Lagrangian correspondences and invariants for 3-manifolds with boundary

Yankı Lekili¹ Tim Perutz²

 $^1 {\sf MSRI/Cambridge}$

²University of Texas at Austin

MSRI, March 17, 2010

Extending Seiberg-Witten theory

- Kronheimer-Mrowka have built a Seiberg-Witten TQFT in (3+1) dimensions. The S-W invariants of closed 4-manifolds with $b^+>0$ come from a secondary operation which is not part of the TQFT itself.
- An old idea: extend Seiberg–Witten down to a TQFT in (2+1+1) dimensions.
- The invariant of a surface S should be a category built from possible boundary-values of Seiberg-Witten fields on 3-manifolds bounding S.

Extending Seiberg-Witten theory

- Kronheimer-Mrowka have built a Seiberg-Witten TQFT in (3+1) dimensions. The S-W invariants of closed 4-manifolds with $b^+>0$ come from a secondary operation which is not part of the TQFT itself.
- An old idea: extend Seiberg–Witten down to a TQFT in (2+1+1) dimensions.
- The invariant of a surface S should be a category built from possible boundary-values of Seiberg-Witten fields on 3-manifolds bounding S.

Extending Seiberg-Witten theory

- Kronheimer-Mrowka have built a Seiberg-Witten TQFT in (3+1) dimensions. The S-W invariants of closed 4-manifolds with $b^+>0$ come from a secondary operation which is not part of the TQFT itself.
- An old idea: extend Seiberg–Witten down to a TQFT in (2+1+1) dimensions.
- The invariant of a surface S should be a category built from possible boundary-values of Seiberg-Witten fields on 3-manifolds bounding S.

- Say $\partial W^3 = S_1 \cup S_2$. Choose a Spin^c -structure on W. Define d_i by $c_1(\mathbb{S}^+)[S_i] = 2[1 g(S_i) + d_i]$.
- The limiting values of S-W fields over the cylindrical completion \hat{W} are *vortices* of degree d_i over S_i .
- The space of vortices over $S_1 \cup S_2$, modulo gauge, is a Kähler manifold identified with

$$\operatorname{Sym}^{d_1}(S_1)_- \times \operatorname{Sym}^{d_2}(S_2).$$

- Say $\partial W^3 = S_1 \cup S_2$. Choose a Spin^c-structure on W. Define d_i by $c_1(\mathbb{S}^+)[S_i] = 2[1 g(S_i) + d_i]$.
- The limiting values of S-W fields over the cylindrical completion \hat{W} are *vortices* of degree d_i over S_i .
- The space of vortices over $S_1 \cup S_2$, modulo gauge, is a Kähler manifold identified with

$$\operatorname{\mathsf{Sym}}^{d_1}(S_1)_- \times \operatorname{\mathsf{Sym}}^{d_2}(S_2).$$

- Say $\partial W^3 = S_1 \cup S_2$. Choose a Spin^c-structure on W. Define d_i by $c_1(\mathbb{S}^+)[S_i] = 2[1 g(S_i) + d_i]$.
- The limiting values of S-W fields over the cylindrical completion \hat{W} are *vortices* of degree d_i over S_i .
- The space of vortices over $S_1 \cup S_2$, modulo gauge, is a Kähler manifold identified with

$$\operatorname{\mathsf{Sym}}^{d_1}(S_1)_- \times \operatorname{\mathsf{Sym}}^{d_2}(S_2).$$

- Say $\partial W^3 = S_1 \cup S_2$. Choose a Spin^c-structure on W. Define d_i by $c_1(\mathbb{S}^+)[S_i] = 2[1 g(S_i) + d_i]$.
- The limiting values of S-W fields over the cylindrical completion \hat{W} are *vortices* of degree d_i over S_i .
- The space of vortices over $S_1 \cup S_2$, modulo gauge, is a Kähler manifold identified with

$$\operatorname{\mathsf{Sym}}^{d_1}(S_1)_- \times \operatorname{\mathsf{Sym}}^{d_2}(S_2).$$

- Traditional proposal: attach to Σ_g the Fukaya category $\mathfrak{F}(\operatorname{Sym}^{g+k}(\Sigma_g))$.
- To get a reasonable invariant for the 3-ball, take k = 0.
- We're working on implementing the (2+1)-dimensional aspects of this proposal.
- We use a symplectic (Heegaard Floer) model involving $\operatorname{Sym}^g(\Sigma_g \setminus z)$. No gauge theory.
- Auroux has found a $(\mathcal{F} \operatorname{Sym}^g(\Sigma_g \setminus z), \mathcal{A}(\Sigma_g, z))$ -bimodule, where $\mathcal{A}(\Sigma_g, z)$ is the bordered Heegaard Floer algebra. Conjecture: this bimodule induces a quasi-equivalence of module categories under which the two TQFTs coincide.

- Traditional proposal: attach to Σ_g the Fukaya category $\mathfrak{F}(\operatorname{Sym}^{g+k}(\Sigma_g))$.
- To get a reasonable invariant for the 3-ball, take k = 0.
- We're working on implementing the (2+1)-dimensional aspects of this proposal.
- We use a symplectic (Heegaard Floer) model involving $\operatorname{Sym}^g(\Sigma_g \setminus z)$. No gauge theory.
- Auroux has found a $(\mathcal{F} \operatorname{Sym}^g(\Sigma_g \setminus z), \mathcal{A}(\Sigma_g, z))$ -bimodule, where $\mathcal{A}(\Sigma_g, z)$ is the bordered Heegaard Floer algebra. Conjecture: this bimodule induces a quasi-equivalence of module categories under which the two TQFTs coincide.

- Traditional proposal: attach to Σ_g the Fukaya category $\mathfrak{F}(\operatorname{Sym}^{g+k}(\Sigma_g))$.
- To get a reasonable invariant for the 3-ball, take k = 0.
- We're working on implementing the (2+1)-dimensional aspects of this proposal.
- We use a symplectic (Heegaard Floer) model involving $\operatorname{Sym}^g(\Sigma_g \setminus z)$. No gauge theory.
- Auroux has found a $(\mathcal{F} \operatorname{Sym}^g(\Sigma_g \setminus z), \mathcal{A}(\Sigma_g, z))$ -bimodule, where $\mathcal{A}(\Sigma_g, z)$ is the bordered Heegaard Floer algebra. Conjecture: this bimodule induces a quasi-equivalence of module categories under which the two TQFTs coincide.

- Traditional proposal: attach to Σ_g the Fukaya category $\mathfrak{F}(\operatorname{Sym}^{g+k}(\Sigma_g))$.
- To get a reasonable invariant for the 3-ball, take k = 0.
- We're working on implementing the (2+1)-dimensional aspects of this proposal.
- We use a symplectic (Heegaard Floer) model involving $\operatorname{Sym}^g(\Sigma_g \setminus z)$. No gauge theory.
- Auroux has found a $(\mathcal{F} \operatorname{Sym}^g(\Sigma_g \setminus z), \mathcal{A}(\Sigma_g, z))$ -bimodule, where $\mathcal{A}(\Sigma_g, z)$ is the bordered Heegaard Floer algebra. Conjecture: this bimodule induces a quasi-equivalence of module categories under which the two TQFTs coincide.

- Traditional proposal: attach to Σ_g the Fukaya category $\mathfrak{F}(\operatorname{Sym}^{g+k}(\Sigma_g))$.
- To get a reasonable invariant for the 3-ball, take k = 0.
- We're working on implementing the (2+1)-dimensional aspects of this proposal.
- We use a symplectic (Heegaard Floer) model involving $\operatorname{Sym}^g(\Sigma_g \setminus z)$. No gauge theory.
- Auroux has found a $(\mathcal{F} \operatorname{Sym}^g(\Sigma_g \setminus z), \mathcal{A}(\Sigma_g, z))$ -bimodule, where $\mathcal{A}(\Sigma_g, z)$ is the bordered Heegaard Floer algebra. Conjecture: this bimodule induces a quasi-equivalence of module categories under which the two TQFTs coincide.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

- Balanced Fukaya A_{∞} -categories (technology at the level of SEIDEL's book)
- Morse functions with indefinite critical points
- Sequences of Lagrangian correspondences associated with those Morse functions
- Analysis of geometric effect of composition of correspondences (low-tech but takes much of the work)
- Quilted Floer theory: MA'U-WEHRHEIM-WOODWARD A_{∞} -bimodules from correspondences
- Wehrheim-Woodward composition law.

A (2+1+1)-dimensional TQFT is a 2-functor from a cobordism 2-category of 2-, 3- and 4-manifolds to some target 2-category. Our target 2-category \mathbf{A}_{∞} :

- Objects are A_{∞} -categories \mathcal{A} (small, coh.-unital, mod 2 graded, linear over a base field \mathbb{K}).
- The (K-linear) category of 1-morphisms A → B is the cohomology category H⁰(A bimod B) of the dg category A bimod B of (A, B)-bimodules.
- Composition

$$H^0(\mathbb{B} \text{ bimod } \mathbb{C}) \otimes H^0(\mathbb{A} \text{ bimod } \mathbb{B}) \to H^0(\mathbb{A} \text{ bimod } \mathbb{C})$$

A (2+1+1)-dimensional TQFT is a 2-functor from a cobordism 2-category of 2-, 3- and 4-manifolds to some target 2-category. Our target 2-category \mathbf{A}_{∞} :

- Objects are A_{∞} -categories \mathcal{A} (small, coh.-unital, mod 2 graded, linear over a base field \mathbb{K}).
- The (K-linear) category of 1-morphisms A → B is the cohomology category H⁰(A bimod B) of the dg category A bimod B of (A, B)-bimodules.
- Composition

$$H^0(\mathbb{B} \ bimod \, \mathbb{C}) \otimes H^0(\mathbb{A} \ bimod \, \mathbb{B}) \to H^0(\mathbb{A} \ bimod \, \mathbb{C})$$

A (2+1+1)-dimensional TQFT is a 2-functor from a cobordism 2-category of 2-, 3- and 4-manifolds to some target 2-category. Our target 2-category \mathbf{A}_{∞} :

- Objects are A_{∞} -categories \mathcal{A} (small, coh.-unital, mod 2 graded, linear over a base field \mathbb{K}).
- The (K-linear) category of 1-morphisms A → B is the cohomology category H⁰(A bimod B) of the dg category A bimod B of (A, B)-bimodules.
- Composition

$$H^0(\mathbb{B}\; bimod\; \mathbb{C})\otimes H^0(\mathbb{A}\; bimod\; \mathbb{B})\to H^0(\mathbb{A}\; bimod\; \mathbb{C})$$

A (2+1+1)-dimensional TQFT is a 2-functor from a cobordism 2-category of 2-, 3- and 4-manifolds to some target 2-category. Our target 2-category \mathbf{A}_{∞} :

- Objects are A_{∞} -categories \mathcal{A} (small, coh.-unital, mod 2 graded, linear over a base field \mathbb{K}).
- The (K-linear) category of 1-morphisms A → B is the cohomology category H⁰(A bimod B) of the dg category A bimod B of (A, B)-bimodules.
- Composition

$$H^0(\mathbb{B} \ bimod \, \mathfrak{C}) \otimes H^0(\mathcal{A} \ bimod \, \mathfrak{B}) \to H^0(\mathcal{A} \ bimod \, \mathfrak{C})$$

The cobordism category

Ideally, our TQFT would be a 2-functor

$$Z \colon \mathsf{Cob}_{2+1+1} \to \mathsf{A}_{\infty}$$

defined on the 2-category whose objects are closed, oriented surfaces S, and whose category of 1-morphisms $S_0 \to S_1$ is the category of closed, oriented cobordisms $S_0 \leadsto S_1$.

Realistically, we construct a 2-category Cob⁺ and a diagram

$$\begin{array}{c}
\mathsf{Cob}^{+} \xrightarrow{Z} \mathsf{A}_{\infty} \\
\downarrow U \\
\mathsf{Cob}_{2+1+1}
\end{array}$$

The object $Z(\tilde{S})$ depends only on $S=U(\tilde{S})$, up to coherent q.-iso. The 1-morphism $Z(\tilde{Y})$ depends only on $Y=U(\tilde{Y})$ up to q.-iso.

The cobordism category

Ideally, our TQFT would be a 2-functor

$$Z \colon \mathbf{Cob}_{2+1+1} \to \mathbf{A}_{\infty}$$

defined on the 2-category whose objects are closed, oriented surfaces S, and whose category of 1-morphisms $S_0 \rightarrow S_1$ is the category of closed, oriented cobordisms $S_0 \rightsquigarrow S_1$.

Realistically, we construct a 2-category Cob⁺ and a diagram

$$\begin{array}{c}
\mathbf{Cob}^{+} \xrightarrow{Z} \mathbf{A}_{\infty} \\
\downarrow U \\
\mathbf{Cob}_{2+1+1}
\end{array}$$

The object $Z(\tilde{S})$ depends only on $S=U(\tilde{S})$, up to coherent q.-iso. The 1-morphism $Z(\tilde{Y})$ depends only on $Y=U(\tilde{Y})$ up to q.-iso.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (LEKILI-P.), to 1st approx:
 - ullet Objects are closed, connected surfaces S with basepoint z.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (LEKILI-P.), to 1st approx:
 - Objects are closed, connected surfaces S with basepoint z.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (LEKILI-P.), to 1st approx:
 - ullet Objects are closed, connected surfaces S with basepoint z.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (Lekili-P.), to 1st approx:
 - Objects are closed, connected surfaces S with basepoint z.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (Lekili-P.), to 1st approx:
 - Objects are closed, connected surfaces *S* with basepoint *z*.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

- Bordered Heegaard theory (LIPSHITZ-OZSVÁTH-THURSTON), to 0th approx:
 - Objects are closed oriented surfaces with self-indexing Morse functions.
 - 1-morphisms are 3-manifolds equipped with s.-i. Morse functions extending those on the boundary.
- Quilted Heegaard theory (Lekili-P.), to 1st approx:
 - ullet Objects are closed, connected surfaces S with basepoint z.
 - 1-morphisms $(S_0, z_0) \rightarrow (S_1, z_1)$ are compact, oriented 3-manifolds Y bounding $\bar{S}_0 \coprod S_1$ with a section z_t of f running from z_0 to z_1 and an *indefinite Morse function* f: critical points of index 1 or 2, connected fibres, minimum fibre S_0 , maximum fibre S_1 , injective on critical set.

Invariants for based surfaces

- If (S,z) is an oriented surface with basepoint, we will assign to it an A_{∞} -category $\mathcal{Z}(S,z)$, 'the' Fukaya category of $\operatorname{Sym}^g(S\setminus\{z\})$.
- This definite article is misleading. We need to specify a symplectic structure and a balancing form. Then, after choosing a gigantic collection of perturbation data, we can form the balanced Fukaya category.
- Since additional choices (from highly connected spaces) are involved, the objects of Cob⁺ involve more data than I specified previously.

Invariants for based surfaces

- If (S,z) is an oriented surface with basepoint, we will assign to it an A_{∞} -category $\mathbb{Z}(S,z)$, 'the' Fukaya category of $\operatorname{Sym}^g(S\setminus\{z\})$.
- This definite article is misleading. We need to specify a symplectic structure and a balancing form. Then, after choosing a gigantic collection of perturbation data, we can form the balanced Fukaya category.
- Since additional choices (from highly connected spaces) are involved, the objects of Cob⁺ involve more data than I specified previously.

Invariants for based surfaces

- If (S,z) is an oriented surface with basepoint, we will assign to it an A_{∞} -category $\mathbb{Z}(S,z)$, 'the' Fukaya category of $\operatorname{Sym}^g(S\setminus\{z\})$.
- This definite article is misleading. We need to specify a symplectic structure and a balancing form. Then, after choosing a gigantic collection of perturbation data, we can form the balanced Fukaya category.
- Since additional choices (from highly connected spaces) are involved, the objects of Cob⁺ involve more data than I specified previously.

Symmetric products symplectically

- We need to say how to make $Sym^g(S)$ symplectic. There are two determining factors in our approach:
 - Our 3-manifold invariants are based on Lagrangian correspondences. We construct these for Kähler forms in specific cohomology classes.
 - In $M = \operatorname{Sym}^g(S \setminus z)$, we want a Fukaya category defined over any ground field (no Novikov rings).
- We work with Kähler forms that arise as the curvature of a *chosen* connection in a certain line bundle $\mathcal{E} \to \operatorname{Sym}^g(S)$. One has

$$\mathcal{E}|_{M}\cong \mathcal{K}_{M}.$$

• The symplectic structure on *M* is *balanced*, i.e., given as the curvature of a connection in the canonical line bundle.

Symmetric products symplectically

- We need to say how to make $Sym^g(S)$ symplectic. There are two determining factors in our approach:
 - Our 3-manifold invariants are based on Lagrangian correspondences. We construct these for Kähler forms in specific cohomology classes.
 - In $M = \operatorname{Sym}^g(S \setminus z)$, we want a Fukaya category defined over any ground field (no Novikov rings).
- We work with Kähler forms that arise as the curvature of a *chosen* connection in a certain line bundle $\mathcal{E} \to \operatorname{Sym}^g(S)$. One has

$$\mathcal{E}|_{M}\cong \mathcal{K}_{M}.$$

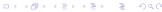
• The symplectic structure on *M* is *balanced*, i.e., given as the curvature of a connection in the canonical line bundle.

Symmetric products symplectically

- We need to say how to make $Sym^g(S)$ symplectic. There are two determining factors in our approach:
 - Our 3-manifold invariants are based on Lagrangian correspondences. We construct these for Kähler forms in specific cohomology classes.
 - In $M = \operatorname{Sym}^g(S \setminus z)$, we want a Fukaya category defined over any ground field (no Novikov rings).
- We work with Kähler forms that arise as the curvature of a *chosen* connection in a certain line bundle $\mathcal{E} \to \operatorname{Sym}^g(S)$. One has

$$\mathcal{E}|_{M}\cong \mathcal{K}_{M}.$$

• The symplectic structure on *M* is *balanced*, i.e., given as the curvature of a connection in the canonical line bundle.



Symmetric products symplectically

- We need to say how to make $Sym^g(S)$ symplectic. There are two determining factors in our approach:
 - Our 3-manifold invariants are based on Lagrangian correspondences. We construct these for Kähler forms in specific cohomology classes.
 - In $M = \operatorname{Sym}^g(S \setminus z)$, we want a Fukaya category defined over any ground field (no Novikov rings).
- We work with Kähler forms that arise as the curvature of a *chosen* connection in a certain line bundle $\mathcal{E} \to \operatorname{Sym}^g(S)$. One has

$$\mathcal{E}|_{M}\cong \mathfrak{K}_{M}.$$

• The symplectic structure on *M* is *balanced*, i.e., given as the curvature of a connection in the canonical line bundle.

Symmetric products symplectically

- We need to say how to make $Sym^g(S)$ symplectic. There are two determining factors in our approach:
 - Our 3-manifold invariants are based on Lagrangian correspondences. We construct these for Kähler forms in specific cohomology classes.
 - In $M = \operatorname{Sym}^g(S \setminus z)$, we want a Fukaya category defined over any ground field (no Novikov rings).
- We work with Kähler forms that arise as the curvature of a *chosen* connection in a certain line bundle $\mathcal{E} \to \operatorname{Sym}^g(S)$. One has

$$\mathcal{E}|_{M}\cong \mathcal{K}_{M}$$
.

• The symplectic structure on *M* is *balanced*, i.e., given as the curvature of a connection in the canonical line bundle.

Balanced Lagrangians

• Given a Lagrangian submanifold $L \subset M$, let $\sigma \colon L \to S\mathcal{K}|_L$ be a complexified orientation form on L. Then the 1-form

$$\sigma^*(-2\pi i\alpha) \in \Omega^1(L)$$

is closed (its derivative is $\omega|_L=0$). Say L is balanced if this form is exact.

• Deformations through balanced Lagrangians are Hamiltonian.

Balanced Lagrangians

• Given a Lagrangian submanifold $L \subset M$, let $\sigma \colon L \to S\mathcal{K}|_L$ be a complexified orientation form on L. Then the 1-form

$$\sigma^*(-2\pi i\alpha) \in \Omega^1(L)$$

is closed (its derivative is $\omega|_L=0$). Say L is balanced if this form is exact.

• Deformations through balanced Lagrangians are Hamiltonian.

Balanced Lagrangians

• Given a Lagrangian submanifold $L \subset M$, let $\sigma \colon L \to S\mathcal{K}|_L$ be a complexified orientation form on L. Then the 1-form

$$\sigma^*(-2\pi i\alpha)\in\Omega^1(L)$$

is closed (its derivative is $\omega|_L=0$). Say L is balanced if this form is exact.

• Deformations through balanced Lagrangians are Hamiltonian.

- Notes for Floer-theorists: M is aspherical and has the spherically monotone compactification $Sym^g(S)$.
- Oriented, balanced Lagrangians are the objects in the balanced Fukaya category $\mathfrak{F}(M)$, which is set up in the same way as the Fukaya category of an exact symplectic manifold.
- Balancing implies that $CF^*(L_0, L_1)$ and the composition maps are defined over the base field \mathbb{K} : there are no periods. Imprecise conjecture: admissible pairs of Heegaard tori can be understood as balanced pairs of Lagrangians.
- We define $\mathcal{Z}(S,z) = \mathcal{F}(M)$.

- Notes for Floer-theorists: M is aspherical and has the spherically monotone compactification $Sym^g(S)$.
- Oriented, balanced Lagrangians are the objects in the balanced Fukaya category $\mathcal{F}(M)$, which is set up in the same way as the Fukaya category of an exact symplectic manifold.
- Balancing implies that $CF^*(L_0, L_1)$ and the composition maps are defined over the base field \mathbb{K} : there are no periods. Imprecise conjecture: admissible pairs of Heegaard tori can be understood as balanced pairs of Lagrangians.
- We define $\mathcal{Z}(S,z) = \mathcal{F}(M)$.

- Notes for Floer-theorists: M is aspherical and has the spherically monotone compactification $\operatorname{Sym}^g(S)$.
- Oriented, balanced Lagrangians are the objects in the balanced Fukaya category $\mathfrak{F}(M)$, which is set up in the same way as the Fukaya category of an exact symplectic manifold.
- Balancing implies that $CF^*(L_0, L_1)$ and the composition maps are defined over the base field \mathbb{K} : there are no periods. Imprecise conjecture: admissible pairs of Heegaard tori can be understood as balanced pairs of Lagrangians.
- We define $\mathcal{Z}(S,z) = \mathcal{F}(M)$.

- Notes for Floer-theorists: M is aspherical and has the spherically monotone compactification $\operatorname{Sym}^g(S)$.
- Oriented, balanced Lagrangians are the objects in the balanced Fukaya category $\mathfrak{F}(M)$, which is set up in the same way as the Fukaya category of an exact symplectic manifold.
- Balancing implies that $CF^*(L_0, L_1)$ and the composition maps are defined over the base field \mathbb{K} : there are no periods. Imprecise conjecture: admissible pairs of Heegaard tori can be understood as balanced pairs of Lagrangians.
- We define $\mathcal{Z}(S,z) = \mathcal{F}(M)$.

Isn't that an unknowable invariant?

- I expect we shall never know all the objects in $\mathcal{F}(M)$.
- Auroux observed that, by Seidel's generation theorem, the triangulated envelope $Tw \mathcal{F}(M)$ embeds into a directed A_{∞} -category with $\binom{2g}{g}$ objects (non-compact Lagrangian thimbles).
- Conjecture: the split closure Π Tw f(M) is split-generated by a certain collection of (^{2g}_g) Heegaard tori.
 (This should be provable via a 'Morse–Bott' generalisation of Seidel's generation theorem.)

Isn't that an unknowable invariant?

- I expect we shall never know all the objects in $\mathcal{F}(M)$.
- Auroux observed that, by Seidel's generation theorem, the triangulated envelope $Tw \mathcal{F}(M)$ embeds into a directed A_{∞} -category with $\binom{2g}{g}$ objects (non-compact Lagrangian thimbles).
- Conjecture: the split closure Π Tw 𝒯(M) is split-generated by a certain collection of (^{2g}_g) Heegaard tori.
 (This should be provable via a 'Morse–Bott' generalisation of Seidel's generation theorem.)

Isn't that an unknowable invariant?

- I expect we shall never know all the objects in $\mathcal{F}(M)$.
- AUROUX observed that, by SEIDEL's generation theorem, the triangulated envelope $Tw \mathcal{F}(M)$ embeds into a directed A_{∞} -category with $\binom{2g}{g}$ objects (non-compact Lagrangian thimbles).
- Conjecture: the split closure Π Tw 𝒯(M) is split-generated by a certain collection of (^{2g}_g) Heegaard tori.
 (This should be provable via a 'Morse–Bott' generalisation of Seidel's generation theorem.)

Elementary cobordisms

- To an elementary cobordism U from a genus g surface S_0 to a genus g+1 surface S_1 , we can assign to U a Lagrangian correspondence V_U from $\operatorname{Sym}^g(S_0)$ to $\operatorname{Sym}^{g+1}(S_1)$. It embeds into $\operatorname{Sym}^{g+1}(S_1)$ and is a trivial circle-bundle over $\operatorname{Sym}^g(S_0)$.
- The construction is from my thesis. It uses algebro-geometric methods (degenerations of symmetric products).
- Conjecture: up to isotopy, V_U is the locus of pairs of solutions to the abelian vortex equations over S_0 , S_1 which are common asymptotic limits of solutions to the (perturbed) SW equations over $\hat{U} = U \cup (\text{cyl. ends})$.

Elementary cobordisms

- To an elementary cobordism U from a genus g surface S_0 to a genus g+1 surface S_1 , we can assign to U a Lagrangian correspondence V_U from $\operatorname{Sym}^g(S_0)$ to $\operatorname{Sym}^{g+1}(S_1)$. It embeds into $\operatorname{Sym}^{g+1}(S_1)$ and is a trivial circle-bundle over $\operatorname{Sym}^g(S_0)$.
- The construction is from my thesis. It uses algebro-geometric methods (degenerations of symmetric products).
- Conjecture: up to isotopy, V_U is the locus of pairs of solutions to the abelian vortex equations over S_0 , S_1 which are common asymptotic limits of solutions to the (perturbed) SW equations over $\hat{U} = U \cup (\text{cyl. ends})$.

Elementary cobordisms

- To an elementary cobordism U from a genus g surface S_0 to a genus g+1 surface S_1 , we can assign to U a Lagrangian correspondence V_U from $\operatorname{Sym}^g(S_0)$ to $\operatorname{Sym}^{g+1}(S_1)$. It embeds into $\operatorname{Sym}^g(S_1)$ and is a trivial circle-bundle over $\operatorname{Sym}^g(S_0)$.
- The construction is from my thesis. It uses algebro-geometric methods (degenerations of symmetric products).
- Conjecture: up to isotopy, V_U is the locus of pairs of solutions to the abelian vortex equations over S_0 , S_1 which are common asymptotic limits of solutions to the (perturbed) SW equations over $\hat{U} = U \cup (\text{cyl. ends})$.

Indefinite Morse functions

A choice of indefinite Morse function f on a cobordism
 Y: S → S' breaks it into elementary cobordisms

$$S = S_0 \stackrel{U_0}{\leadsto} S_1 \stackrel{U_1}{\leadsto} S_2 \cdots \stackrel{U_{n-1}}{\leadsto} S_n = S'$$

where
$$g(S_{i+1}) = g(S_i) \pm 1$$
.

• We can attach to (Y, f) a chain $V_{(Y, f)}$ of Lagrangian correspondences

where $V_{i,i+1}$ is V_{U_i} or $V_{\bar{U}_i}$.

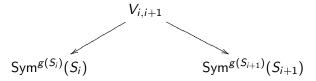
Indefinite Morse functions

A choice of indefinite Morse function f on a cobordism
 Y: S → S' breaks it into elementary cobordisms

$$S = S_0 \stackrel{U_0}{\leadsto} S_1 \stackrel{U_1}{\leadsto} S_2 \cdots \stackrel{U_{n-1}}{\leadsto} S_n = S'$$

where $g(S_{i+1}) = g(S_i) \pm 1$.

• We can attach to (Y, f) a chain $V_{(Y, f)}$ of Lagrangian correspondences

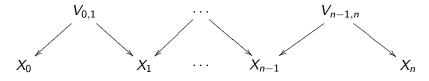


where $V_{i,i+1}$ is V_{U_i} or $V_{\bar{U}_i}$.

Indefinite Morse functions, contd.

Let
$$X_i = \operatorname{Sym}^{g(S_i)}(S_i)$$
.

ullet Up to symplectic isotopies of the factors, the chain $V_{Y,f}$ given by



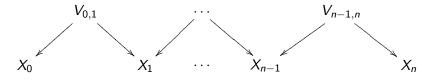
is an invariant of (Y, f). By making the $V_{i,i+1}$ balanced, we can improve this to Hamiltonian isotopy.

• We prove that the Wehrheim-Woodward equivalence class of $V_{Y,f}$ independent of f.

Indefinite Morse functions, contd.

Let
$$X_i = \operatorname{Sym}^{g(S_i)}(S_i)$$
.

ullet Up to symplectic isotopies of the factors, the chain $V_{Y,f}$ given by

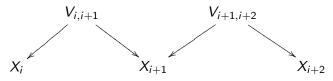


is an invariant of (Y, f). By making the $V_{i,i+1}$ balanced, we can improve this to Hamiltonian isotopy.

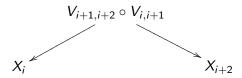
• We prove that the Wehrheim-Woodward equivalence class of $V_{Y,f}$ independent of f.

Equivalent sequences of correspondences

A pair of correspondences



is equivalent to their composite

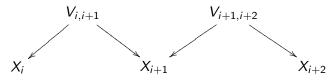


provided that this is transverse and embedded.

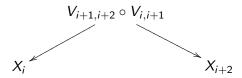
- A diagonal Δ_{X_i} can be inserted.
- Hamiltonian isotopies can be applied to X_i .

Equivalent sequences of correspondences

A pair of correspondences



is equivalent to their composite

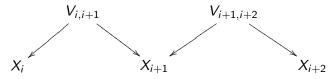


provided that this is transverse and embedded.

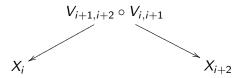
- A diagonal Δ_{X_i} can be inserted.
- Hamiltonian isotopies can be applied to X_i .

Equivalent sequences of correspondences

A pair of correspondences



is equivalent to their composite



provided that this is transverse and embedded.

- A diagonal Δ_{X_i} can be inserted.
- Hamiltonian isotopies can be applied to X_i .

Handle cancellation

- Suppose α and β are curves in S_1 meeting transversely at a point. Suppose we have elementary cobordisms $U_0 \colon S_0 \leadsto S_1$ and $U_1 \colon S_1 \leadsto S_2$ so that α collapses in U_0 , β in U_1 .
- Then the composite $V_{01} \circ V_{12}$ is Hamiltonian isotopic to the diagonal in X_0 .
- This is obvious when $g(S_1) = 1$ (and $g(S_0) = g(S_2) = 0$). It's also then true for the correspondences from $\operatorname{Sym}^n(S_0)$ to $\operatorname{Sym}^{n+1}(S_1)$ to $\operatorname{Sym}^n(S_2)$ obtained by regarding these as symplectic projective vector bundles over $\operatorname{Jac}(S_i)$. We use this to prove it in arbitrary genus (by splitting off a torus summand in S_1).

Handle cancellation

- Suppose α and β are curves in S_1 meeting transversely at a point. Suppose we have elementary cobordisms $U_0 \colon S_0 \leadsto S_1$ and $U_1 \colon S_1 \leadsto S_2$ so that α collapses in U_0 , β in U_1 .
- Then the composite $V_{01} \circ V_{12}$ is Hamiltonian isotopic to the diagonal in X_0 .
- This is obvious when $g(S_1) = 1$ (and $g(S_0) = g(S_2) = 0$). It's also then true for the correspondences from $\operatorname{Sym}^n(S_0)$ to $\operatorname{Sym}^{n+1}(S_1)$ to $\operatorname{Sym}^n(S_2)$ obtained by regarding these as symplectic projective vector bundles over $\operatorname{Jac}(S_i)$. We use this to prove it in arbitrary genus (by splitting off a torus summand in S_1).

Handle cancellation

- Suppose α and β are curves in S_1 meeting transversely at a point. Suppose we have elementary cobordisms $U_0 \colon S_0 \leadsto S_1$ and $U_1 \colon S_1 \leadsto S_2$ so that α collapses in U_0 , β in U_1 .
- Then the composite $V_{01} \circ V_{12}$ is Hamiltonian isotopic to the diagonal in X_0 .
- This is obvious when $g(S_1) = 1$ (and $g(S_0) = g(S_2) = 0$). It's also then true for the correspondences from $\operatorname{Sym}^n(S_0)$ to $\operatorname{Sym}^{n+1}(S_1)$ to $\operatorname{Sym}^n(S_2)$ obtained by regarding these as symplectic projective vector bundles over $\operatorname{Jac}(S_i)$. We use this to prove it in arbitrary genus (by splitting off a torus summand in S_1).

Quilted Floer cohomology

• The bimodule $\mathcal{Z}(Y,f,z_t)$ for a 3-manifold assigns to a pair of Lagrangians $L_i \in Ob \mathcal{Z}(S,z) \times Ob \mathcal{Z}(S',z')$ (i=0,1) the quilted Floer cochains

$$QC^*(L_0,V_{Y,f},L_1)$$

taken in the sequence of balanced manifolds M_i defined by the given path $z_t \subset Y$.

- Ma'u and Wehrheim-Woodward: this procedure defines an A_{∞} -bimodule. Concatenating sequences (as in composition of cobordisms) gives tensor product of bimodules.
- Wehrheim-Woodward composition theorem: the bimodule depends only on the equivalence class of the sequence. Hence it's an invariant of Y.

Quilted Floer cohomology

• The bimodule $\mathcal{Z}(Y,f,z_t)$ for a 3-manifold assigns to a pair of Lagrangians $L_i \in Ob \mathcal{Z}(S,z) \times Ob \mathcal{Z}(S',z')$ (i=0,1) the quilted Floer cochains

$$QC^*(L_0,V_{Y,f},L_1)$$

taken in the sequence of balanced manifolds M_i defined by the given path $z_t \subset Y$.

- Ma'u and Wehrheim–Woodward: this procedure defines an A_{∞} -bimodule. Concatenating sequences (as in composition of cobordisms) gives tensor product of bimodules.
- Wehrheim-Woodward composition theorem: the bimodule depends only on the equivalence class of the sequence. Hence it's an invariant of Y.

Quilted Floer cohomology

• The bimodule $\mathcal{Z}(Y,f,z_t)$ for a 3-manifold assigns to a pair of Lagrangians $L_i \in Ob \mathcal{Z}(S,z) \times Ob \mathcal{Z}(S',z')$ (i=0,1) the quilted Floer cochains

$$QC^*(L_0, V_{Y,f}, L_1)$$

taken in the sequence of balanced manifolds M_i defined by the given path $z_t \subset Y$.

- Ma'u and Wehrheim–Woodward: this procedure defines an A_{∞} -bimodule. Concatenating sequences (as in composition of cobordisms) gives tensor product of bimodules.
- Wehrheim-Woodward composition theorem: the bimodule depends only on the equivalence class of the sequence. Hence it's an invariant of Y.

Closed 3-manifolds

- We have $\mathcal{Z}(S^2,z)=*$, the trivial A_{∞} -category whose only object * has $hom(*,*)=\mathbb{K}$. A (*,*)-bimodule is just a chain complex.
- The invariant of a (twice punctured) closed 3-manifold Y is a chain complex $QC^*(Y,f)$. Up to quasi-isomorphism, it's independent of f. Taking f self-indexing, we have $QC^*(Y,f) \simeq \widehat{CF}^*(Y,f)$, the Heegaard Floer chains.
- Passing to cohomology, $QH^*(Y) \cong \widehat{HF}^*(Y)$.

Closed 3-manifolds

- We have $\mathcal{Z}(S^2,z)=*$, the trivial A_{∞} -category whose only object * has $hom(*,*)=\mathbb{K}$. A (*,*)-bimodule is just a chain complex.
- The invariant of a (twice punctured) closed 3-manifold Y is a chain complex $QC^*(Y,f)$. Up to quasi-isomorphism, it's independent of f. Taking f self-indexing, we have $QC^*(Y,f) \simeq \widehat{CF}^*(Y,f)$, the Heegaard Floer chains.
- Passing to cohomology, $QH^*(Y) \cong \widehat{HF}^*(Y)$.

Closed 3-manifolds

- We have $\mathcal{Z}(S^2,z)=*$, the trivial A_{∞} -category whose only object * has $hom(*,*)=\mathbb{K}$. A (*,*)-bimodule is just a chain complex.
- The invariant of a (twice punctured) closed 3-manifold Y is a chain complex $QC^*(Y, f)$. Up to quasi-isomorphism, it's independent of f. Taking f self-indexing, we have $QC^*(Y, f) \simeq \widehat{CF}^*(Y, f)$, the Heegaard Floer chains.
- Passing to cohomology, $QH^*(Y) \cong \widehat{HF}^*(Y)$.

Folds and cusps

• The 2-morphisms (X, F, ζ) in our cobordism category are 4-manifolds with corners X, equipped with

$$F: X \rightarrow [a, b] \times [c, d]$$

and a section ζ of F. Here F should have connected fibres and only indefinite folds and cusps as singularities.

• $\mathcal Z$ should attach to (X,F,ζ) a version of the 'Lagrangian matching invariants' that I previously defined. (However, to get an interesting maps, we should enhance $\mathcal Z$ to the filtered Fukaya category of $\operatorname{Sym}^g(\Sigma)$, whose hom spaces are set up like CF^+ in Heegaard theory.)

Folds and cusps

• The 2-morphisms (X, F, ζ) in our cobordism category are 4-manifolds with corners X, equipped with

$$F: X \rightarrow [a, b] \times [c, d]$$

and a section ζ of F. Here F should have connected fibres and only indefinite folds and cusps as singularities.

• $\mathcal Z$ should attach to (X,F,ζ) a version of the 'Lagrangian matching invariants' that I previously defined. (However, to get an interesting maps, we should enhance $\mathcal Z$ to the filtered Fukaya category of $\mathsf{Sym}^g(\Sigma)$, whose hom spaces are set up like CF^+ in Heegaard theory.)

Manufacturing an algebraic model

- Another natural aim is to manufacture an algebraic model of the theory.
- Compare Khovanov's construction of an extended TQFT for tangles.
- Khovanov's raw material is the Frobenius algebra $H^*(S^2)$. Perhaps ours should be the A_{∞} -category $\mathcal{Z}(T^2, z)$.