Number Theory - All About Digits!

1. Find the last digit of $7^{7^{7^{7}}}$.
2. Let A be the sum of the digits of the number 4444^{4444} and B the sum of the digits of A. Compute the sum of the digits of B.
3. How many primes among the positive integers, written as usual in base 10 , are alternating 1 's and 0 's, beginning and ending with 1 ?
4. What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

Here $\lfloor x\rfloor$ is the greatest integer less than or equal to x.
5. The sequence of digits

$$
123456789101112131415161718192021 \ldots
$$

is obtained by writing the positive integers in order. If the 10^{n}-th digit in this sequence occurs in the part of the sequence in which the m-digit numbers are placed, define $f(n)$ to be m. For example, $f(2)=2$ because the 100th digit enters the sequence in the placement of the two-digit integer 55 . Find, with proof, $f(1987)$.
6. Define a sequence $\left\{a_{i}\right\}$ by $a_{1}=3$ and $a_{i+1}=3^{a_{i}}$ for $i \geq 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_{i} ?
7. Find the fifth digit from the end of $5^{5^{5^{5}}}$.
8. Let $N(k)$ be the number of integers $n, 0 \leq n \leq 10^{k}$ digits can be permuted in such a way that they yield an integer divisible by 11. Prove that $N(2 m)=10 N(2 m-1)$ for all positive integers m.
9. For each positive integer n, let $a_{n}=0$ (or 1) if the number of 1 's in the binary representation of n is even (or odd), respectively. Show that there do not exist positive integers k and m such that

$$
a_{k+j}=a_{k+m+j}=a_{k+2 m+j}
$$

for $0 \leq j \leq m-1$.

