Combinatorics Questions

- 1. How many positive integers n are there such that n is an exact divisor of at last one of the numbers $10^{40}, 20^{30}$?
- 2. Let $\mathbf{S} = \{(a, b) | a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ in sequence such that
 - (i) $p_i \in \mathbf{S}$,
 - (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
 - (iii) for each $p \in \mathbf{S}$ there is a unique *i* such that $p_i = p$. How many rook tours are there that begin at (1, 1) and end at (n, 1)?
- 3. Two distinct squares of the 8 by 8 chessboard are said to be adjacent if they have a vertex or side in common. Also, g is called a *possible gap* if for every numbering of the squares of the chessboard with all the integers $1, 2, \ldots, 64$, there exist two adjacent squares whose numbers differ by at least g. Determine the largest possible gap g.
- 4. A *transversal* of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let f(n) be the number of $n \times n$ matrices A satisfying the following two conditions:
 - (a) Each entry $\alpha_{i,j}$ of A is in the set $\{-1, 0, 1\}$.
 - (b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$A = \left(\begin{array}{rrrr} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Determine with proof a formula for f(n) of the form

$$f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,$$

where the a_i 's and b_i 's are rational numbers.

5. A Dyck *n*-path is a lattice path of *n* upsteps (1, 1) and *n* downsteps (1, -1) that starts at the origin *O* and never dips below the *x*-axis. A return is a maximal sequence of contiguous downsteps that terminates on the *x*-axis.

Show that there is a one-to-one correspondence between the Dyck *n*-paths with no return of even length and the Dyck (n-1)-paths.

- 6. Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X's in S minus the number of O's. For example, $\Delta(XOOXOOX) =$ -1. We call a string S **balanced** if every substring T of (consecutive symbols of) S has $-2 \leq \Delta(T) \leq 2$. Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, the number of balanced strings of length n.
- 7. Let A(n) denote the number of sums of positive integers

$$a_1 + a_2 + \dots + a_r$$

which add up to n with

$$a_1 > a_2 + a_3, a_2 > a_3 + a_4, \dots,$$

 $a_{r-2} > a_{r-1} + a_r, a_{r-1} > a_r.$

Let B(n) denote the number of $b_1 + b_2 + \cdots + b_s$ which add up to n, with

- (a) $b_1 \ge b_2 \ge \cdots \ge b_s$,
- (b) each b_i is in the sequence $1, 2, 4, ..., g_j, ...$ defined by $g_1 = 1, g_2 = 2$, and $g_j = g_{j-1} + g_{j-2} + 1$, and
- (c) if $b_1 = g_k$ then every element in $\{1, 2, 4, \dots, g_k\}$ appears at least once as a b_i .

Prove that A(n) = B(n) for each $n \ge 1$.