easiest thing to do is to make up
an example to illustrate what’s going on. For example, for n = 4, the
pigeonholes are:

S1 = {1, 2, 4, 8}
S2 = {3, 6}
S3 = {5}
S4 = {7}
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For a more complicated example, if n = 7, the pigeonholes are:

S1 = {1, 2, 4, 8}
S2 = {3, 6, 12}
S3 = {5, 10}
S4 = {7, 14}
S5 = {9}
S6 = {11}
S7 = {13}

Now, note that we have n pigeonholes and n + 1 pigeons – that is, we’re
picking n + 1 numbers. This means that a pair of the numbers will be in
the same set Sm. But the sets Sm were carefully chosen so that out of any
pair of numbers in the same set, one number divides the other. Thus, the
presence of a pair of numbers in same Sm ensures that we will have two
numbers one of which is a multiple of the other, as required.

3. Given 5 points in the plane with integer coordinates, show that there exists
a pair of points whose midpoint also has integer coordinates.

Solution: If (a, b) and (c, d) are two points in the plane, then the midpoint
is the point (a+c

2 , b+d
2 ). This point is an integer precisely if a+ c and b+d

are both even. After a little bit of thought, it’s clear that this happens if
both the following statements hold: a and c have the same parity, and b
and d have the same parity.

Let the pigeonholes be defined by the parity of the two numbers. That is,
the pigeonholes are:

SOO = {(x, y) x odd, y odd}
SOE = {(x, y) x odd, y even}
SEO = {(x, y) x even, y odd}
SEE = {(x, y) x even, y even}

So, for example, (1, 1) is in SOO, and (2, 1) is in SEO.

Since we’re picking 5 points, we’ll have two points in the same pigeonhole.
Therefore, we will have two points (a, b) and (c, d) such that a and c as
well as b and d are the same parity. From our arguments above, this will
mean that the midpoint between them will be an integer, as required.

4. During a month with 30 days a baseball team plays at least a game a day,
but no more than 45 games. Show that there must be a period of some
number of consecutive days during which the team must play exactly 14
games.
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Solution: For this question, it helps to set up some notation. Let the
number of games played on day i be gi. Then, the total number of games
played starting on day m, and ending on day n is

gm + gm+1 + · · ·+ gn

Now, define si to be the total number of games played during the first i
days. That is,

s1 = g1

s2 = g1 + g2

...

s30 = g1 + g2 + · · ·+ g30

Now, note that

gm + gm+1 + · · ·+ gn = (g1 + · · ·+ gn)− (g1 + · · · gm−1)

= sn − sm−1

Therefore, what we need to show that is that sn−sm−1 takes on the value
14 for some m and n between 1 and 30. What we’re given is that the
total number of games played on all thirty days is no more than 45, which
tells us that each si is at most 45. Furthermore, we’re told that the team
plays at least a game a day, which means that s1, s2, · · · , s30 are distinct
integers between 1 and 45. The si are going to be the pigeons in this
question.

Now, let our pigeonholes be the following sets:

{1, 15}, {2, 16}, . . . , {14, 28}
{29, 43}, {30, 44}, {31, 45}
{32}, {33}, . . . , {42}

We’re picking 30 numbers s1, s2, . . . , s30 out of the set {1, 2, . . . , 45}. Count-
ing, we see that that we have exactly 14+3+11 = 28 pigeonholes. There-
fore, some two of the si are going to be in the same pigeonhole. By our
definition, a pair of numbers in a pigeonhole differ by exactly 14 – this
means we’ll have an si and sj such that sj − si = 14. But as noted above,
this means that the total number of games played on days i+1, i+2, . . . , j
is exactly 14, as required.

5. Show that among any five points inside an equilateral triangle of side
length 1, there exist two points whose distance is at most 1

2 .

Solution: This question is best solved with a picture. Split up the equi-
lateral triangle into 4 little equilateral triangles of side 1

2 as shown here:
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It should be clear that any two points within one of the smaller 4 triangles
are within distance 1

2 . Since we have 5 points in the bigger triangle, some
two of them will necessarily be in the same small triangle – hence, that
pair of points will have distance at most 1

2 , and we’re done.

6. Prove that from ten distinct two-digit numbers, one can always choose
two disjoint nonempty subsets, so that their elements have the same sum.

Solution: Let the ten numbers be a1, a2, . . . , a10. For any subset T of
{1, 2, . . . , 10}, let

ST =
∑
i∈T

ai

For example,

S{1,2,4} = a1 + a2 + a4

S{2,5,8} = a2 + a5 + a8

Since the ai are two-digit numbers, and each sum contains at most 10
terms, we see that ST is between 10 and 990 for each subset T . Now, the
number of subsets of {1, 2, . . . , 10} is precisely 210 = 1024, and therefore
the number of non-empty subsets is 1023. Since there are fewer than 1023
choices for possible values of ST , this means that there exist subsets T
and R of {1, 2, . . . , 10} such that

ST = SR

If R and T are disjoint, then we’re done. However, if they overlap, we can
just subtract the overlapping items from both sides. For example, if we
have that S{1,3,4,5} = S{3,5,7,8} then

a1 + a3 + a4 + a5 = a3 + a5 + a7 + a8

⇒ a1 + a4 = a7 + a8

Thus, this will allow us to find two disjoint subsets of the 10 numbers with
the same sum.
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7. A checkerboard has 4 rows and 7 columns. A subboard of a checkerboard is
a board you can ‘cut-out’ of the checkerboard by only taking the squares
which are between a specified pair of rows and a specified pair of columns.
Here’s an example of a subboard, with squares shaded in red:

Now, suppose that each of the 28 squares is colored either blue or white.
Show that there is a subboard all of whose corners are blue or all of whose
corners are white.

Here’s an example of a coloring: see if you can find a subboard with four
corners of the same color!

Solution: Let us first discuss how to approach this. Note that we get a
subboard whose corners are the same color if two columns ‘agree’ on two
squares: for example, if column 2 and column 5 both have blue squares in
the 1nd and 4th rows, then we’d get the following (the squares for which
we don’t know the colors are colored in light blue):

As another example, in the coloring given in the question, columns 1 and
6 both have blue squares in the 3rd and 4th row, which similarly leads to
a desired subboard.

Let us proceed by contradiction: assume that there exists a coloring such
that no subboard has all four corners of the same color. We need to con-
sider a couple of cases. Let’s consider the first column of the checkerboard.
Either the first column has 2 of each color, or we have at least 3 squares of
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one color (either blue or white.) Since there’s no difference between blue
and white in the context of the problem, let’s start with the case where
we have at least 3 blue squares in the first column.

Case 1: 3 blue squares in the first column. Since permuting the
rows doesn’t change anything, let’s assume that the first column has blue
squares in rows 1, 2 and 3. As noted above, if any of the remaining columns
have blue squares in 2 of those rows, we’d have a subboard with matching
corners; for example, if column 5 has 2 blue squares in the first 3 rows,
here’s what can happen:

Therefore, we need to assume that each of the remaining 6 columns each
have at least 2 white squares in the first 3 rows; here’s an example of such
a coloring: (note that for now, we’re ignoring the fourth row, hence the
light blue squares)

As should be clear, we’re now having an issue with having a subboard all
of whose corners are white. Indeed, there are only 4 ways to color in the
first 3 rows of a column by using at most 1 blue square; here they are:

By the pigeonhole principle, since there are only 4 potential colorings, and
6 columns to color in, some two columns will agree on the first 3 rows.
This means that we’ll have a subboard all of whose corners are white, as
required.

Case 2: 2 blue squares in the first column. First, note that the
argument above would hold even if we assumed that another column had
3 blue squares. (This is because permuting rows and permuting columns
doesn’t change anything.) Therefore, for this case we may assume that
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every single column has exactly 2 blue squares and 2 white squares. There
are exactly 6 ways to color in a column in this way; here they are:

Since we have 7 columns, but only 6 ways of coloring them, two columns
will be colored in the exact same fashion. This means that we will again
have a subboard all of whose corners are the same color, and we’re done.

The Remaining Problems: I didn’t see too many people try the last three
problems; besides, they are Putnam problems and it’s easy enough to find their
solutions online. So I’m not going to post solutions to them yet – let me know
if you’ve tried them and really want to see how they work!
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