Fibered 3-manifolds and the Floer homology of fibered Dehn twists

Tim Perutz (Cambridge)

Fibered 3- and 4-manifolds

I'll tell you about a fragment of an ongoing project to build and study a symplectic analogue of Seiberg-Witten theory in 3 and 4-dimensions in the presence of singular surface-fibrations, i.e.

- (i) 'Harmonic' S^1 -valued Morse functions on 3-manifolds.
- (ii) 'Broken fibrations' on 4-manifolds.

Study pseudo-holomorphic curves in associated fibrations by symmetric products, subject to Lagrangian boundary conditions.

Singular fibrations

A 'harmonic' Morse function on Y^3 is a function $Y^3 \to S^1$, each of whose critical points is non-degenerate of index 1 or 2.

Models:
$$(x_1, x_2, x_3) \mapsto \pm (x_1^2 + x_2^2 - x_3^2)$$
.

Say it's also injective on its critical set.

A broken fibration on X^4 is a map $\pi: X \to S$ onto a surface, injective on its critical set, with two types of critical points:

isolated:
$$(z_1, z_2) \mapsto z_1 z_2$$
, non-isolated: $(t, x_1, x_2, x_3) \mapsto (t, \pm (x_1^2 + x_2^2 - x_3^2))$.

There's a cobordism category in which the objects are 3-manifolds with harmonic Morse functions and the morphisms are 4-manifolds with broken fibrations.

Dehn twists

Today I will discuss Floer homology for 3-manifolds fibered over S^1 . I will focus on mapping tori of *reducible* surface-diffeomorphisms—in particular, right-handed Dehn twists.

Key points:

(i) Lefschetz fibrations play a lead role.

More surprisingly, our treatment of reducible diffeomorphisms also brings in broken fibrations.

(ii) For the Dehn twist, Floer homology will be expressed as a classical relative homology group.

There is enough structure here that one can start to contemplate arbitrary compositions of positive Dehn twists.

Note: this is work in progress.

Floer homology for symplectic automorphisms

This version of Floer homology attaches a Λ_R -module

$$HF_*(E,\Omega) = \mathsf{H}(CF_*(E,\Omega),\delta_J).$$

to every fiber bundle $E \to S^1$ equipped with a closed, fiberwise non-degenerate 2-form Ω .

We assume that the symplectic fibers are compact, 'weakly monotone' symplectic manifolds.

 Λ_R is the universal Novikov ring of the commutative ring R. We can take $R = \mathbb{Z}$.

It's invariant under $\Omega \leadsto \Omega + d\alpha$ where α vanishes on the fibers.

Defining Floer homology

 $CF_*(E,\Omega)$ is the free Λ_R -module on the set of horizontal sections of $E \to S^1$ (tangent to $\ker \Omega$).

The differentials are defined via finite-energy J-holomorphic sections of $\mathbb{R} \times E \to \mathbb{R} \times S^1$, where J is an \mathbb{R} -invariant almost complex structure sending $\frac{\partial}{\partial t}$ to a horizontal vector field.

Correspondence:

$$(E \to S^1, \Omega) \leftrightarrow (M, \omega, \mu)$$
 where $\mu \in Aut(M, \omega)$.

Fibered 3-manifolds

Consider a fibered 3-manifold $p: Y^3 \to S^1$ and a class $w \in H^2(Y; \mathbb{R})$ with w(fiber) > 0.

Choose a vertical complex structure j on Y. It makes $Y^{[n]} := \{(D,t) : t \in S^1, D \in \operatorname{Sym}^n(Y_t)\}$ a smooth manifold, fibered over S^1 . The fibers are complex manifolds.

Choose a closed 2-form $\Omega^{[n]}$ from the convex set of forms s.t.

- $\Omega^{[n]}$ is fiberwise-Kähler;
- \bullet $\Omega^{[n]}$ represents a certain cohomology class, determined by w via a 'mu-map'.

Define $HF_*(Y, p, n, w) := HF_*(Y^{[n]}, \Omega^{[n]}).$

This is a symplectic cousin of the monopole Floer homology

$$\bigoplus_{\langle c_1(\mathfrak{s}), [\Sigma] \rangle = 2(n+1-g)} HM_{\bullet}(Y, \mathfrak{s}; w).$$

When $Y = T_{\phi}$ for $\phi \in \text{Diff}(\Sigma, \text{area})$, write $HF_*(\phi, n)$ for $HF_*(Y, p, n, w)$.

When n > 1, there are almost no computations besides the identity map:

$$HF_*(\mathrm{id},n) \cong H^*(\mathrm{Sym}^n(\Sigma))$$

$$\cong \bigoplus_{i=0}^n \{0,2,\ldots,2i\} \Lambda^{n-i} H^1(\Sigma).$$

I'm working on machinery which will compute these groups for e.g. a right-handed Dehn twist.

The case n = 1, and many of the ideas, are due to Paul Seidel.

Floer homology for symmetric products of Dehn twists

Let $\gamma \subset \Sigma$ be an embedded circle. Fix n > 0.

Theorem. We can associate with γ a Hamiltonian isotopy-class of hypersurfaces $V_{\gamma} \subset \operatorname{Sym}^n(\Sigma)$ diffeomorphic to the total space of an S^1 -bundle over $\operatorname{Sym}^{n-1}(\Sigma_{\gamma})$, where Σ_{γ} is the surface obtained by surgery along γ .

 V_{γ} is obtained as a vanishing cycle for a degeneration of $\operatorname{Sym}^n(\Sigma)$. Its uniqueness follows from the observation of W. Ruan that deformations of fibered coisotropic submanifolds, like those of Lagrangians, are governed by a 'flux' class.

Conjecture:

Soon a theorem for restricted n?

Let τ_{γ} be the right-handed Dehn twist about γ . Then

$$HF_*(\tau_{\gamma}, n) \cong H_*(\operatorname{Sym}^n(\Sigma), V_{\gamma}; \Lambda_{\mathbb{Z}}).$$

When γ is non-separating, the S^1 -bundle is trivial, and $H_*(V_\gamma) \to H_*(\operatorname{Sym}^n(\Sigma))$ injective. Calculate that $H_*(\operatorname{Sym}^n(\Sigma), V_\gamma)$ is

$$\Lambda^n H^1(\Sigma_{\gamma}) \oplus \sum_{i=1}^n \{1, 2, \dots, 2i\} \Lambda^{n-i} H^1(\Sigma_{\gamma})$$

This is consistent with Hutchings & Sullivan's periodic Floer homology calculation.

Outline of the proof

- (1) τ_{γ} acts on Symⁿ(Σ) as the symplectic monodromy of a 'holomorphic Morse-Bott' family over the disc.
- (2) The monodromy is Hamiltonian-isotopic to a fibered Dehn twist about a vanishing cycle $V_{\gamma} \subset \operatorname{Sym}^{n}(\Sigma)$ which is S^{1} -fibered over $\operatorname{Sym}^{n-1}(\Sigma_{\gamma})$.
- (3) A long exact sequence describes the effect of fibered Dehn twists on Floer homology.

LES for fibered Dehn twists

Let V be a submanifold of (M, ω_M) which is also the total space of an orientable S^k -bundle $\rho\colon V\to N$ over a symplectic manifold (N,ω_N) such that $\omega_M|_V=\rho^*\omega_N$.

Conjecture (Seidel): There's a long exact sequence

$$HF_*^{M \times N_-}(\widehat{V}, (\mu \times 1)\widehat{V}) \longrightarrow HF_*(\mu) \longrightarrow HF_*(\mu \circ \tau_V)$$

where $\hat{V} = graph(\rho) \subset M \times N_{-}$.

When $M = \operatorname{Sym}^n(\Sigma)$ and $V = V_{\gamma}$, this is a translation of the surgery sequence in monopole Floer homology.

Gysin sequence

Suppose $\mu \in \operatorname{Aut}(M, \omega_M)$ preserves V and covers $\nu \in \operatorname{Aut}(N, \omega_N)$. Then there's an isomorphism

$$HF_*^{M \times N_-}(\widehat{V}, (\mu \times 1)\widehat{V}) \cong \mathsf{Cone}(e)$$

where

$$e = e(V) \cap : HF_*(\nu) \to HF_{*-k-1}(\nu)$$

is quantum cap product by the Euler class $e(V) \in H^{k+1}(N)$.

This is a symplectic cousin of a formula for 1-handle addition in monopole Floer homology.

Reducible surface-diffeomorphisms

Suppose $\phi \in \text{Diff}^+(\Sigma)$ preserves a circle γ and induces $\phi_{\gamma} \in \text{Diff}^+(\Sigma_{\gamma})$. We can then combine the fibered Dehn twist (surgery) sequence with the Gysin (1-handle) sequence.

This results in an exact triangle

$$HF_*(\phi,n)$$
 $HF_*(\phi\circ au_\gamma,n)$ $HF_*(\phi\circ au_\gamma,n)$

relating elementary Lefschetz fibrations with elementary broken fibrations.