Sets and Operations

1. Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.
2. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication.
3. (You can hand this one in) Let S be a non-empty set with an associative operation that is left and right cancellative ($x y=x z$ implies $y=z$, and $y x=z x$ implies $y=z$). Assume that for every a in S the set $\left\{a^{n}: n=1,2,3, \ldots\right\}$ is finite. Must S be a group?
4. A is a subset of a finite group G and A contains more than one half of the elements of G. Prove that each element of G is the product of two elements of A. T
5. Prove or disprove the following statement: if F is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all $x, y, z \in F$,
(a) $x * z=y * z$ implies $x=y$.
(b) $x *(y * z) \neq(x * y) * z$.
6. Let S be the set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
(a) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
(b) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$;
(c) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that $g(a)<g(b)<g(c)$ implies $(a, b, c) \in S$.
7. Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=e=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ such that $\psi(x)=a \phi(x)$ is a homomorphism (i.e. $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G)$.
8. Let \mathcal{M} be a set of real $n \times n$ matrices such that
(i) $I \in \mathcal{M}$, where I is the $n \times n$ identity matrix;
(ii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B \in \mathcal{M}$ or $-A B \in \mathcal{M}$, but not both;
(iii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B=B A$ or $A B=-B A$;
(iv) if $A \in \mathcal{M}$ and $A \neq I$, there is at least one $B \in \mathcal{M}$ such that $A B=$ $-B A$.

Prove that \mathcal{M} contains at most n^{2} matrices.

