
Two lectures about the Seiberg–Witten equations
on symplectic 4-manifolds

TIM PERUTZ

1 Vortices, monopoles and Seiberg–Witten invariants

As a general introduction to Seiberg–Witten theory, I suggest [Mor]. For a rapid but
insightful survey, I recommend [Don], which I have drawn on in these lectures. I will
not cover the 3-dimensional aspects of Seiberg–Witten theory—the story of monopole
Floer homology—nor the relation of the theory to contact 1-forms and their periodic
Reeb orbits. For these aspects, I recommend Hutchings’s article [Hut].

1.1 Applications of the SW equations to symplectic topology

A special feature of the 4-dimensional Seiberg–Witten equations, one which the closely-
related instanton equations do not possess, is that they behave in a special way in the
presence of a symplectic form. This feature has been systematically exploited in the
work of Taubes, which plays a role in many striking results by a number of authors.

Let (X, ω) be a closed symplectic 4-manifold, and KX its canonical class. The proofs
of the following results depend on the fact that the Seiberg–Witten equations have a
canonical solution on X—the unique solution in the canonical Spinc -structure.

• (Taubes [T94].) X is not diffeomorphic to the connected sum of two oriented
4-manifolds with b+ > 0.

• (Kronheimer–Mrowka [KM94]; Morgan–Szabó–Taubes [MST]; Ozsváth–Szabó
[OS].) Any embedded symplectic surface in X minimizes genus within its ho-
mology class.

• (Kronheimer [Kro].) For each integer k ≥ 0, there is a symplectic 4-manifold
(Xk, ωk) such that the homotopy group π2k+1(diff(Xk)/aut(Xk, ωk)) is non-
vanishing.

• (Morgan–Szabó [MS]; Bauer [Bau]; T.-J. Li [Li].) KX torsion implies b+ ≤ 3.
If also π1(X) = {1} then X has the homotopy-type of a K3 surface.
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Gromov [Gro] taught us how to use pseudo-holomorphic curves to probe symplectic
topology. The sharpest results are for those symplectic 4-manifolds which are contain
pseudo-holomorphic curves through every point. The power of this technique is
drastically increased when it is combined with Seiberg–Witten theory.

The next collection of results hinge on existence theorems for pseudo-holomorphic
curves which derive from Taubes’s theorem “SW = Gr”, which says that the Seiberg–
Witten invariants of the 4-manifold X are equal to certain Gromov–Witten invariants,
and thereby implies existence results for pseudo-holomorphic curves.

• (Taubes [T96].) KX is Poincaré dual to an embedded symplectic surface.
• (Taubes [T96].) Up to isomorphism and scale, CP2 admits a unique symplectic

structure.
• (Taubes [T96].) If X contains a smoothly embedded sphere S of self-intersection
−1, then it contains a homologous sphere which is symplectically embedded,
hence can be blown down.

• (A.-K. Liu [Liu].) A minimal symplectic 4-manifold with K · ω < 0 is either
CP2 or a symplectic S2 -bundle over S2 . One with K · K < 0 is a symplectic
S2 -bundle over a surface of genus ≥ 2. In each case, the symplectic form is
determined up to symplectomorphism by its cohomology class.

• (Biran [Bir].) Certain symplectic 4-manifolds X admit full packings by sym-
plectic balls, i.e., given k� 0, there exist, for any ε > 0, k disjoint embeddings
of symplectic balls of equal radius, filling all but ε of the volume of X .

1.2 The vortex equations

We’ll approach the 4-dimensional Seiberg–Witten equations via their 2-dimensional
reduction: the vortex equations [JT, Gar, Wit].

Background: Let (Σ, g) be a closed, connected Riemannian surface. The metric g
gives rise to a conformal (or complex) structure j and to an area form α = volg . Let
L→ Σ be a hermitian line bundle of degree d = c1(L)[Σ].

Fields: Pairs (A, φ), where A is a U(1)-connection in L , and φ is a C∞ section of L .

Parameter: τ ∈ R.

Equations: The τ -vortex equations read

∂Aφ = 0 in Ω0,1(Σ; L);(1)

iFA = (τ − |φ|2)α in Ω2(Σ).(2)

We shall call τ the Taubes parameter. Solutions are called τ -vortices; they form a
space ṽorτ (L).
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Lemma 1.1 Let T =
∫
τα/2π .

• If T < d then no τ -vortex exists.

• If T = d then (A, φ) ∈ ṽorτ (L) iff φ = 0 and FA = τω .

• If T > d and (A, φ) ∈ ṽorτ (L) then φ is not identically zero.

Proof Chern–Weil tells us that
∫

iFA/2π = d . The equations then give T −
1

2π

∫
|φ|2α = d , so T < d with equality iff φ = 0.

The gauge group G = C∞(Σ,U(1)) operates on pairs (A, φ) by

u · (A, φ) = (A− u−1du, uφ),

preserving the τ -vortices. Let vorτ (L) be the quotient ṽorτ (L)/G. If, as we shall now
assume, T > d , then the action on τ -vortices is free. Given a τ -vortex (A, φ), the
vortex equations linearize to

∂̄A ψ + a0,1φ = 0, ida + 2 Re〈φ, ψ〉 = 0 for a ∈ iΩ1(Σ), ψ ∈ Ω0(L).

We can impose in addition the gauge condition

d∗a− 2i Im〈φ, ψ〉 = 0

which gives a local slice through the G-action. The linearized vortex equations plus
the gauge-fixing equationdefine a linear operator L which is elliptic, hence Fredholm,
and which one can show to be surjective. Up to zeroth order terms, it is the direct sum
of operators ∂̄A : Ω0(L) → Ω1(L), which has index 2d + χ(Σ) (by Riemann–Roch),
and d∗ ⊕ d : Ω1 → Ω0 ⊕ Ω2 , which has index −χ(Σ) (b Hodge theory). Hence
dim kerL = 2d . So:

Proposition 1.2 vorτ (L) is naturally a 2d -dimensional manifold.

The operator ∂A makes L a holomorphic line bundle (the holomorphic local sections
are those in the kernel of ∂A ). The first equation says that L is a holomorphic line
bundle and φ a holomorphic section. Hence, when T > d , one has a map

vorτ (L)→
{

(L, φ)
∣∣∣∣ L a holomorphic structure on L
φ 6≡ 0 a holomorphic section

}
/C∞(Σ,C∗).

The complex moduli space on the right is better known as the symmetric product
Symd(Σ) = Σ×d/Sd , and the map is

v : vorτ (L)→ Symd(Σ), [A, φ] 7→ φ−1(0).

Theorem 1.3 [JT, Gar] The map v is a diffeomorphism.
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Remark When d = 0, one has a unique vortex, up to gauge (corresponding to
Sym0 Σ = {∅}). The connection A is flat of trivial holonomy (and so trivializes the
bundle) and φ is constant.

In the ‘Taubes limit’ τ � 0, vortices (A, φ) ‘localize’ along their zero-sets:

Theorem 1.4 One has |FA|+ |dAφ| ≤ c exp
(
− τ 1/2

c dist(·, φ−1(0))
)

, where the con-
stant c depends only on (Σ,L).

Thus, the interesting behavior happens very close to the zero-set φ−1(0). Elsewhere, A
is essentially flat—and so by second vortex equation, |φ|2 − τ is close to zero—while
φ is essentially covariant-constant.

In fact [T99], one can use this estimate to construct an inverse to v, for τ � 0,
by constructing approximate vortices and improving them to true vortices using the
implicit function theorem.

The approximate solutions are given by pasting rescaled solutions on C into Σ near
the given point x ∈ Symd(Σ), extending them to Σ using cutoff functions so that, far
from x, A is flat and φ covariant-constant of norm-squared τ .

1.3 The Seiberg–Witten equations

Background:

We now work over a closed, oriented Riemannian 4-manifold X . We first fix a Spinc -
structure s. This is a choice from an H2(X;Z)-torsor. We think of s in differential-
geometric terms as:

• A pair S± → X of hermitian 2-plane bundles, called the positive and negative
spinor bundles.

• A bundle isomorphism ρ : T∗X ⊗ C → HomC(S+,S−), called Clifford multi-
plication, satisfying the relation that makes S+x ⊕ S−x a module for the Clifford
algebra Cliff(T∗x X):

ρ(f )†ρ(e) + ρ(e)†ρ(f ) = −2g(e, f )idS+ .

One can then define ρ on complex 2-forms by

ρ(e ∧ f ) =
1
2

(
ρ(e)†ρ(f )− ρ(f )†ρ(e)

)
∈ End(S+).

One checks that ρ(Λ+) = su(S+) and ρ(Λ−) = 0.
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Fields: (A, φ). Here φ ∈ Γ(S+), i.e., φ is a positive spinor, while A is a Clifford
connection in S+ . A U(2)-connection is a Clifford connection if dA(ρ(λ)) = ρ(∇λ)
when ∇ is the Levi-Civita connection in T∗X . A connection A in S+ induces a
connection At in the line bundle Λ2S+ , and A 7→ At defines a bijection between
Clifford connections and U(1)-connections in Λ2S+ .

Parameters: η ∈ Ω2
X is a closed 2-form. A0 is a reference Clifford connection.

The Seiberg–Witten equations SW(s, η):

These read

D+
A φ = 0 in Γ(S−);(3)

ρ(FAt + iη)+ = (φ∗ ⊗ φ)0 in i su(S+).(4)

We add the Coulomb gauge-fixing equation

(5) d∗(At − At
0) = 0 in iΩ0(X).

We now explain the terms:

D+
A =

∑
j ρ(ej)∇A,ej : Γ(S+) → Γ(S−) is a Dirac operator (here (e1, e2, e3, e4) is a

local oriented orthonormal frame for T∗X ).

The U(1)-connection At has curvature FAt ∈ iΩ2(X). The second equation is in
isu(S+), the trace-free hermitian endomorphisms. The term φ∗ ⊗ φ is a hermitian
endomorphism of S+ . The symbol (·)0 means the trace-free part. Thus, if φ = αf1+βf2
in a local unitary frame (f1, f2) for S+ , then

(φ∗ ⊗ φ)0 =

[ 1
2 (|α|2 − |β|2) αβ̄

ᾱβ 1
2 (|β|2 − |α2|)

]
.

1.4 The SW invariants

The linearized Seiberg–Witten equations with Coulomb gauge-fixing are elliptic, hence
Fredholm. Discarding zeroth-order terms—which do not affect the symbol, nor the
Fredholm index—the linearized equations read

(d+ + d∗)(a) = 0, D+
A ψ = 0.

For generic metrics g, the moduli space M(s, η) of solutions modulo gauge is naturally
a smooth manifold, except at reducible solutions (A, φ = 0). When b+ > 0, generic
metrics have the property that there are no reducible solutions. Then M(s, η) is globally
smooth, and in fact orientable; one obtains an orientation from an orientation of the
vector space H+

g ⊕H1
g of g-harmonic self-dual 2-forms plus 1-forms on X . It is a

truly remarkable feature of the SW equations that M(s, η) is also compact.
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The Seiberg–Witten invariant SWX(s) ∈ Z is defined, essentially, as the fundamental
class [M(s, η)] in H∗(B∗), where B∗ is the space of gauge-equivalence classes of
irreducible pairs (A, φ) (so φ 6≡ 0). Explicitly, fix x ∈ X , let Lx → B∗ be the principal
U(1)-bundle with total space Lx given by pairs (A, φ) modulo gauge transformations
u with u(x) = 1. Let c = c1(Lx) ∈ H2(B∗). When dimM(s, η) = 2d , we define

SWX(s) = 〈[M(s, η)], cd〉.

When dimM(s, η) is odd, we define SWX(s) = 0.

When b+ > 1, SWX(s) is independent both of the 2-form η and the metric g, and
so defines an invariant of X . That is because an interpolating path (ηt, gt) defines an
oriented cobordism in B∗ between the moduli spaces for (η0, g0) and (η1, g1).

When b+ = 1, there is a subtlety, which is that in such interpolating paths one may
encounter reducible solutions. The space of pairs (η, g) is divided into two ‘chambers’,
and the SW-invariant depends on the chamber; there is a ‘wall-crossing formula’ which
specifies the difference between the value of SWX in the two chambers.
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2 Second lecture: Seiberg–Witten invariants of symplectic
4-manifolds

2.1 The SW equations on symplectic 4-manifolds

We let (X, ω) be a symplectic 4-manifold, J a compatible almost complex structure,
and g = ω(·, J·) the associated metric. For this metric, ω is self-dual, hence harmonic,
and of type (1, 1) with respect to J .

There is a canonical Spinc -structure scan with spinor bundles

S+ = 1⊕ Λ0,2, S− = Λ0,1.

The operators
D± =

√
2
(
∂̄⊕ ∂̄∗

)
: Γ(S±)→ Γ(S∓)

have the property that D+◦D− and D−◦D+ are Laplacians (a property of the symbol).
Moreover, D− is the formal adjoint to D+ . As a consequence, the symbol ρ of D+

defines a Clifford multiplication ρ : T∗X → Hom(S+,S−) for which D+ is a Dirac
operator.

Any other Spinc -structure takes the form L⊗ scan , where L is a hermitian line bundle.
Thus

S+L = L⊕ (Λ0,2 ⊗ L), S+ = Λ0,1 ⊗ L.

For any U(1)-connection B in L , the operators

D±B =
1√
2

(
∂̄B⊕ ∂̄

∗
B
)

: Γ(S±L )→ Γ(S∓L )

are the positive and negative Dirac operators for L ⊗ scan ; the symbol of D+
B defines

Clifford multiplication.

The SW equations. The Seiberg–Witten fields are now a triple (α, β,B), where
α ∈ Γ(L), β ∈ Ω0,2(L), and B is a U(1)-connection in L .

It proves useful to add a perturbation term τω + iR, with a ‘Taubes parameter’ τ > 0.
Here R is the (1, 1)-part of the curvature of the connection in Λ2S induced by the
Levi-Civita connection. The equations read

∂̄B α = − ∂̄∗B β(6)

F02
B = ᾱβ(7)

iF11
B · ω = |β|2 − |α|2 + τ.(8)
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2.2 Taubes’s constraints

Theorem 2.1 [T95] Let (X, ω) be a closed symplectic manifold. Consider the SW
equations (6, 7, 8). If c1(L) · ω < 0, or if c1(L) · ω = 0 and L is a non-trivial line
bundle, then there are no solutions when τ � 0. When L is trivial and τ � 0 there is
a unique solution up to gauge.

Proof [Don] We shall need the identity

∂̄B ∂̄B f = F02
B f + NJ(∂Bf ),

where NJ : Λ0,1 → Λ0,2 is the Nijenhuis tensor, which according to the Newlander-
Nirenberg theorem measures the failure of integrability of J to a holomorphic structure.
We also need a Weitzenböck formula,

∇∗B∇B = 2 ∂̄∗B ∂̄B +iF11
B · ω.

We now compute∫
X
|∇Bα|2dµ = 2

∫
X
〈∂̄∗B ∂̄B α, α〉dµ+

∫
X

(iF11
B · ω)|α|2dµ

= −2
∫

X
〈∂̄∗B ∂̄B β, α〉dµ+

∫
X

(|β|2 − |α|2 + τ )|α|2dµ

= −2
∫

X
〈β, ∂̄∗B ∂̄B α〉dµ+

∫
X

(|β|2 − |α|2 + τ )|α|2dµ

= −2
∫

X
〈β,NJ(∂Bα)〉dµ− 2

∫
X
〈β,F02

B α〉dµ+

∫
X

(|β|2 − |α|2 + τ )|α|2dµ

= −2
∫

X
〈β,NJ(∂Bα)〉dµ− 2

∫
X
|α|2|β|2dµ+

∫
X

(|β|2 − |α|2 + τ )|α|2dµ

= −2
∫

X
〈β,NJ(∂Bα)〉dµ−

∫
X
|α|2|β|2dµ+

∫
X

(−|α|2 + τ )|α|2dµ

= −2
∫

X
〈β,NJ(∂Bα)〉dµ−

∫
X
|α|2|β|2dµ−

∫
X

(τ − |α|2)2dµ+ τ

∫
X

(τ − |α|2)dµ.

Now, most of the terms on the right are manifestly non-positive. The Nijenhuis term is
one exception. The other exception is

∫
X (τ − |α|2)dµ. But, by the third SW equation

and Chern–Weil, ∫
X

(τ − |α|2)dµ =

∫
X

(iF11
B · ω − |β|2)dµ

=

∫
X

iFB ∧ ω − |β|2dµ

= 2πc1(L) · [ω]−
∫

X
|β|2dµ,
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and so we obtain∫
X
|∇Bα|2dµ+

∫
X

(τ + |α|2)|β|2dµ

+

∫
X

(τ − |α|2)2dµ− 2πc1(L) · [ω] = −2
∫

X
〈β,NJ(∂Bα)〉dµ

≤ C
(∫

X
|β|2dµ

)1/2(∫
X
|∇Bα|2dµ

)1/2

≤ 1
2 C2

∫
X
|β|2dµ+ 1

2

∫
X
|∇Bα|2dµ.

Rearranging,

1
2

∫
X
|∇Bα|2dµ+

∫
X

(τ − 1
2 C2 + |α|2)|β|2dµ+

∫
X

(τ − |α|2)2dµ− 2πc1(L) · [ω] ≤ 0.

Let us take τ > C2/2, and assume also that −c1(L) · [ω] ≥ 0. Then each term on the
left is ≥ 0, and so must be zero. That is,

β = 0; τ − |α|2 = 0; ∇Bα = 0.

Thus α is a nowhere-vanishing section of L , which is therefore a trivial line bundle,
and the only solution in this line bundle is the canonical monopole.

The canonical monopole will be cut out transversely when the metric is chosen gener-
ically. As a result, we have the following

Corollary 2.2
SWX(scan) = ±1

If c1(L) · [ω] > 0, or c1(L) · [ω] = 0 with L non-trivial, we have

SWX(L⊗ scan) = 0.

2.3 The Taubes limit

The ‘Taubes limit’ refers to the limit τ → ∞ in the equations with perturbation term
τω . Taubes [T96] establishes that, in a sequence of solutions (αn, βn,Bn) to the τnω -
equations, τn → ∞, there is a subsequence which has the property that βn → 0, and
moreover, that ∂̄∗B βn → 0. A glance at the equations then shows that F2,0

Bn
→ 0, and

that ∂̄Bn αn → 0.

If the almost complex structure J were integrable, the condition F0,2
B = 0 would say

that ∂̄B defines a holomorphic structure in L , and the equation ∂̄B α = 0 would say
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that α is a holomorphic section. In our almost complex setting, one does not expect to
find any solutions to ∂̄B α = 0, but the sequence (Bn, αn) give approximate solutions to
this equation. In particular, the zero-set α−1

n (0), which one can take to be an embedded
surface in X , is approximately holomorphic.

Taubes shows, more precisely, that there is a subsequence such that |βn| → 0, and such
that everything of interest takes place close to the surfaces α−1

n (0). One has

|βn|2 + |F0,2
Bn
|+ |∇Bnβ|2 + (1− |αn|2)/τ 2

n ≤ c exp[−τndist(·, α−1
n (0))/c].

Using this and other estimates, he proves that iFB/2π converges as a current to a closed
(1, 1)-current F .

In a particularly difficult step, he shows that F is the Dirac-delta current δC for a cycle
C =

∑
niCi , where the Ci are disjoint, embedded J -holomorphic curves in X , and

ni > 0. The zero-sets α−1
n (0) converge in the Gromov–Hausdorff topology to

⋃
Ci .

The proof of this result uses the positivity properties of F , and applies a regularity
result from geometric measure theory to recognize it as a holomorphic curve.

2.4 SW = Gr

On a symplectic 4-manifold, we can define a bijective map

h : Spinc(X)→ H2(X;Z), L⊗ scan 7→ PD(c1(L)).

Theorem 2.3 (Taubes) For any symplectic 4-manifold (X, ω), one has, for a canoni-
cal homology orientation, and in the chamber containing τω for τ � 0 when b+ = 1,

SWX(s) = Gr (h(s)).

Here Gr (A) is a Gromov–Witten-type invariant defined in [T96b]. It counts J -
holomorphic curves, possibly reducible or disconnected, representing the class A,
passing through d generic points when the Fredholm index of the moduli space is
2d . The definition uses some special features of dimension 4: for a generic J , all
J -holomorphic representatives of the homology class A have disjoint irreducible com-
ponents, and moreover, each component is an embedded smooth curve unless it has
genus 1 and self-intersection 0, or genus 0 and negative self-intersection. In the latter
case, the image of the curve is smoothly embedded, but the parametrization is a multiple
cover. The curve-count is integral (it does not use virtual methods), and is defined in
relatively straightforward way except for the square-zero tori, for which the definition
is quite subtle.
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The first part of the proof [T96] is the ‘Taubes limit’, which we have already discussed:
a sequence of solutions to the τnω SW equations gives rise to a J -holomorphic curve
whose Dirac delta current is the limit of iFBn/2π . The second part [T99] shows that,
given a holomorphic curve C of the kind counted by Gr , one can obtain it as the Taubes
limit of Seiberg–Witten monopoles. This is done as follows.

Say C =
∑

niCi , where ni is the multiplicity of the ith component. On each normal
fibre Nx to Ci , one considers solutions to the τ -vortex equations, of degree ni , which
decay at infinity. These form a moduli space identified with Symni(Nx); as x varies,
these moduli spaces form a bundle of complex manifolds over Ci . The almost complex
structure J gives rise to an almost complex structure in the total space of this bundle,
with holomorphic fibres. A holomorphic section of the bundle can be viewed as an
approximate solution to the SW equations, defined in a tubular neighborhood of C .
In particular, when ni = 1, one can simply take the zero-section. One extends the
approximate solution to all of X via a cutoff function, so that, far from C , one has a
flat connection Bn , a covariant-constant section αn of L , with |αn| = τn , and βn = 0.
Using the implicit function theorem, one argues that this approximate monopole lies
close to a true monopole.

The third part of the proof [T99b] is the numerical comparison of the invariants.

2.5 Duality

When b+ > 1, the SW invariants are invariant under conjugation of Spinc -structures:

SWX(s) = ±SWX(s).

(The sign can be made precise.) The reason is simple: the unperturbed SW equations
are preserved by conjugation. One has h(s) = KX − h(s), where KX = −c1(TX)
is the canonical class. Passing to the Taubes limit on a symplectic manifold does
not commute with conjugation, and the following corollary of SW = Gr is highly
non-trivial:

Gr(A) = ±Gr(KX − A).

In particular, Gr(0) = 1 (we count the empty curve), and so Gr(KX) = ±1. Thus the
canonical class KX has a J -holomorphic representative.

References

[Bau] S. Bauer, Almost complex 4-manifolds with vanishing first Chern class, J. Differential
Geom. 79 (2008), no. 1, 25—32



12 Tim Perutz

[Bir] P. Biran, Symplectic packing in dimension 4, Geom. Funct. Anal. 7 (1997), no. 3,
420–437.

[Don] S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer.
Math. Soc. (N.S.) 33 (1996), no. 1, 45–70.

[Fur] M. Furuta, Monopole equation and the 11/8-conjecture, Math. Res. Lett. 8 (2001), no.
3, 279–291.

[Gar] O. Garcı́a-Prada, A direct existence proof for the vortex equations over a compact
Riemann surface, Bull. London Math. Soc. 26 (1994), no. 1, 88–96.

[Gro] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82
(1985), no. 2, 307–347.

[Hut] M. Hutchings, Taubes’s proof of the Weinstein conjecture in dimension three, Bull.
Amer. Math. Soc. (N.S.) 47 (2010), no. 1, 73—125.

[JT] A. Jaffe, C. H. Taubes, Vortices and monopoles: Structure of static gauge theories,
Progress in Physics, 2. Birkhäuser, Boston, Mass., 1980.
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