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Abstract

In this seminar I will talk about the Conley Index section in Manolescu’s paper ”Lectures on
the Triangulation Conjecture”. I don’t claim any originality of this work, all errors are mine.

1 Compactness of the Moduli space of solutions

In the last talk, we proved that we can write

SW = l + c : V → V (1)

where V is our Coulomb slice, and the functions l, c are given as follows:

l(a, φ) = (∗da, /∂φ)

c(a, φ) = πV ◦ (−2ρ−1(φ⊗ φ∗)◦, ρ(a)φ)

Let V(k) be the W 2,k-completion of V for a fixed number k � 0. We will take k > 5. Then, the
map l : V(k) → V(k−1) is a linear, self-adjoint, Fredholm operator, and c : V(k) → V(k−1) is a compact
map.
The following is the standard compactness theorem for Seiberg-Witten equations, adapted to Coulomb
gauge.

Theorem 1.1. Fix k > 5. There exists some R > 0 such that all the critical points and flow lines
between critical points of SW are contained inside the ball B(R) ⊂ V(k).

2 Finite dimensional approximation

Seiberg-Witten Floer homology is meant to be Morse homology for the functional SW on V .
However, instead of finding a generic perturbation to achieve transversality, it is more convenient
to do finite dimensional approximation. In the finite dimensional case, we can simply use singular
homology instead of Morse homology.
Our finite dimensional approximation is inspired by Furuta’s 4-dimensional case. In our setting V is
an infinite dimensional space, and as a finite dimensional approximation of V we consider

V µ
λ =

⊕
(eigenspaces of l with eigenvalues in (λ, µ)) , λ� 0� µ

We replace SW = l + c : V → V by
l + pµλc : V µ

λ → V µ
λ

where pµλ is the L2-projection onto V µ
λ . Then,

SWµ
λ = l + pµλc

is a vector field on V µ
λ .

The following is a compactness theorem in the finite dimensional approximations.
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Theorem 2.1. There exists R > 0 such that for all µ� 0� λ all critical points of SWµ
λ in the ball

B(2R), and all flow lines between them that lie in B(2R), actually stay in the smaller ball B(R).

Seiberg-Witten trajectories x(t) can be interpreted in a standard way as solutions of the four-
dimensional monopole equations on the cylinder R× Y .

Proof. The idea of the proof is to use that in B(2R), l + pµλc converges uniformly to l + c. We then
apply Theorem 1.1

3 The Conley Index

We start with a very brief introduction and examples about Morse Theory. Let M be a closed
Riemannian manifold. Given a Morse-Smale function f : M → R, there is an associated Morse complex
C∗(M,f). The generators are the critical points of f and the differential is given by

∂x =
∑
y

nxyy

where nxy is the signed count of index 1 gradient flow lines between x and y. The Morse homology
H∗(M,f) is isomorphic to the usual singular homology of M .
Let us investigate what happens if we drop the compactness assumption. In general, it may no longer
be the case that ∂2 = 0:

Example 3.1. Let us consider the Heart-shaped sphere depicted in 1.

Figure 1: A Sphere Figure 2: Flow lines

Suppose we have a Morse-Smale function f on the surface, a gradient flow line from a local
maximum to a saddle point y, and another flow line from y to a local minimum z. Let M be a small
open neighbourhood of the union of these two flow lines, as depicted in Figure 2. Then the restriction
of f to M does not yield a Morse chain complex: we have ∂2x = ±∂y = ±z.

In order to obtain a Morse complex on a non-compact manifold M , we need to impose an ad-
ditional condition. Let f : M → R be Morse-Smale. Some gradient flow lines of f connect critical
points, while others may escape to the ends of the manifold, in positive and/or negative time (and
either in finite or infinite time). Let us denote by S ⊆M the subset of all points that lie on the flow
lines connecting critical points (In particular, S includes all the critical points). In Example 3.1, the
set S is not compact. This is related to the non-vanishing of ∂2: the moduli space of flow line through
y only gives a partial compactification of M (by a single point).
Therefore let us assume that S is compact. Then the same proof as in the case when M is compact
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shows that the differential ∂ satisfies ∂2 = 0. We obtain a Morse complex C∗(M,f). The next question
is, what does the Morse homology H∗(M,f) compute in this case? As the reader can check in simple
examples, it does not give the singular homology of either M or S. The answer turns out to be the
homology of the Conley index of S, which we now proceed to define.

Definition 3.2. For a subset A ⊆M we define

InvA = {x ∈ A | φt(x) ∈ A ∀t ∈ R}

Definition 3.3. A compact subset S ⊂M is called an isolated invariant if there exists A, a compact
neighbourhood of S such that

S = InvA ⊆ IntA

Definition 3.4. For an isolated invariant set S, the Conley index is defined as the pointed homotopy
type of I(S) = (N/L, [L]) where L ⊆ N ⊆M , with both L and N compact and such that they satisfy

1. Inv(N \ L) = S ⊆ Int(N \ L)

2. L is an exit set for N ; that is, for all x ∈ N , if there exists t > 0 such that φt(x) is not in N ,
then there exists 0 ≤ τ < t with φτ (x) ∈ L.

3. L is positively invariant in N ; that is, if x ∈ L and t > 0 are such that φs(x) ∈ N for all
0 ≤ s ≤ t, then φs(x) is in L for 0 ≤ s ≤ t.

The pair (N,L) is called an index pair. It was proved by Conley that any isolated invariant set S
admits an index pair.

Figure 3: A example of a Conley Index

Example 3.5. Suppose φ is the downward gradient flow of a Morse function, and S = {x} consists of
a single critical point of Morse index k. We can find an isolating neighborhood N for {x} of the form
Dk×Dn−k, with L = ∂Dk×Dn−k being the exit set (See figure 4). We deduce that the Conley Index
of {x} is the homotopy type of Sk, so k can be recovered from I(φ,S). Thus we can view the Conley
index as a generalization of the usual Morse index.

Theorem 3.6. The Conley Index I(φ,S) is an invariant of the triple (M,φ,S). The Conley index
is invariant under continuation: if we have a smooth family of flows φλ = {φλt }, λ ∈ [0, 1] and N is
an isolating neighbourhood in every φλ, then the Conley index for Sλ = Inv(N,φλ) in the flow φλ is
independent of λ.

In practice, it is helpful to know that we can find index pairs with certain nice properties. For any
isolated invariant set S, we can choose an index pair (N,L) such that N and L are fnite CW com-
plexes. In fact, more is true: we can arrange so that N is an n-dimensional manifold with boundary
and L ⊂ ∂N is an (n− 1)-dimensional manifold with boundary.
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Figure 4: The index pair (N,L) for a critical point of index 1 for a flow on a surface

3.1 The equivariant Conley index

Floer and Pruszko refined Conley index theory to the equivariant setting. Precisely, let G be a
compact Lie group acting smoothly on a manifold M , preserving a flow φ and an isolated invariant
set S. Then, there exists a G-invariant index pair (N,L) for S, and the Conley index

IG (φ,S) := (N/L, [L])

is well-defined up to canonical G-equivariant homotopy equivalence.

4 Seiberg-Witten Floer Homology

Remember that Pin(2) = S1 ∪ jS1 ⊂ C ∪ jC = H and j acts on V as an additional symmetry as
follows:

j : (a, φ) 7→ (−a, φj)

Γ(S) = {U → C2}(
v1
v2

)
7→
(
−v̄2
−v̄1

)
In order to apply the Conley Index machinery in our case, we take A = B(2R), so that S = InvA

(the union of the critical points and flow lines inside the ball). Then, N can be taken to be a manifold
with boundary and L ⊂ ∂N a codimension 0 submanifold of the boundary (so that L has its own
boundary). It can be shown that, if the flow lines satisfy the Morse-Smale condition, then the Morse
homology is isomorphic to the reduced singular homology of I(S).

Definition 4.1. We define the S1-equivariant Seiberg-Witten Floer homology of a homology sphere
Y to be

SWFHS1

∗ (Y ) = H̃S1

∗+ shift

(
Iµλ
)

for µ� 0� λ

Similarly, for the Pin(2) equivariant SWF homology (the SW equations are Pin(2)-equivariant, thus
we can give the definition of Pin(2)-equivariant Seiberg-Witten Floer homology) we have:

SWFH
Pin(2)
∗ (Y ;F) = H̃

Pin(2)
∗+ shift(I

µ
λ ;F) for µ� 0� λ

Here, Iµλ is Conley index for Sµ ⊂ V µ
λ , and the grading is shifted by some amount that depends on

λ, µ, and the metric. Note that everything in the construction is S1-equivariant (resp. Pin(2)), with
respect to the S1-action by constant gauge transformation (resp. Pin(2) with the appropriate action).
This allow us to apply Borel homology in the formula above.
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4.0.1 Invariance

Let us prove that the Floer homologies we have just defined, SWFHS1

∗ (Y ;F), SWFH
Pin(2)
∗ (Y ;F),

are invariants of Y . In the process, we will also identify the grading shift in their definitions.
Remember we have a map SW : V → V , where V = ker d∗ ⊕ Γ(S) and V µ

λ is a finite dimensional
approximation of V . Then the SW -equations can be decomposed as SW = l+c, with approximations

SWµ
λ = l + pµλc : V µ

λ → V µ
λ

The flow equation is
ẋ = −SWµ

λ (x(t))

Let us investigate how the Conley index Iµλ changes under varying µ and λ. If we change µ  µ′ >
µ� 0, we have a decomposition

V µ′

λ = V µ
λ ⊕ V

µ′
µ

which induces
l + pµ

′

λ c l + pµλc⊕ l + pµ
′
µ c

The Conley index is invariant under deformations i.e., if we have a family of flows φ(s) where s ∈ [0, 1]
such that

S(s) = Inv(B(R) in φ(s)) ⊂ IntB(R), where s ∈ [0, 1]

then I(S(0)) ' I(S(1)).

Claim 4.2. The flow of l + pµ
′
µ c is isotopic to the flow of l on V µ′

µ

Proof. Since we are working on V µ′
µ l can be easily isotope to the identity by rescaling the eigenvalues.

Now we use the fact that a compact perturbation of the identity is invertible to prove that l + tpµ
′
µ c

for t ∈ [0, 1] is an isotopy from l + pµ
′
µ c to l. Since the Conley index is invariant by perturbations we

can modify everything up to isotopy

In our case, we let φ(0) be the flow of l + pµ
′

λ c and deform it into φ(1), the direct sum of the flow

of l + pµλ and the linear flow l on V µ′
µ . We get

Iµ
′

λ = I(S(0)) = I(S(1)) = Iµλ ∧ I
µ′
µ (l)

Here, Iµ
′

µ (l) is the Conley Index for the linear flow ẋ = −l(x) on V µ′
µ . Since the restriction of l to that

subspace has only positive eigenvalues, we see that

Iµ
′

µ (l) = SMorse index = S0

We obtain
Iµ

′

λ = Iµλ when µ, µ′ � 0

On the other hand, by a similar argument, when we vary the cut-off λ for negative eigenvalues, the
Conley index changes by the formula

Iµλ′ = Iµλ ∧
(
V λ
λ′

)
︸ ︷︷ ︸
sphere

We conclude that:
H̃S1

∗+dimV 0
λ

(Iµλ )

is independent of λ and µ, provided µ� 0� λ. The same is true for the Pin(2)-equivariant homology.
This suggests including a degree shift dimV 0

λ in the definitions.
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