Additional questions for Homework 3

T. Perutz

M361, Fall 2012

Recall that the Mandelbrot set M is defined as the set of those $c \in \mathbb{C}$ with the property that the sequence $(z_n(c))$ is bounded. Here $z_n(c)$ is defined recursively by $z_0(c) = 0$ and $z_{n+1}(c) = z_n(c)^2 + c$.

- 1. In this question we will show that M is contained in the closed disc $\overline{D(0;2)} = \{z \in \mathbb{C} : |z| \le 2\}.$
 - (a) Let (a_n) be a sequence of complex numbers. Show that if $a_n \to \infty$ then a_n is not bounded.
 - (b) Suppose |c| > 2. We aim to show that $z_n(c) \to \infty$. To this end, prove that for each $n \ge 2$,

$$|z_n(c)| \ge r_n|c|,$$

where the sequence r_n is defined recursively starting at n=2 by $r_2=|c|-1$ and $r_{n+1}=2r_n^2-1$. [Hint: use induction and the triangle inequality in the form $|a-b|\geq |a|-|b|$.]

- (c) Write $|c| = 2 + \epsilon$. Prove that $r_n \ge 1 + 4^{n-2}\epsilon$ for $n \ge 2$.
- (d) Prove that $r_n \to \infty$ (i.e., for all R there's some N such that $|r_n| > R$ whenever n > N).
- (e) Use the last part to help you prove that $z_n(c) \to \infty$. Deduce that $c \notin M$.
- 2. In this question we show that, for a given $c \in \mathbb{C}$, if there's some N for which $|z_N(c)| > 2$, then $z_n(c) \to \infty$ as $n \to \infty$ (so $c \notin M$). This is very useful when drawing computer pictures of the Mandelbrot set.

By the previous question, we know that $z_n(c) \to \infty$ when |c| > 2, so we assume $|c| \le 2$.

- (a) Prove that for each integer $k \geq 0$ we have $|z_{N+k}(c)| \geq 2 + 4^k \epsilon$.
- (b) Prove that $z_n(c) \to \infty$.