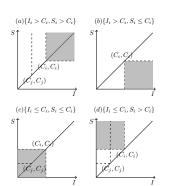
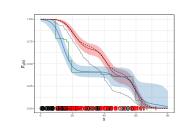
Bayesian Nonparametric Bivariate Survival Regression for Current Status Data

PETER MÜLLER, UT GIORGIO PAULON, UT, V. Giancarlo Sal y Rosas, PUCP,





biv current status data

estimation with (univ) CS data

www.math.utexas.edu/users/pmueller/isbabnp.pdf

	Control	Intervention	Total
N (%)	921 (50.3)	911 (49.7)	1832
Female	721 (78.3)	720 (79.0)	1441 (78.7)
Age $(years)^1$	21 [19-25]	22 [19-26]	21 [19-25]
Initial diagnosis		100 (11 5)	
Gonorrhea	131 (14.2)	132 (14.5)	263 (14.4)
Genital chlamydia	742 (80.6)	732 (80.4)	1474 (80.5)
Both	48 (5.2)	47 (5.1)	95 (5.1)
Events	118 (12.8)	86(9.4)	204 (11.1)
Visit time C_i	86 [77-103]	87 [76-103]	87 [77-103]

Slide 4

Data

Disease free \longrightarrow infected $I_i \longrightarrow$ symptoms S_i or \rightarrow symptoms S_i (due to other causes)

Notation: patient i, i = 1, ..., n

- I_i time to infection
- S_i time to symptoms
- $L_i = S_i I_i$ lag time
- C_i visit time (observation time)
- $\Delta_{Ii} = I(I_i \leq C_i)$ and $\Delta_{Si} = I(S_i \leq C_i)$
- x_i covariates

Observed data: at time of visit record

 $Y_i = (C_i, \Delta_{Ii}, \Delta_{Si}, x_i)$

(bivariate) current status data (Jewell & van der Laan, 2003 Handbook of Stat)

1 Partners Notification study

Slide 2

Partners Notification study

Golden et al (2005 NEJM)

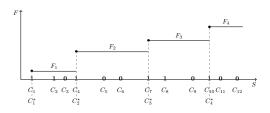
• Heterosexual men and women that were treated for gonorrhea and/or chlamydia up to 14 days prior to enrollment Randomization 1:1 to

Current status data

Intervention: Vouchers for medication to give to their Slide 5 sex partners, or if they preferred, staff members contacted their partners and provided them with med-Univariate CS data, $\Delta_i = I(S_i \leq C_i)$, wlog. ordered by C_i , ication without a clinical examination and $\Delta_1 = 1, \Delta_n = 0$

Control: Standard treatment

- Outcome: Persistent or recurrent gonorrhea and/or chlamydial infection in the original participant.
- Visits: Only one visit between 3 and 19 weeks after enrollment



Current status data

Let $A = \{i > 1 : (\Delta_{i-1}, \Delta_i) = (0,1) \text{ (i.e. all left censored)}$ following a right censored observations); $A \equiv A \cup \{1\}$.

Partners Notification study

Table: Descriptive statistics of the cohort

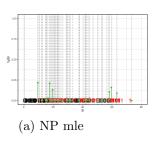
- Let C_i^* denote the C_i in A, plus $C_{J+1}^* > \max\{C_i\}$;
- Easy to show, $f_S(s) = \sum_j p_j \delta_{C_i^*}$

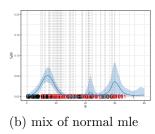
Slide 3

And two more cases. Let $F_I = p(I \leq C), F_S = p(S \leq C),$ $F_{IS} = p(I < C, S < C)$.[.25cm] Only F_I, F_S, F_{IS} are identifiable (Wang & Ding, 2000 Bka).

Estimating $f_S(\cdot)$

Easy EM algorithm to estimate $\hat{f}_S(\cdot)$ (Groeneboom & Well-Slide 9 ner, 1992).





- NP mle tends to shrink f_S towards the extremes;
- Par model, e.g., mix of normals, smooths the mle, but shrinkage persists

Likelihood fct: Recall

$$F_I = p(I \le C), F_S = p(S \le C), F_{IS} = p(I < C, S < C).$$

$$\prod_{i} F_{IS}^{\Delta_{I}\Delta_{S}} \times (F_{I} - F_{IS})^{\Delta_{I}(1 - \Delta_{S})}$$

$$\times (F_S - F_{IS})^{(1-\Delta_I)\Delta_S} \times (1 - F_I - F_S + F_{IS})^{(1-\Delta_I)(1-\Delta_S)}$$

→ use prior regularlization and known structure to allow for inference on F(I, S).

Copula models: Ma et al. (2015 Bka); Li et al., (2017, CSDS); Wang & Ding (2000 Bka) copula $(I, S) \sim C(\xi)$, with sensitivity analysis for ξ .

Dependent probit: Dunson & Dinse (2002, Bmcs) use a probit model with frailities to induce dependence.

Structure: alternatively use structural assumptions to build

Slide 7

BNP to the rescue

To regularize inference we

1. Dependent censoring: regression of S_i on C_i (visit time), Slide 10 $C_i = \min\{S_i + \operatorname{Exp}(\lambda), \operatorname{Unif}\};$

Building a bivariate CS data model

2. BNP prior on f_S

Truth: black dashed

 $F(I,S) = w F^{\star}(I,S) + (1-w) F'(I,S)$

with

Assume

NP mle: green step fct

Symptom due to disease: $F'(I,S) \implies S > I$;

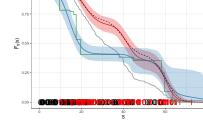
Parametric mix of N:

Symptom due to other cause: $F^*(I,S)$, no constraint

 $F(I,S) \to \text{next}$

blue curve

NP mle & dep censoring $\overline{g_{lide\ 11}}$ grav step function



red curve

BNP & dep censoring: Likelihood factors: Let $F_{11}(C) = p(I < C, S < C), F_{10}(C) =$ $p(I < C, S \ge C), F_{01}(C) = p(I \ge C, S < C), F_{00}(C) =$ $p(I \ge C, S \ge C)$.

3 Bivariate current status data

Slide 8

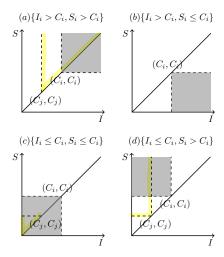
Bivariate current status data

 $Y_i = (\Delta_{Ii}, \Delta_{Si}, C_i)$, note:

- $(\Delta_I, \Delta_S) = (1,0)$, i.e., (I < C < S): symptoms due to disease of interest or other
- $(\Delta_I, \Delta_S) = (0,1)$, i.e., (I > C > S): symptoms due to Slide 12 other causes

 Δ_I $\Delta_I \mid n_{k\ell} \mid$ likelihood $F_{00} = w F^*_{00} + (1 - w) F'_{00}$ $F_{01} = w F^*_{01} + 0$ $F_{10} = w F^*_{10} + (1 - w) F'_{10}$ $F_{11} = w F^*_{11} + (1 - w) F'_{11}$ 0 0 1303 0 325 1 121 1 0 1 1

Likelihood factors



Likelihood factors for the 4 cases under F' and F^* .

Slide 13

 $Building\ dependence\ structure$

Using marginal models $F_I(I)$, $F^*(S)$ and an assumption for $F'(S \mid I)$ we build a dependent model:

• F^{\star} : symptoms due to other causes, $S \perp I$

$$F^{\star}$$
 $(I,S) = F_{I}(I)$ F^{\star} $_{S}(S)$

• F': symptoms due to disease, L = S - I, and $L \perp I$

$$F'(I,S) = F_I(I) F_L(S-I)$$

with $L \sim \text{Exp}(\lambda_L)$

with your favorite BNP prior $p(H_I)$ and $p(H_S)$.

Regression: letting $x_i \in X$ denote patient-specific covariates, $x_i = (\text{gender,arm,age})$, extend the BNP prior to $p(H_{I,x}; x \in X)$.

DDP: We use a dependent DP (DDP) prior with simple linear model for the covariate-dependent atoms.

Slide 16

Parametric sub-models

Two parametric submodels introduce (important) prior knowledge: on

(i) Corr of (C_i, S_i) :

$$p(C_i \mid S_i) = \min\{S_i + \operatorname{Exp}(\lambda), \operatorname{Unif}\}\$$

(ii) Lag times $L_i = S_i - I_i$ under F':

 $L \sim \text{Exp}(\lambda_L)$, with inf prior $p(\lambda_L)$

4 Results

Slide 14 Let $F_I = p(I \le C_i) = F_I(C_i)$ and $\bar{F}_I = 1 - F_I$,

$$F_{S|I < C} = p(S \le C_i \mid I \le C_i) = \int_0^{C_i} \frac{f_I(I)}{F_I(C_i)} F_L(C_i - I) dI$$

and similarly $\bar{F}_{S|I < C} = p(S > C_i \mid I \le C_i)$. Then

$$F_{00} = \bar{F}_I (w \bar{F}_S^* + 1 - w) = \bar{F}_I (1 - w \bar{F}_S^*)$$

$$F_{01} = \bar{F}_I w F^{\star}_S$$

$$F_{11} = F_I \left(w F^{\star}_S + (1-w) F'_{S|I < C} \right)$$

$$F_{10} = F_I \left(w \stackrel{\frown}{F^*}_S + (1-w) \stackrel{\frown}{F'}_{S|I < C} \right).$$

Slide 15

BNP prior

BNP prior: mix of N marginal $F_I(\cdot)$ and $F_S^{\star}(S)$

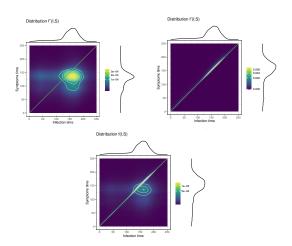
$$F_{I}(I) = \int N(I \mid \widehat{\mu, \sigma^{2}}) dH_{I}(\theta)$$

$$F^{\star}_{S}(S) = \int N(S \mid \theta) dH_{S}(\theta)$$

Slide 17

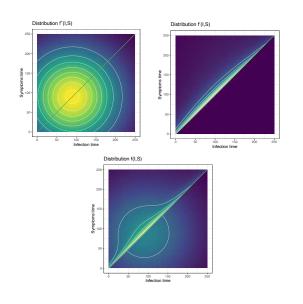
 $Partner\ Notification\ Study\ -\ Results$

Posterior estimated F^* , F' and F



Slide 18

Compare with prior mean F^* , F' and F



Slide 19

Treatment effect

Recall $F_I(t \mid \boldsymbol{x}) = \int N(t \mid \mu, \sigma^2) dH_{\boldsymbol{x}}^{(I)}(\boldsymbol{\theta}).$ Under the linear DDP \rightarrow simple DP mixture:

ullet Let $oldsymbol{d}$ be a design vector for covariates $oldsymbol{x}$. Then

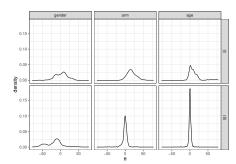
$$m{ heta} \sim H_{m{x}} = \sum_{\ell} \pi_{\ell} \delta_{m{d}'m{m}_{\ell}} \iff egin{cases} m{m} & \sim H = \sum_{\ell} \pi_{\ell} \delta_{m{m}_{\ell}} \\ m{ heta} & = m{d}'m{m} \end{cases}$$

and

$$F_I(t \mid \boldsymbol{x}) = \int N(t \mid \boldsymbol{d}' \boldsymbol{m}, \sigma^2) dH(\boldsymbol{m})$$

• Let $\boldsymbol{m} = (\alpha, \beta, \gamma)$ (for gender, trt, age). Then $H(\boldsymbol{m}) = \sum \pi_{\ell} \delta_{\boldsymbol{m}_{\ell}}$ implies $H_{\beta}(\beta) = \sum \pi_{\ell} \delta_{\beta_{\ell}}$.

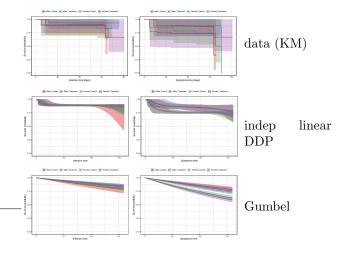
Gender, treatment and age effects in H_I (top) and H_S (bottom) (note that H_S is used under F^* only)



- Delayed infection times for treated patients
- Earlier time to symptom (due to other causes) for women?
- Some evidence for an age effect, with higher risk fordependent (I, S). younger patients (more risk taking?)

Slide 21

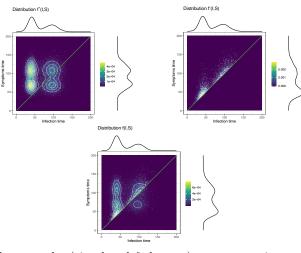
Inference under simplified models



Simulation

Slide 22

Simulation



White

dots are the (simulated & known) true event times. However, inference only conditions on Δ_I, Δ_S .

Slide 23

 $More\ simulations$

(I) independent C_i & dependent (I, S); (II) dependent C_i & independent (I, S) (w = 1), and (III) dependent censoring &

	Sample Size	Distr.	De Iorio et al.	Bivariate Gumbel	Our method
(I)	n = 250	Inf.	1.64 (0.92, 3.01)	4.01 (3.14, 5.59)	1.10 (0.09, 2.24)
		Sym.	2.98 (1.11, 5.01)	6.15 (5.31, 8.77)	1.33 (0.18, 3.72)
	n = 1000	Inf.	1.32 (0.73, 1.90)	3.76 (3.19, 4.54)	0.50 (0.04, 1.80)
		Sym.	2.32 (1.19, 3.25)	5.99 (5.31, 6.99)	1.30 (0.54, 2.66)
(II)	n = 250	Inf.	0.96 (0.74, 1.56)	3.44 (3.08, 4.59)	0.99 (0.13, 2.07)
		Sym.	8.44 (5.21, 12.30)	11.75 (9.18, 18.01)	0.76 (0.22, 2.16)
	n = 1000	Inf.	0.80 (0.50, 1.10)	3.12 (3.03, 3.41)	0.19 (0.05, 0.50)
		Sym.	8.18 (6.28, 10.32)	10.74 (9.58, 12.49)	0.12 (0.02, 0.37)
(III)	n = 250	Inf.	4.45 (3.00, 6.30)	4.24 (3.09, 5.79)	0.45 (0.08, 1.14)
		Sym.	9.82 (6.70, 13.20)	8.08 (5.72, 12.15)	0.24 (0.03, 0.81)
	n = 1000	Inf.	4.10 (3.18, 4.96)	3.96 (3.24, 4.81)	0.13 (0.01, 0.35)
		Sym.	9.94 (8.44, 11.71)	7.98 (6.31, 10.06)	0.05 (0.01, 0.15)

MSE for $F_I(\cdot)$ ("Inf") and $F_S(\cdot)$ ("Symp"), De Iorio = two indep DDPs

Conclusion

Slide 24

Conclusion

- BNP model for biv current status data;
- Despite limited information in observed data, we get meaningful inference even under moderate n;
- Combining the flexible BNP model with some known structure provides sufficient regularization;
- While "BNP is always right", need to be careful to recognize restricted identifiability;
- Anticipating desired inference in the model construction we get concise inference on covariate effects (beyond visual comparison of survival curves).
- BNP priors for marginal distributions are combined based on some basic assumptions, more specific than generic copula constructions.