Combinatorics Questions

1. How many positive integers n are there such that n is an exact divisor of at last one of the numbers $10^{40}, 20^{30}$?
2. Let $\mathbf{S}=\{(a, b) \mid a=1,2, \ldots, n, b=1,2,3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that
(i) $p_{i} \in \mathbf{S}$,
(ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<3 n$,
(iii) for each $p \in \mathbf{S}$ there is a unique i such that $p_{i}=p$. How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?
3. Two distinct squares of the 8 by 8 chessboard are said to be adjacent if they have a vertex or side in common. Also, g is called a possible gap if for every numbering of the squares of the chessboard with all the integers $1,2, \ldots, 64$, there exist two adjacent squares whose numbers differ by at least g. Determine the largest possible gap g.
4. A transversal of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices A satisfying the following two conditions:
(a) Each entry $\alpha_{i, j}$ of A is in the set $\{-1,0,1\}$.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$
A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Determine with proof a formula for $f(n)$ of the form

$$
f(n)=a_{1} b_{1}^{n}+a_{2} b_{2}^{n}+a_{3} b_{3}^{n}+a_{4},
$$

where the a_{i} 's and b_{i} 's are rational numbers.
5. A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck ($n-1$)-paths.
6. Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X 's in S minus the number of O 's. For example, $\Delta(X O O X O O X)=$ -1 . We call a string S balanced if every substring T of (consecutive symbols of) S has $-2 \leq \Delta(T) \leq 2$. Thus, $X O O X O O X$ is not balanced, since it contains the substring $O O X O O$. Find, with proof, the number of balanced strings of length n.
7. Let $A(n)$ denote the number of sums of positive integers

$$
a_{1}+a_{2}+\cdots+a_{r}
$$

which add up to n with

$$
\begin{gathered}
a_{1}>a_{2}+a_{3}, a_{2}>a_{3}+a_{4}, \ldots, \\
a_{r-2}>a_{r-1}+a_{r}, a_{r-1}>a_{r} .
\end{gathered}
$$

Let $B(n)$ denote the number of $b_{1}+b_{2}+\cdots+b_{s}$ which add up to n, with
(a) $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$,
(b) each b_{i} is in the sequence $1,2,4, \ldots, g_{j}, \ldots$ defined by $g_{1}=1, g_{2}=2$, and $g_{j}=g_{j-1}+g_{j-2}+1$, and
(c) if $b_{1}=g_{k}$ then every element in $\left\{1,2,4, \ldots, g_{k}\right\}$ appears at least once as a b_{i}.

Prove that $A(n)=B(n)$ for each $n \geq 1$.
(For example, $A(7)=5$ because the relevant sums are $7,6+1,5+2,4+$ $3,4+2+1$, and $B(7)=5$ because the relevant sums are $4+2+1,2+2+$ $2+1,2+2+1+1+1,2+1+1+1+1+1,1+1+1+1+1+1+1$.)

