Research Methods in Mathematics Lecture 8: The intermediate value theorem

T. PERUTZ

The intermediate value theorem

Theorem 1 (Intermediate value theorem) Suppose that f is a continuous function on the interval [a,b]. Suppose that f(a) < 0 and f(b) > 0. Then there is some x in (a,b) with f(x) = 0.

This statement shows that our definition of the real numbers is on the right track. If we work not with real numbers but with the rational numbers \mathbb{Q} , the intermediate value theorem fails: Define a function f by setting f(x)=-1 if $x^2<2$, and f(x)=1 if $x^2>2$. This is a continuous function on \mathbb{Q} (after all, where could it be discontinuous—only at $\pm\sqrt{2}$, but those are not points in the domain). It gets from -1 to 1 without ever taking the value 0.

Proof Let $A = \{t \in [a,b] : f(t) \le 0\}$. Then A is non-empty (because $a \in A$). It is bounded above (by b). So, by the completeness axiom, A has a supremum $x = \sup A$. I claim that f(x) = 0.

Let y = f(x). To prove the claim, we must rule out two possibilities: (i) that y < 0, and (ii) that y > 0. Suppose first that y < 0. Let $\epsilon = -y/2$. Then there exists $\delta > 0$ such that, when $0 < |x' - x| < \delta$, we have $|f(x') - f(x)| < \epsilon$. Let $x' = x + \delta/2$. Then $0 < |x' - x| < \delta$, so $|f(x') - y| < \epsilon$, and hence $f(x') < y + \epsilon = y/2 < 0$. But this says that $x' \in A$, contradicting the fact that it is bigger than the supposed upper bound x.

Now suppose that y>0. Let $\epsilon=y/2$. Then there exists $\delta>0$ such that, when $0<|x'-x|<\delta$, we have $|f(x')-f(x)|<\epsilon$. Then for any $x'\in[x-\delta,x]$, we will have $|f(x')-y|<\epsilon$, and hence $f(x')>y-\epsilon=y/2>0$. Hence $x-\delta/2$ is an upper bound for A, contradicting the fact that x is the least upper bound.

This leaves only the possibility that y = 0, and hence finishes the proof.

Corollary 2 Every positive real number a has a real square root.

T. Perutz

Proof

Corollary 3 Let p be a polynomial of odd degree and leading coefficient 1, say

$$p(x) = x^{2n+1} + a_{2n}x^{2n} + \dots + a_1x + a_0.$$

Then there exists a real number x with p(x) = 0.

Proof I claim that for x large enough, p(x) > 0. Indeed, suppose x > 1. Then

$$|a_{2n}x^{2n} + \dots + a_1x + a_0| \le |a_{2n}|x^{2n} + |a_{2n-1}|x^{2n-1} + \dots + |a_0|$$

$$\le |a_{2n}|x^{2n} + |a_{2n-1}|x^{2n} + \dots + |a_0|x^{2n}$$

$$= |a_{2n} + |a_{2n-1}| + \dots + |a_0||x^{2n}.$$

Put $C = 1 + |a_{2n} + |a_{2n-1}| + \cdots + |a_0||$. Then, when x > C,

$$p(x) \ge x^{2n+1} - |a_{2n}x^{2n} + \dots + a_1x + a_0| \ge x^{2n+1} - Cx^2n > x^{2n+1} - x^{2n+1} = 0.$$

This proves the claim. Similarly (!?), when x < -C, we have p(x) < 0.

Sums and products of continuous functions are continuous. Therefore (by an inductive argument) p is continuous.

So, by the IVT, p has a zero somewhere in [-C, C].

Spivak reference: Chapter 6, Chapters 7–8 (only one of the 'hard theorems').