
Lecture 3. The intersection form

1 The cup product in middle dimensional cohomology

Suppose that M is a closed, oriented manifold of even dimension 2n. Its middle-degree cohomology
group Hn(M) then carries a bilinear form, the cup-product form,

Hn(M)× Hn(M)→ Z, (x, y) 7→ x · y := eval (x ∪ y, [M]).

The cup product x ∪ y lies in H2n(M), and eval denotes the evaluation of a cohomology class on a
homology class.

The cup-product form is skew-symmetric when n is odd, and symmetric when n is even.

Lemma 1.1 x · y is equal to the evaluation of x on DXy.

Proof Under the isomorphism H0(X) ∼= Z sending the homology class of a point to 1, one has
x · y = (x ∪ y) ∩ [X] = x ∩ (y ∩ [X]) = 〈x,DXy〉.

As we saw last time, when interpreted as a pairing on homology, Hn(M) × Hn(M) → Z, by applying
Poincaré duality to both factors, the cup product is an intersection product. Concretely, if S and S′

are closed, oriented submanifolds of M , of dimension n and intersecting transversely, and s = DM[S],
s′ = DM[S′], then

s · s′ =
∑

x∈S∩S′
εx,

where εx = 1 if, given oriented bases (e1, . . . , en) of TxS and (e′1, . . . , e
′
n) of TxS′ , the basis

(e1, . . . , en, e′1, . . . , e
′
n) for TxM is also oriented; otherwise, εx = −1.

Notation: For an abelian group A, let A′ denotes its torsion-free quotient A/Ators .

The cup product form necessarily descends to a form on the free abelian group Hn(M)′ . We shall denote
the latter form by QM .

Proposition 1.2 The cup-product form QM is non-degenerate, i.e., the group homomorphism

Hn(M)′ → Hom(Hn(M′),Z), x 7→ (y 7→ x · y)

is an isomorphism.

Proof By the lemma, an equivalent assertion is that evaluation defines a non-degenerate pairing of the
torsion-free quotients Hn(X)′ and Hn(X)′ . This is true as a matter of homological algebra: it is a weak
form of the cohomological universal coefficients theorem.

If we choose an integral basis (e1, . . . , eb) of Hn(M)′ , we obtain a square matrix Q of size b×b, where
b = bn(M), with entries Qij = ei · ej . It is symmetric or skew symmetric depending on the parity of n.

Exercise 1.3 Non-degeneracy of the form QM is equivalent to the unimodularity condition detQ =
±1.
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Proposition 1.4 Suppose that N is a compact, oriented manifold with boundary M , and i : M → N
the inclusion. Let L = im i∗ ⊂ Hn(M;R). Then (i) L is isotropic, i.e., x · y = 0 for x, y ∈ L; and (ii)
dim L = 1

2 dim Hn(M;R).

Proof (i) We have i∗u · i∗v = eval(i∗(u ∪ v), [M]) = eval(u ∪ v, i∗[M]). But i∗[M] = 0, since the
fundamental cycle of M is bounded by that of N .

(ii) There is a commutative diagram with exact rows as follows:

· · · // Hn(N;R) i∗ //

DN

��

Hn(M;R) δ //

DM

��

Hn+1(N,M;R)
q //

DN,M

��

Hn+1(N;R) //

DN

��

· · ·

· · · // Hn+1(N,M;R) ∂ // Hn(M;R)
i∗ // Hn(N;R)

p // Hn(M,N;R) // · · ·

The top row is the cohomology exact sequence of the pair (N,M), the bottom row the homology exact
sequence of the same pair; and the vertical maps are duality isomorphisms: DM is Poincaré duality, the
remaining vertical maps Poincaré–Lefschetz duality (which we have not reviewed). Fix a complement
K to L in Hn(M;R). We shall show that dim K = dim L .

From exactness of the top row, we see that L = ker δ , so K ∼= im δ ∼= ker q. But ker q ∼= ker p ∼= im i∗ ,
so K ∼= im i∗ . Real cohomology is dual to real homology, and i∗ is dual to i∗ . Thus im i∗ is the
annihilator of ker i∗ , and dim im i∗ = dim im i∗ , i.e. dim L = dim K .

1.1 Symmetric forms over R

We concentrate now on the case where n is even, so QM is symmetric.

Definition 1.5 A unimodular lattice (Λ, σ) is a free abelian group Λ of finite rank, together with a
non-degenerate, symmetric bilinear form σ : Λ× Λ→ Z.

QM is a unimodular lattice.

Recall that given a symmetric bilinear form σ on a real finite-dimensional real vector space V , there is
an orthogonal decomposition

V = R⊕ V+ ⊕ V−,

where R = {v ∈ V : σ(v, ·) = 0} is the radical, and where σ is positive-definite on V+ and negative-
definite on V− . The dimensions dim V± are invariants of (V, σ), and together with that of R they are
complete invariants.

We define the signature τ (Λ) of a unimodular lattice (Λ, σ) to be that of Λ ⊗ R, and the signature of
M to be that of QM .

The fact that this τ (M) is an invariant of a closed oriented manifolds (of dimension divisible by 4)
immediately gives the

Proposition 1.6 A 4k-dimensional closed oriented manifold M admits an orientation-reversing self-
diffeomorphism only if its signature vanishes.
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Theorem 1.7 (a) Let Y be a an oriented cobordism between 4-manifolds X1 and X2 (i.e., Y is a compact
oriented 5-manifold with boundary ∂Y , together with an oriented diffeomorphism ∂Y ∼= −X1 q X2 ).
Then τX1 = τX2 .

(b) Conversely, if τX1 = τX2 , an oriented cobordism exists.

Proof (a) By the proposition above, the cup-product form of −X1 q X2 admits a middle-dimensional
isotropic subspace. It follows, as a matter of algebra, that τ (−X1 q X2) = 0. But the cup-product form
Q−X1qX2 is the orthogonal sum of Q−X1 = −QX1 and QX2 , so τ (−X1 q X2) = τ (X2)− τ (X1).

(b) [Sketch.] It follows from Thom’s cobordism theory that the group Ωd of cobordism classes of
closed oriented d -manifolds, under disjoint union, is isomorphic to the homotopy group πd+kM SO(k)
in the ‘stable range’ where k is reasonably large. Here M SO(k) is the Thom space of the universal
vector bundle E SO(k) → B SO(k) over the classifying space for the Lie group SO(k). Note that the
homology group Hd+k(M SO(k)) is isomorphic (by the Thom isomorphism) to Hd(B SO(k)); so there
are Hurewicz maps Ωd → HdB SO(k), and in particular map Ω4 → H4(B SO(k)) ∼= Z. Thom proves
that Ωd = 0 for d ≤ 3 and that Ω4 → Z is an isomorphism. The signature homomorphism τ : Ω4 → Z
is surjective, since τ (CP2) = 1, and therefore an isomorphism.

1.2 Characteristic vectors

Having examined QM over R, we turn next to an aspect of its mod 2 arithmetic.

Definition 1.8 A characteristic vector c for a unimodular lattice is an element c ∈ Λ such that
c · x ≡ x · x mod 2 for all x ∈ λ.

Lemma 1.9 The characteristic vectors form a coset of 2Λ in Λ.

Proof Let λ = Λ⊗Z (Z/2). It is a Z/2-vector space of dimension d , with a symmetric pairing (·, ·),
still non-degenerate. The map λ→ λ given by z 7→ (z, z) is Z/2-linear, and so by non-degeneracy can
be represented as (z, z) = (c̄, z) for a unique element c̄ ∈ λ. The characteristic vectors c are precisely
the lifts of c̄ to Λ.

Definition 1.10 A unimodular lattice (Λ, σ) is called even if 0 is characteristic, i.e., if (x, x) is always
even; otherwise the lattice is called odd. The property of being even or odd is called the type of the
lattice.

Lemma 1.11 For any two characteristic vectors c and c′ , one has σ(c, c) ≡ σ(c′, c′) modulo 8.

Proof Write c′ = c + 2x . Then

σ(c′, c′) = σ(c, c) + 4(σ(c, x) + σ(x, x)),

and σ(c, x) + σ(x, x) is even.

Theorem 1.12 (Hasse–Minkowski) A unimodular form σ on a lattice Λ ∼= Zr , which is indefinite
(i.e. neither positive- nor negative-definite) is determined, up to isomorphism, by its rank r , signature
τ ∈ Z, and type t ∈ Z/2.
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This is a deep and powerful result which we will not prove; see J.-P. Serre, A course in arithmetic.
The key point is to find an isotropic vector, i.e. a vector x 6= 0 such that σ(x, x) = 0. It suffices to
find an isotropic vector x in Λ ⊗ Q; and according Hasse–Minkowski’s local-to-global principle for
quadratic forms over Q, for existence of such an isotropic vector it is necessary and sufficient that there
are isotropic vectors in Λ⊗ R (to which indefiniteness is clearly the only obstruction) and in Λ⊗Qp

for each prime p. Quadratic forms over the p-adics Qp can be concretely understood, and it turns
out that (when the rank is at least 5) there is a p-adic isotropic vector as soon as the form is indefinite
(additional arguments are needed for low rank).
Let I+ denote the unimodular lattice Z with form (x, y) 7→ xy; let I− = −I+ . Part of the statement of
Hasse–Minkowski is that, if Λ is odd and indefinite, it is isomorphic to a direct sum

rI+ ⊕ sI−
for suitable r and s. To prove this, one uses an isotropic vector to find an orthogonal direct sum
decomposition Λ = I+ ⊕ I− ⊕ Λ′ . Then I+ ⊕ Λ′ and I− ⊕ Λ′ have lower rank than Λ, and both are
odd. One of them is indefinite, so one can proceed by induction on the rank.
The classification of odd indefinite unimodular forms has the following

Corollary 1.13 In any unimodular lattice, any characteristic vector c has σ(c, c) ≡ τ mod 8. In
particular, the signature of an even unimodular lattice is divisible by 8.

Proof The form rI+ ⊕ sI− has characteristic vector c = (1, . . . , 1), for which one has c2 = τ . Thus
for any characteristic vector one has c2 ≡ τ modulo 8. By the classification, the corollary holds for
odd, indefinite unimodular forms. We can make any unimodular form odd and indefinite by adding I+
or I− , which has the effect of adding or subtracting 1 to the signature. If c is characteristic for Λ then
c⊕ 1 is characteristic for Λ⊕ I± , with (c⊕ 1)2 = c2 ± 1, so we deduce the corollary for Λ.

The basic example of an even unimodular form is the lattice U = Z2 with (a, b)2 = 2ab. Its matrix is[
0 1
1 0

]
.

To classify even indefinite unimodular forms one proceeds as follows. Suppose Λ1 and Λ2 are indefinite,
unimodular and even, of the same rank and signature. One uses the existence of an isotropic vector to
prove that Λi ∼= U⊕Λ′i for even unimodular lattices Λ′i . From what has been proved about the odd case,
one knows that Λ′1⊕ I+⊕ I− ∼= Λ′2⊕ I+⊕ I− , and with some work one deduces that Λ′1⊕U ∼= Λ′2⊕U ,
i.e., that Λ1 ∼= Λ2 .

1.3 The E8 lattice

There is an important example of a positive-definite even unimodular form of rank 8. This is the form
E8 arising from the E8 root system (or Dynkin diagram). Start with the lattice Z8 (standard inner
product). Let Γ ⊂ Z8 be the sub-lattice formed by x ∈ Z8 with x · x even. Then E8 is formed from Γ
by adjoining the vector 1

2 (e1 + · · ·+ e8). Since this vector has length-squared 2, E8 is even.

Exercise 1.14 (1) Let Λ be a lattice in Rn (with inner product inherited from Rn ) and Λ′ ⊂ Λ a
sub-lattice of finite index [Λ : Λ′]. Show that the determinants of the matrices representing these
lattices are related by

detΛ = [Λ : Λ′] detΛ′.



Lecture 3. The intersection form 5

(2) Show that [Z8 : Γ] = 2 and [E8 : Γ] = 2.

(3) Deduce that detE8 = 1.

E8 has basis (v1, . . . , v8) where

vi = ei+1 − ei (1 ≤ i ≤ 6), v7 = 1
2 (e1 + e8)− 1

2 (e2 + · · ·+ e7), v8 = e1 + e2.

One has vi · vi = 2; v1 · v2 = v2 · v3 = · · · = v5 · v6 = −1; v7 · v2 = −1; v8 · v7 = 0. All the other
pairs are orthogonal. (One usually depicts this situation via the E8 Dynkin graph.)

We typically prefer to use the negative-definite version −E8 . This has basis (v1, . . . , v8) and matrix

−E8 =



−2 1 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2

1 −2 1
1 −2


.

The direct sum
rU ⊕ s(±E8)

is even unimodular of rank 2r ± 8s and signature ±8s. By Hasse–Minkowski and the fact that the
signature of an even unimodular form is divisible by 8, we see that every indefinite even unimodular
form takes this shape.

1.4 Topological examples

It is straightforward to write down an example of a 4k-manifold with cup-product form H : one can
simply take S2k × S2k . In particular, in 4 dimensions we have S2 × S2 .

In 4 dimensions, it is also easy to come up with an example with cup-product for I+ : one can take CP2 ,
with its orientation as a complex surface. One has H2(CP2) = Z, the generator ` being the Poincaré
dual to any projective line L ⊂ CP2 . Any two such lines, L and L′ , if distinct, intersect positively
at a single point, so ` · ` = 1. We can get I− as intersection form by taking −CP2 (i.e. reversing
orientation).

Next time, we shall use characteristic classes of the tangent bundle to prove the following

Proposition 1.15 Let X be a smooth quartic complex surface in CP3 . Then X has even intersection
form of rank 22 and signature -16.

Thus from Hasse–Minkowski, we deduce that X has intersection form

3U ⊕ 2(−E8).

It is not a simple task to write down an integral basis for H2(X), let alone to calculate the intersection
form explicitly, so Hasse–Minkowski is a convenient shortcut.


