Recurrence Questions

1. Let

$$
T_{0}=2, T_{1}=3, T_{2}=6
$$

and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3}
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are well-known sequences.
2. Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. Find necessary and sufficient conditions on positive integers m and n so that

$$
\sum_{i=0}^{m n-1}(-1)^{\lfloor i / m\rfloor+\lfloor i / n\rfloor}=0 .
$$

4. If X is a finite set, let X denote the number of elements in X. Call an ordered pair (S, T) of subsets of $\{1,2, \ldots, n\}$ admissible if $s>|T|$ for each $s \in S$, and $t>|S|$ for each $t \in T$. How many admissible ordered pairs of subsets of $\{1,2, \ldots, 10\}$ are there? Prove your answer.
5. The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
$$

Show that, for all n, a_{n} is an integer multiple of n.

6. You can hand in the following question for grading:

Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\}
$$

