Eigenspinors and the Chern-Simons-Dirac functional

Tim Perutz

Monopole Floer Homology reading group

Imperial College London, November 28 2006 Monopole Floer homology assigns to a Spin^c-3-manifold an exact triangle of $\mathbb{Z}[[U]]$ -modules

$$\cdots \to \widehat{HM}_{\bullet} \to \overline{HM}_{\bullet} \to \widecheck{HM}_{\bullet} \to \cdots$$
.

They are homology modules for chain complexes generated by critical points of the blown up Chern-Simons-Dirac functional. Each involves two out of the three types of critical points: irreducible, boundary-stable and boundary-unstable.

Why so complicated? If one took only the irreducible ones, say, the homology group would not be metric-independent.

In today's lecture we'll begin to analyse the boundary critical points, and take a first look at the situation on S^3 . In that case, the exact triangle can be identified with the short exact sequence

$$0 \to \mathbb{Z}[[U]] \to \mathbb{Z}[U^{-1}, U]] \to \mathbb{Z}[U^{-1}, U]/\mathbb{Z}[U] \to 0.$$

Blowing up S^1 -manifolds

Let P be a (compact) Riemannian manifold on which S^1 acts by isometries. Assume that the action is free away from the fixed-point set Q. By linearising the S^1 action, the normal bundle $N=N_{Q/P}$ becomes a complex vector bundle.

We wish to replace P by a free S^1 -space. One possibility is the Borel construction $P \times_{S^1} S^\infty$, but a more economical alternative in this 'semifree' case is to form the *real oriented blow-up* P^σ of P along Q, which is the smooth manifold-with-boundary

$$P^{\sigma} = (P \setminus Q) \cup_{p^{\sigma}} S(N) \times [0, \epsilon).$$

Here $p^{\sigma} \colon S(N) \times (0,\epsilon) \to P \setminus Q$ is the tubular neighbourhood embedding induced by the metric. There is a blow-down map $P^{\sigma} \to P$, which gives a diffeomorphism $\operatorname{int}(P^{\sigma}) \to P \setminus Q$. The map p^{σ} interwines the linear S^1 action on S(N) with the action on P, hence P^{σ} is a free S^1 -space.

Chern-Simons-Dirac

As an example, take the Hilbert manifold $\widetilde{\mathcal{B}}=\mathcal{C}/\mathcal{G}_0$ associated with a closed 3-manifold Y with Spin^c -structure \mathfrak{s} . Here \mathcal{C} is the configuration space of pairs (B,Φ) of Spin^c -connection and spinor of Sobolev class $L^2_{3/2}$, with the L^2 metric. The gauge group \mathcal{G} has a subgroup \mathcal{G}_0 of gauge transformations u with u(y)=1 at some basepoint $y\in Y$, and \mathcal{G}_0 acts freely. This leaves a residual S^1 -action on $\mathcal{B}(Y)$ by constant gauge transformations.

The blow-up $\tilde{\mathbb{B}}^{\sigma}$ of $\tilde{\mathbb{B}}$ along the fixed locus (of reducible configurations (B,0)) is a Hilbert manifold with boundary. So is its space of S^1 -orbits \mathbb{B}^{σ} .

We next want to bring the Chern-Simons Dirac functional \mathcal{L} into the picture. This function on \mathcal{C} is \mathcal{G} -invariant, modulo $2\pi \operatorname{div}(c_1(\mathfrak{s}))$, and hence determines an S^1 -invariant, circle-valued function on $\tilde{\mathcal{B}}$.

Morse theory on P^{σ} ...

From an S^1 -invariant function $\tilde{f} \in C^{\infty}(P)$.

 $\tilde{V}:=\operatorname{grad}(\tilde{f})$ lifts to a vector field \tilde{V}^{σ} on $\operatorname{int}(P^{\sigma})$. Fact: \tilde{V}^{σ} extends smoothly to a vector field on P^{σ} , tangent to ∂P^{σ} .

We study the critical points and gradient flows of V^{σ} , the vector field on P^{σ}/S^{1} induced by \tilde{V}^{σ} . In a geodesic tubular neighbourhood of Q, we can write

$$\tilde{f}(q,\phi) = (\tilde{f}|_Q)(q) + \frac{1}{2}\langle L_q\phi, \phi \rangle + o(|\phi|^2).$$

Here the \mathbb{C} -linear, \mathbb{R} -symmetric map $L \in \operatorname{End}(N)$ is the Hessian of \tilde{f} . The behaviour of the stationary points of \tilde{V}^{σ} on ∂P^{σ} can be understood in terms of Morse theory of $\tilde{f}|_Q$, and of the functions

$$N_q \to \mathbb{R}, \quad p \mapsto \frac{1}{2} \langle L_q p, p \rangle.$$

Consider a hermitian operator L on \mathbb{C}^n , and the function $l: p \mapsto \frac{1}{2}\langle Lp, p \rangle$. We have $\operatorname{grad}(l)(p) = Lp$, so if L is non-degenerate its only critical point is the origin.

In polar coordinates $(\phi,s)\in S^{2n-1}\times(0,\infty)$, the gradient is

$$(\phi, s) \mapsto (L\phi - \langle \phi, L\phi \rangle \phi, \langle \phi, L\phi \rangle s).$$

Thus the lift of the gradient flow to the blow-up $S^{2n-1} \times [0, \infty)$ has stationary points $(\phi, 0)$, where ϕ is a unit eigenvector for L.

The stationary points of the induced field on the S^1 -quotient $\mathbb{CP}^{n-1} \times [0,\infty)$ are in bijection with the eigenvalues of L, counted with multiplicities.

To analyse critical points of \tilde{V}^{σ} , represent points of P^{σ} in the form (q, ϕ, s) where $q \in Q$, $\phi \in S(N_q)$, $s \geq 0$. We have

$$T_{(q,\phi,s)}P^{\sigma}=T_{q}Q\oplus W\oplus \mathbb{R},$$

where $W = \phi^{\perp}$ is the tangent space to $S(N_q)$. We then have

$$\tilde{V}^{\sigma}(q,\phi,0) = (\operatorname{grad}(\tilde{f}|_{Q}), L_{q}\phi - \langle \phi, L_{q}\phi \rangle \phi, 0).$$

So boundary critical points of \tilde{V}^{σ} are precisely the points $(q, \phi, 0)$ where ϕ is a unit eigenvector of L_q .

At a stationary point $(q, \phi, 0)$ with $L_q \phi = \lambda \phi$, the Hessian is of shape

$$abla ilde{V}^{\sigma} = \left[egin{array}{ccc} \operatorname{Hess}(ilde{f}|_Q)(q) & 0 & 0 \ & * & L_q - \lambda & 0 \ 0 & 0 & \lambda \end{array}
ight].$$

This is still valid on P^{σ}/S^1 : just take W to be the *complex* orthogonal complement $[\phi]^{\perp}$.

The Hessian computation shows that

- The stationary points of V^{σ} on $\partial P^{\sigma}/S^1$ are non-degenerate when (i) $\tilde{f}|_Q$ is Morse; and for each of its critical points q, the operator L_q has (ii) simple spectrum and (iii) no kernel.
- The stationary point $(q, [\phi], 0)$ is then boundary-stable—i.e. the outward normal to ∂P^{σ} is tangent to its stable manifold—iff it corresponds to a *positive* eigenvalue of L_q .
- ullet Choose a basis of unit eigenvectors ϕ_i for L_q with eigenvalues

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n$$
.

Then $\operatorname{ind}(q, [\phi_i], 0)$ is given by

$$\begin{cases} \operatorname{ind}_Q(q) + 2(i-1), & \lambda_i > 0, \\ \operatorname{ind}_Q(q) + 2(i-1) + 1, & \lambda_i < 0. \end{cases}$$

CSD again

The fixed-point set of S^1 acting on $\widetilde{\mathcal{B}}$ is the locus of reducible configurations (B,0). We have $\mathcal{L}(B,0) = \mathrm{CS}(B)$ (Chern-Simons functional). Thus the critical points of $\mathcal{L}|_Q$ are gauge-orbits of flat S^1 -connections, and $\mathcal{L}|_Q$ is Morse iff $b_1(Y)=0$. The normal operator L_B at a flat connection is the Dirac operator D_B .

Thus the vector field \mathcal{V}^{σ} on $\mathcal{B}^{\sigma} = \tilde{\mathcal{B}}^{\sigma}/S^{1}$ has as its boundary stationary points pairs $(B, [\Phi])$ where B^{t} is flat and $D_{B}\Phi = \lambda \phi$ for some $\lambda \in \mathbb{R}$.

Moreover,

These stationary points are non-degenerate when (i) $b_1(Y) = 0$, (ii) D_B has no kernel, and (iii) D_B has simple eigenvalues. In this case, they are boundary stable or unstable according to the sign of the eigenvalue.

For each flat B, there is a countable infinity of boundary-stable stationary points, likewise boundary-unstable. The non-degeneracy conditions will often not be met, and for this reason one considers perturbations of \mathcal{L} .

The 3-sphere

On S^3 with its standard metric g and unique Spin^c-structure, there are no irreducible SW monopoles as g has positive scalar curvature.

There's only one flat connection B_0 , up to gauge. Its Dirac operator D_{B_0} has kernel zero (Lichnérowicz formula) but it does not have simple eigenvalues. It can be perturbed to a self-adjoint operator L which has simple, doubly-infinite spectrum and no kernel.

The stationary points $(B_0, [\phi_i])$ do not have well-defined Morse indices, but any pair of them do have a *relative* index. The relative index is, e.g., 2(i-j) when ϕ_i and ϕ_j are boundary-stable (cf. finite dimensional indices).

These observations lead to a simple computation of the three monopole Floer homology groups of S^3 . Each of the three chain complexes is concentrated in degrees of the same parity, and so has trivial differentials.