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Abstract

We propose a probability model for k-dimensional ordinal outcomes, i.e., we con-

sider inference for data recorded in k-dimensional contingency tables with ordinal fac-

tors. The proposed approach is based on full posterior inference, assuming a flexible

underlying prior probability model for the contingency table cell probabilities. We use a

variation of the traditional multivariate probit model, with latent scores that determine

the observed data. In our model, a mixture of normals prior replaces the usual single

multivariate normal model for the latent variables. By augmenting the prior model to
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a mixture of normals we generalize inference in two important ways. First, we allow

for varying local dependence structure across the contingency table. Second, inference

in ordinal multivariate probit models is plagued by problems related to the choice and

resampling of cutoffs defined for these latent variables. We show how the proposed mix-

ture model approach entirely removes these problems. We illustrate the methodology

with two examples, one simulated data set and one data set of interrater agreement.

Key Words: Contingency tables; Dirichlet process; Markov chain Monte Carlo; Polychoric

correlations.

1 Introduction

We consider inference for k-dimensional ordinal outcomes. We define a mixture of mul-

tivariate probits model that can represent any set of k-dimensional contingency table cell

probabilities. The proposed approach generalizes the traditional multivariate probit model,

and at the same time allows for significant simplification of computational complexity. Com-

putational simplicity is achieved by avoiding the need to impute cutoffs for the latent scores.

Increased modeling flexibility is provided by allowing arbitrarily accurate approximation of

any given set of probabilities on the outcomes.

Assume that for each of n experimental units the values of k ordinal categorical variables

V1, . . . , Vk are recorded. Let Cj ≥ 2 represent the number of categories for the jth variable,

j = 1, . . . , k, and denote by n`1···`k
the number of observations with V = (V1, . . . , Vk) =

(`1, . . . , `k). Denote by p`1···`k
= P (V1 = `1, . . . , Vk = `k) the classification probability for

the (`1, . . . , `k) cell. The data can be summarized in a multidimensional contingency table

with C =
∏k

j=1Cj cells, with frequencies {n`1···`k
} constrained by

∑

`1···`k
n`1···`k

= n.
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Inference for such data structures is of interest in many applications. The related statis-

tical literature is correspondingly diverse and extensive. Many examples, applications and

technical details can be found in Bishop et al. (1975), Goodman (1985), Read and Cressie

(1988) and references therein. Log-linear models are a popular choice for the analysis of this

data structure. However, the typically large number of parameters gives rise to a number of

difficulties related to interpretation, prior elicitation and assessment of association between

categorical variables.

An alternative modeling strategy involves the introduction of latent variables. Examples

include Albert and Chib (1993), Cowles et al. (1996), Chib and Greenberg (1998), Bradlow

and Zaslavsky (1999), Chen and Dey (2000) and Chib (2000) for ordinal regression models,

Johnson and Albert (1999) for the analysis of data from multiple raters and Newton et al.

(1995) for semiparametric binary regression. The common idea in these approaches is to

introduce cutoffs −∞ = γj,0 < γj,1 < · · · < γj,Cj−1 < γj,Cj
= ∞, for each j = 1, . . . , k, and

a k-dimensional latent variable vector Z = (Z1, . . . , Zk) such that for all `1, . . . , `k

p`1···`k
= P





k
⋂

j=1

{

γj,`j−1 < Zj ≤ γj,`j

}



 . (1)

A common distributional assumption is Z ∼ Nk(0,S), a k-dimensional normal distribu-

tion. One advantage of this model is the parsimony compared to the saturated log-linear

model. In addition, ρst = corr(Zs, Zt) = 0, s 6= t, implies independence of the correspond-

ing categorical variables. The coefficients ρst, s 6= t, are known as polychoric correlation

coefficients and are traditionally used in the social sciences as a measure of the association

between pairs of the (observed) categorical variables. See for instance, Olsson (1979) and

more recently, Ronning and Kukuk (1996) and references therein.
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However, the described model is not an appropriate choice for contingency tables that

concentrate most of the data near the borders or corners and are rather sparse in the

central cells. Also, the multivariate normal probit model implicitly assumes that the same

polychoric correlations are a globally meaningful summary statistic. It does not allow for

the dependence structure to vary across the contingency table. A typical example where

such heterogeneity might arise is interrater agreement data. Different raters might agree

about extremely high or low scores. But there might be considerable disagreement about

scoring average observations. These limitations motivate the introduction of more flexible

families of distributions for the latent variables Z. Literature on fully Bayesian inference

in this context is rather limited. We are only aware of Albert (1992), involving bivariate

log-normal and t distributions, and Chen and Dey (2000), where certain scale mixtures of

multivariate normals are considered.

An important practical issue is related to the choice of the cutoffs γj,`j
. First, iden-

tifiability constraints complicate inference. Second, if the cutoffs are considered unknown

parameters, inference is complicated by the fact that they are highly correlated with the

latent variables Z. In particular, when abundant data are available, the values of Z can

become tightly clustered around a given γj,`j
leaving little room for the cutoff to move when

implementing a Markov chain Monte Carlo (MCMC) posterior simulation scheme. In this

case, the corresponding full conditional posterior distribution becomes nearly degenerate.

Johnson and Albert (1999) handle this problem via hybrid MCMC samplers.

In this article we propose a nonparametric probability model for the latent variables Z

employing a Dirichlet process mixture of normals prior. We show that this provides the

required flexibility to accommodate virtually any desired pattern in k-dimensional contin-
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gency tables. At the same time we argue that, under the proposed model, we can without

loss of generality fix the cutoffs. Therefore, from a modeling and inferential perspective, we

provide a general framework for the analysis of contingency tables, while, from a practical

perspective, we provide an approach that is easier to implement than existing Bayesian

methods. Similar semiparametric models for univariate ordinal and binary data have been

proposed by Erkanli et al. (1993) and Basu and Mukhopadhyay (2000), among others.

The article is organized as follows. Section 2 states our model, discussing its main fea-

tures. Section 3 discusses simulation-based model fitting and posterior predictive inference.

The methods are illustrated with two examples in section 4. We conclude with a summary

in section 5.

2 A Bayesian Nonparametric Modeling Approach

2.1 The Model

We define a model for n vectors of ordinal categorical variables V i = (Vi1, . . . , Vik), i =

1, . . . , n. First, as in (1), we introduce latent variables Zi = (Zi1, . . . , Zik), i = 1, . . . , n,

such that

Vij = ` if γj,`−1 < Zij ≤ γj,`, (2)

j = 1, . . . , k and ` = 1, . . . , Cj . When it simplifies notation we will alternatively write

the link (2) between latent variables and ordinal outcome as a (degenerate) probability

distribution p(V |Z). An important feature of the proposed model is that it allows us to

use fixed cutoffs. See the discussion towards the end of this subsection.

Modeling proceeds now with the k-dimensional latent vectors Zi. We generalize tradi-
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tional multivariate normal models by assuming a mixture of normals model. The mixture

is with respect to both location m and covariance matrix S of the normal kernel. We define

a probability model for the mixture distribution by assuming a prior probability model for

the mixing distribution G(m,S). For reasons of technical convenience and interpretability

we choose a Dirichlet process (DP) prior (Ferguson, 1973). The discrete nature of the DP

simplifies interpretation. Each point mass (m,S) in the discrete mixing distribution G cor-

responds to a different set of polychoric correlations, implicit in S. The location m specifies

the factor levels of the contingency table where S defines the polychoric correlation. Details

of the construction are discussed below.

We assume Zi
iid∼ f , with f(·|G) =

∫

pNk
(·|m,S) dG(m,S). Here, pNk

(·|m,S) denotes

the density of a Nk(m,S) distribution. The mixture model f can be equivalently written as

a hierarchical model by introducing latent variables θi = (mi,Si) and breaking the mixture

as

Zi|θi
ind∼ Nk(mi,Si), i = 1, . . . , n, (3)

where, θ1, . . . ,θn are an i.i.d. sample of latent variables from the mixing distribution G,

θ1, . . . ,θn|G iid∼ G. (4)

Let ρi denote the correlation matrix implied by Si. Conditional on θi, the correlation

matrix ρi defines the local dependence structure in the neighborhood of mi. The elements

of ρi can be interpreted as local polychoric correlation coefficients.

The model is completed with a prior probability model for the random distribution G.

We assume

G|M,λ,Σ,D ∼ D(MG0), (5)
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a DP prior with total mass parameter M and baseline distribution G0. For the baseline

distributionG0 we assume a joint distribution of a k-dimensional normal and an independent

inverse Wishart. Specifically, we take G0(m,S) = Nk(m|λ,Σ) IWishk(S|ν,D), where

Nk(x| . . .) and IWishk(A| . . .) indicate, respectively, a k-dimensional normal distribution

for the random vector x and an inverse Wishart distribution for the k × k (symmetric and

positive definite) random matrix A. One of the attractive features of the DP prior is that

it allows straightforward posterior inference with MCMC simulation. The computational

effort is, in principle, independent of the dimensionality of θi. Because of its computational

simplicity, the DP is by far the most commonly used prior probability model for random

probability measures. The DP generates almost surely discrete measures (e.g., Blackwell

and MacQueen, 1973, Sethuraman, 1994). In some applications this discrete nature of

the DP is awkward. However, in our setting, the discreteness is an asset as it simplifies

interpretation. Let δx denote a point mass at x. The DP generates a discrete measure

G =

∞
∑

h=1

whδθh
(6)

with stochastically ordered weights wh. See Sethuraman (1994) for details. A priori, the

first few weights cover most of the probability mass. A posteriori, weights are adjusted as

required by the data. Although model (6) includes infinitely many point masses θh, only

finitely many appear in the hierarchical model (3) and (4). Typically only very few distinct

values for θi are imputed. See the discussion in section 3 for details.

To complete the model specification, we assume independent hyperpriors

M ∼ Gamma(a0, b0), λ ∼ Nk(q,Q), Σ ∼ IWishk(b,B), D ∼ Wishk(c,C), (7)

where Gamma(. . .) and Wishk(. . .) denote a Gamma and a Wishart distribution, respec-
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tively, with fixed scalar hyperparameters ν, a0, b0, b, c, a k-dimensional vector q, and k× k

positive definite matrices Q, B and C.

The model is stated in terms of covariance matrices instead of correlation matrices. A

critical advantage of using covariance matrices is to avoid the difficulties associated with

the modeling of correlation matrices. See, for example, Chib and Greenberg (1998), Daniels

and Kass (1999) or McCulloch et al. (2000). Also, the variances on the diagonal of Si play

an important role in defining the mixture. Smaller variances imply that the corresponding

local polychoric correlation matrices ρi are only locally valid, for ordinal scores close to mi.

Most importantly, with the nonparametric mixture f(·|G) for the latent variables we

can model essentially any probability distribution for contingency tables. We give a con-

structive proof. Using (6) we can write the random mixture f(·|G) as a countable mixture

of normal kernels,
∑

∞

h=1 wh pNk
(·|mh,Sh). Consider any set of probabilities {p`1···`k

} for

the contingency table. Let {p̃`1···`k
} be the corresponding set of probabilities under the

mixture model f(·|G). Hence

p̃`1···`k
= P





k
⋂

j=1

{

γj,`j−1 < Zj ≤ γj,`j

}

|G



 ,

where Z = (Z1, ..., Zk) ∼ f(·|G) and the cutoffs, for each j, have fixed (say unit spaced)

values. For each cell (`1, . . . , `k) with p`1···`k
> 0 center one term of the mixture f(· | G)

within the rectangle defined by the corresponding cutoffs. For example, we could, for some

h, set mhj = γj,`j
− 0.5, j = 1,...,k, and choose Sh such that

√
1 − ε of the mass of the

Nk(mh,Sh) kernel is within the rectangle (γ1,`1−1, γ1,`1)× . . .× (γk,`k−1, γk,`k
). Finally, set

the corresponding weights wh equal to
√

1 − ε p`1···`k
to obtain |p`1···`k

− p̃`1···`k
| < ε, for all

cells (`1, . . . , `k), i.e., an arbitrarily accurate approximation of the probability distribution
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for the contingency table by means of the mixture model for the latent variables.

This feature of the model has two important implications. First, the argument above

shows that the mixture model can accommodate any given set of contingency table prob-

abilities, including “irregular patterns” that can not be explained by a single multivariate

normal probit model. The model provides a flexible modeling framework for contingency

tables. In particular, it allows local dependence structure to vary across the contingency

table, a feature that can be revealing of underlying patterns in applications.

Secondly, our model also provides a simple way to deal with the cutoffs. The random

number of components and the distinct locations and covariance matrices in the mixture

yield the result above without the need to consider random cutoffs. Hence, in the implemen-

tation of the model, there is no loss of generality in assuming fixed cutoffs. An important

practical advantage of this approach is that the typically complex updating mechanisms for

cutoffs (see, e.g., Cowles, 1996) are not required. In addition to the argument above, in

section 4.1 we provide empirical evidence that the model is robust to the choice of cutoffs.

We conclude with a remark regarding two parametric models that result as limiting

cases of the DP mixture model (2) – (7) when M → 0+ and M → ∞. The former case

yields the multivariate probit model, i.e., θ1 = ... θn = θ with θ | λ,Σ,D ∼ G0. The

latter case results in a parametric exchangeable mixture model, i.e., the θi, conditionally on

λ,Σ,D, become i.i.d. G0. Given the discreteness of G, we expect the DP mixture model

to outperform these parametric models, in terms of posterior predictive inference, when

clusters are anticipated in the latent variables associated with the contingency table. In

section 4 we offer a comparison of the nonparametric model with both of the parametric

models above.
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2.2 Prior Specification

The practical use of model (2) – (7) requires adopting specific values for ν, a0, b0, b, c, q,

Q, B and C.

The discrete nature of the DP realizations leads to a clustering structure defined by the

grouping together of subjects with identical θi. Denote by n∗ the number of resulting clus-

ters. Then, E(n∗|M) ≈ M log ((M + n)/M) and Var(n∗|M) ≈ M {log ((M + n)/M) − 1}

(see, e.g., Liu, 1996). Using the fact that a priori E(M) = a0/b0 and Var(M) = a0/b
2
0 and

an additional approximation based on Taylor series expansions we get

E(n∗) ≈ a0

b0
log

(

1 +
nb0
a0

)

Var(n∗) ≈ a0

b0
log

(

1 +
nb0
a0

)

− a0

b0
+

{

log

(

1 +
nb0
a0

)

− nb0
a0 + nb0

}2 a0

b20
.

Equating these expressions with prior judgement for the mean and variance of n∗ we obtain

two equations that we can numerically solve for a0 and b0.

To provide a default specification for the remaining hyperparameters, we consider model

(2) – (7) with M → 0+, i.e., the probit model, Zi
iid∼ Nk(m,S), with prior (m,S)|λ,Σ,D ∼

G0 and the hyperpriors for λ, Σ and D given in (7). For each dimension of the contingency

table, j = 1, . . . , k, we fix a rough approximation of the center and range of Zj by computing

approximate center ej and range rj of the cutoffs {γj,1, . . . , γj,Cj−1}. (For instance, for the

data set of section 4.2 we use cutoffs −1, 0, 1, 2 and take ej = 0 and rj = 10, a value about

3 times the actual range, γj,Cj−1 − γj,1, of the cutoffs.) Let H = diag((r1/4)
2, . . . , (rk/4)

2).

Matching (e1, . . . , ek) and H with the prior moments for m we find q = (e1, . . . , ek) and

(b−k−1)−1B+Q = 2H , where the left-hand sides of these two expressions arise as marginal

prior moments for m. Additionally, in the latter equality we used an extra variance inflation
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factor 2. Splitting 2H equally between the two summands we set (b−k−1)−1B = Q = H .

We used b = k + 2 to fix the largest possible dispersion in the prior for Σ (subject to

finite E(Σ)). To fix ν, c and C, note that E(S) = (ν − k − 1)−1cC, and smaller values of

(ν − k − 1)−1c yield more dispersed priors for D. This observation can be used to specify

ν and c (with c ≥ k that ensures a proper prior for D). Finally, C is specified by setting

E(S) = H.

3 Computational Approach to Posterior Inference

Let θi = (mi,Si), θ = (θ1, . . . ,θn), Z = (Z1, . . . ,Zn), and data = {V 1, . . . ,V n}. We

use Gibbs sampling to explore the posterior distribution p(Z,θ,M,λ,Σ,D | data). The

required full conditionals are obtained by considering the finite dimensional posterior that

emerges after integrating out the random measure G (e.g., Blackwell and MacQueen, 1973),

p(Z,θ,M,λ,Σ,D | data) ∝
n

∏

i=1

p(V i|Zi)
n

∏

i=1

pNk
(Zi|θi)p(θ|M,λ,Σ,D)p(M)p(λ)p(Σ)p(D), (8)

where p(θ | M,λ,Σ,D) arises by exploiting the Polya urn characterization of the DP

(Blackwell and MacQueen, 1973) and the other factors are defined by (2), (3) and (7).

To sample latent variables Z, note that the full conditional posterior distribution of Zi

depends only on V i, mi and Si and is proportional to

exp
{

−(Zi − mi)
T S−1

i (Zi − mi)/2
}

k
∏

j=1

I{γj,`j−1 < Zij ≤ γj,`j
},

where (`1, . . . , `k) is defined by the value of V i. To update Zi we draw from each of

its coordinates, conditional on the rest. These conditional distributions are obtained by
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considering first the univariate normal that results after the conditioning is done in the

non-truncated multivariate version, and truncating this to the interval (γj,`j−1, γj,`j
].

Updating the latent mixture parameters θ and the hyperparameters λ, Σ, D and M

proceeds with standard posterior simulation methods for DP mixtures. See, for example,

MacEachern and Müller (1998).

For the following discussion it is convenient to reparameterize the latent variables θ =

(θ1, . . . ,θn). The discrete nature of the DP implies positive probabilities for ties among the

θi = (mi,Si). Let n∗ ≤ n be the number of unique values among the θi. Denote the set of

unique values (clusters) by θ∗ = (θ∗

1, . . . ,θ
∗

n∗), where θ∗

r = (m∗

r,S
∗

r). Let w = (w1, . . . , wn)

be a vector of configuration indicators with wi = r if and only if θi = θ∗

r , and let nr be the

size of the rth cluster. Then (θ∗,w) is an equivalent representation of θ, with θi = θ∗

wi
.

Implementing L iterations of the earlier described MCMC algorithm we obtain posterior

samples θ∗

l , wl, n
∗

l , Z l, Ml, λl, Σl, Dl, l = 1,...,L. Posterior draws n∗l and (m∗

rl,S
∗

rl),

r = 1,...,n∗l , indicate the number of clusters, and their associated locations and covariance

matrices, suggested by the data. The marginal posterior distribution of ρi corresponding

to a data point V i is implicit in the posterior of Si, i = 1,...,n.

We next turn to the posterior predictive distribution for a future observation V 0. Denote

by Z0 the associated latent vector. The assumptions of model (2) – (7) yield p(V 0,Z0 |

data) = p(V 0 | Z0) p(Z0 | data), where p(Z0 | data) is the posterior predictive distribution

of Z0 that can be developed using the structure induced by the DP prior. Denoting by φ =

(θ∗,w,M,λ,Σ,D) the entire parameter vector,

p(Z0 | data) =

∫ ∫

pNk
(Z0 | m0,S0) dp(m0,S0 | φ) dp(φ | data) (9)
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where

p(m0,S0 | φ) =
M

M + n
G0(m0,S0) +

1

M + n

n∗

∑

r=1

nrδ(m∗

r ,S∗

r)(m0,S0). (10)

Note that the association in the posterior predictive distribution for the ordinal variables,

p(V 0 | data), is driven by the dependence structure in the posterior predictive distribution

for the latent variables, p(Z0 | data), and this, in turn, is parametrized by (m0,S0).

Moreover, expressions (9) and (10) readily provide draws from p(Z0 | data) and Monte

Carlo approximations to p(z0 | data) for any grid of values z0. They also clarify structure

and the nature and amount of learning implied by the model. Note that p(Z0 | data)

emerges by averaging, with respect to the posterior p(φ | data), the distribution

p(Z0 | φ) =
M

M + n

∫

pNk
(Z0 | m0,S0)dG0(m0,S0) +

1

M + n

n∗

∑

r=1

nrpNk
(Z0|m∗

r,S
∗

r).

(11)

This is a mixture of multivariate normals, specified by the distinct locations, m∗

r , and

covariance matrices, S∗

r, with an additional term that allows for a new cluster. The weight

for this additional term decreases with increasing sample size, arguably an appealing feature

of the model. As we observe more and more data, the chance of new patterns emerging in

future observations decreases.

Finally, of interest is also inference for the table cell probabilities. For any cell (`1, . . . , `k)

let A`1,...,`k
=

k
⋂

j=1

{

γj,`j−1 < Zj ≤ γj,`j

}

denote the corresponding range for the latent vari-

ables. We find

P (V1 = `1, . . . , Vk = `k | G) = P (A`1,...,`k
| G) =

∫ ∫

A`1,...,`k

dpNk
(Z | m,S) dG(m,S)

i.e., P (V1 = `1, . . . , Vk = `k|G) is a linear functional of f(·|G). Its posterior can be obtained

using the approach of Gelfand and Kottas (2002). We omit details here simply noting
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that the approach uses posterior draws from p(φ | data) and involves approximation of

DP realizations, using the constructive definition in Sethuraman (1994), and evaluation of

k-dimensional normal probabilities.

4 Data Illustrations

We present results from the analysis of two data sets in sections 4.1 and 4.2, after discussing

below model comparison and a simple diagnostic that, under k = 2, can indicate when a

mixture of normal probit model might be preferred over a single bivariate normal model.

To define such a diagnostic, we consider the table (adjacent) log odds ratios, ψij =

log pi,j + log pi+1,j+1 − log pi,j+1 − log pi+1,j, i = 1, ..., C1 − 1, j = 1, ..., C2 − 1. Denoting

by f(z1, z2) the density of the underlying latent variables (Z1, Z2), the log odds ratios ψij ,

for each table cell (i, j), can be viewed as a discrete second difference approximation to

∂2 log f(z1, z2)/∂z1∂z2, which is a constant (that depends on the correlation) for a normal

density f(z1, z2). Hence a large range, or, even more emphatically, different signs, in the

observed log odds ratios point to the potential limitations of a probit model. Moreover, as

we illustrate in sections 4.1 and 4.2, model-based posterior inference for the ψij can be used

to compare the probit model with the nonparametric model.

Regarding formal model comparison, Basu and Chib (2003) discuss the use of Bayes

factors for DP mixture models. Alternatively, one could consider cross validation model

comparison criteria. We illustrate the use of a criterion of this type in Section 4.1.
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4.1 A Simulated Data Set

We test the performance of the proposed approach using simulated data from a non-standard

distribution for the underlying latent variables. Specifically, setting k = 2, we generated

n = 100 latent observations from a mixture (with equal weights) of two bivariate normals

with means (−1.5,−1.5) and (0.5, 0.5), variances (0.25, 0.25) for both components, and

covariances −0.175 and 0.0875, respectively. The latent data are plotted in Figure 1. Using

cutoffs −2.5, −1.5, −0.5, 0.5, 1.5 for both latent variables, a contingency table (see Table

1) is generated by grouping the latent data. For this table, empirical log odds ratios can be

computed for only two cells, specifically, ψ22 = −3.0 and ψ44 = 1.2. These values suggest

different dependence structure in two different parts of the table and hence indicate that a

single bivariate normal model for the latent variables might not suffice.

We used the MCMC algorithm of section 3 to fit the model. Posterior inference is

quite robust to different values of prior hyperparameters. For an illustration, Figure 1 plots

the posterior predictive density p(z0|data) under four alternative priors for M , specifically,

Gamma(a0, b0) distributions with (a0, b0) = (2, 12), (2, 5.5), (2, 1.8), and (2, 0.41), yielding

E(n∗) ≈ 1, 2, 5, and 15, respectively. The respective (0.05,0.25,0.5,0.75,0.95) posterior

percentiles for n∗ are (2,2,2,2,3), (2,2,2,3,4), (2,2,3,4,5), and (2,2,3,4,6). Posterior inference

on n∗ is highly informative and consistent across alternative priors. In all cases, the posterior

for n∗ indicates the need for at least two components in the mixture model. For the other

hyperparameters, following section 2.2 and based on ej = 0 and rj = 10, j = 1, 2, we take

q = (0, 0)T , H = diag(6.25, 6.25), Q = B = H and b = 4 for the priors for λ and Σ.

Moreover, we set ν = 10, c = 5 and C = diag(8.75, 8.75) yielding a rather dispersed prior
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for D. The posteriors of λ, Σ and D (not shown), being very concentrated compared with

their priors, indicate that the prior choices are vague compared to the likelihood, as well as

that, at least with this sample size, the data enable learning for the model hyperparameters.

The DP mixture model successfully captures the clustering in the cells of the table

driven by the bimodal underlying distribution for latent variables. Clustering in terms of

locations is depicted in Figure 1. Clustering with regard to the dependence structure is

illustrated in Table 1 where we provide posterior medians for the log odds ratios (for all

cells (i, j) for which the ergodic averages of posterior draws for ψij are numerically stable).

In addition, 95% posterior interval estimates for ψ22 and ψ44 (with respective observed

values −2.996 and 1.204) are given by (−3.360,−1.034) and (−0.305, 1.682), respectively.

Association between the ordinal variables can also be assessed through inference for the ρi.

The posterior means E(ρi | data), i = 1,...,100, range from −0.712 to −0.686, for 52 pairs

(Zi1, Zi2) corresponding to the upper-left part of Table 1, and from 0.082 to 0.177, for the

remaining 48 pairs (Zi1, Zi2) corresponding to the lower-right part of Table 1. The posterior

predictive distribution of ρ0 = S0,12/(S0,11S0,22)
1/2 is bimodal with modes at −0.725 and

0.255. See expression (10) for the posterior predictive distribution of S0. This posterior

predictive distribution includes averaging over the future V 0.

We next turn to the comparison of the nonparametric model (model M1) with the

two parametric competitors discussed in section 2.1, i.e., the probit model (model M2)

and the exchangeable mixture model (model M3). We used the same priors on λ, Σ

and D, given above, for all three models and a Gamma(2,1.8) prior on M . Figure 1

provides evidence in favor of the nonparametric mixture model. Moreover, as Table 1

indicates, the probit model fails to capture the clustering in the log odds ratios suggested
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by the data, whereas the nonparametric model is more successful in this regard. Lastly,

we consider a formal model comparison criterion based on cross validation. We evaluate

Q(Mr) = n−1
∑n

i=1 log pMr(V i | V (−i)), where pMr(· | V (−i)) is the posterior predictive

distribution, under modelMr, based on the data vector V (−i) that results after excluding the

ith observation V i (see, e.g., Bernardo and Smith, 2000, p. 403). We find Q(M1) = −2.327,

Q(M2) = −2.793 and Q(M3) = −2.888. Not surprisingly for the simulated data, the cross-

validation criterion favors M1.

Finally, to address sensitivity of posterior inference with respect to the choice of the

cutoff points, we compute marginal posterior distributions for the cell probabilities p`1`2 =

P (V1 = `1, V2 = `2|G), `1, `2 = 1, . . . , 6, under different choices for the cutoffs and a wide

range of priors for M . As anticipated, results were robust to both specifications. We plotted

the marginal posterior distributions for the unknown table cell probabilities, using two sets

of cutoffs and two alternative priors for M . Specifically we used the two sets of cutoffs

{−2.5,−1.5,−0.5, 0.5, 1.5} and {−25,−15,−5, 5, 15}. As alternative priors for M we used

a Gamma(2,0.9) and a Gamma(2,12) distribution. Marginal posterior density plots (not

shown) were practically indistinguishable under all four combinations of cutoffs and priors.

4.2 A Data Set of Interrater Agreement

We consider a data set from Melia and Diener-West (1994) reporting extent of scleral

extension (extent to which a tumor has invaded the sclera or “white of the eye”) as coded

by two raters, A and B, for each of n = 885 eyes. The coding scheme uses five categories: 1

for “none or innermost layers”, 2 for “within sclera, but does not extend to scleral surface”, 3

for “extends to scleral surface”, 4 for “extrascleral extension without transection” and 5 for
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“extrascleral extension with presumed residual tumor in the orbit”. The data set is available

from the StatLib data sets archive at http://lib.stat.cmu.edu/datasets/csb/ch16a.dat. We

provide the observed cell relative frequencies in Table 2. The 10 empirical log odds ratios

that can be computed for this table range from −0.843 to 1.689, hence indicating that a

single bivariate normal will likely not be a sufficiently flexible model for the latent variables.

To fit the model to these data, we use cutoffs −1, 0, 1, 2 for both variables. Again,

following section 2.2, we use ej = 0 and rj = 10, j = 1, 2. Hence the priors for λ, Σ and

D are the same as in section 4.1. In addition, we take a Gamma(2,2.3) prior for M , which

yields E(n∗) ≈ 6 and
√

Var(n∗) ≈ 4.29. As expected, based on the results of section 4.1

and the larger sample size available here, experimentation with other prior choices for λ,

Σ, D and M revealed robustness of posterior results.

An aspect of the inference that is interesting for many applications is the association

between the ordinal variables. Such inference is provided in ρ0, the correlation coefficient

implied in S0. Panel (c) in Figure 2 shows the posterior for ρ0 under the DP mixture model.

For comparison, panel (d) shows the posterior under a bivariate probit model. Note how

the probit model underestimates the association of the ordinal variables, as reported by

ρ0. This happens because the probit model is forced to fit a single covariance matrix for

the latent data, thus failing to recognize clusters that might be present in the data. This

can be seen by comparing panels (a) and (b) of Figure 2, which include draws from the

posterior predictive distribution p(Z0|data) under the nonparametric and the probit model,

respectively.

The (0.25, 0.5, 0.75) posterior percentiles for n∗ are given by (6, 7, 8). In fact, we obtain

P(n∗ ≥ 4 | data) = 1. Note that, although P(n∗ > 4 | data) = 0.943, we find that the four
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largest clusters always account for almost all of the probability mass. In general, we caution

against overinterpreting inference on n∗. To mitigate concerns related to the identifiability

of the mixture we recommend to use a prior on M , and thus indirectly on n∗, that strongly

favors small numbers of clusters n∗.

Figure 3 plots the posterior means of Zi1 against the posterior means of Zi2, arranged by

the posterior means E(ρi | data). Posterior summaries (means and 95% interval estimates)

for the table cell probabilities P (V1 = `1, V2 = `2|G), (`1, `2) = 1, ..., 5, are given in Table 2.

Finally, Figure 4 provides the posteriors for four log odds ratios, specifically, ψ11, ψ13, ψ41

and ψ43, under the DP mixture model and the probit model.

All the results indicate the utility of mixture modeling for this data set. Although one

of the clusters clearly dominates the others, identifying the other three is important. One

of them corresponds to agreement for large values (4 and 5) in the coding scheme, whereas

the other two indicate regions of the table where the two raters tend to agree less strongly.

5 Summary

We have proposed a nonparametric Bayesian approach to model multivariate ordinal data.

We have introduced a DP mixture model for latent variables defining classification proba-

bilities in the corresponding contingency table. Two features of the model were extensively

discussed. First, the flexibility provided by the probability model on latent variables allows

us to handle virtually any data structure. Second, this flexibility can be achieved with

fixed cutoffs, thus avoiding the most difficult computational challenge arising in posterior

simulation for related models. The two examples illustrate these points.
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Table 1: For the simulated data, posterior medians for log odds ratios under the DP

mixture model (in bold) and under the probit model (in italics). We only report inference for

log odds ratios for cells where corresponding MCMC summaries could be computed with

reasonable numerical accuracy. The observed cell relative frequencies are also included.

Rows correspond to V1 (latent Z1) and columns to V2 (latent Z2).

1 2 3 4 5 6

1 0 0 0 0.01 0 0

1.216 0.985 -2.835 1.003 -2.554 1.014

2 0 0.05 0.2 0 0 0

0.996 0.928 -2.061 0.942 1.056 0.986 1.024

3 0.01 0.2 0.04 0.01 0 0

1.004 -2.528 0.94 0.628 0.924 5.405 0.938 0.649 1.003 0.49

4 0.01 0 0 0.14 0.09 0

1.005 0.986 0.942 0.659 0.928 0.626 0.993 0.594

5 0 0 0 0.07 0.15 0.01

0.999 1.007 0.988 0.571 1.209 0.757

6 0 0 0 0 0.01 0
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Table 2: For the interrater agreement data, observed cell relative frequencies (in bold)

and posterior summaries for table cell probabilities (posterior mean and 95% central pos-

terior intervals). Rows correspond to rater A and columns to rater B.

1 2 3 4 5

1 .3288 .3264 .0836 .0872 .0011 .0013 .0011 .0020 .0011 .0008

(.2940, .3586) (.0696, .1062) (.0002, .0041) (.0003, .0055) (.0, .0033)

2 .2102 .2136 .2893 .2817 .0079 0.0080 .0079 .0070 .0034 .0030

(.1867, .2404) (.2524, .3112) (.0033, .0146) (.0022, .0143) (.0006, .0074)

3 .0023 .0021 .0045 .0060 .0 .0016 .0023 .0023 .0 .0009

(.0004, .0059) (.0021, .0118) (.0004, .0037) (.0004, .0059) (.0, .0030)

4 .0034 .0043 .0113 .0101 .0011 .0023 .0158 .0142 .0023 .0027

(.0012, .0094) (.0041, .0185) (.0004, .0058) (.0069, .0238) (.0006, .0066)

5 .0011 .0013 .0079 .0071 .0011 .0020 .0090 .0084 .0034 .0039

(.0001, .0044) (.0026, .0140) (.0003, .0054) (.0033, .0159) (.0011, .0090)
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Figure 1: Simulated data. Posterior predictive density p(z0|data) under the DP mixture

model with a Gamma(2,12), Gamma(2,5.5), Gamma(2,1.8) and Gamma(2,0.41) prior for

M (panels (a) - (d), respectively), the probit model (panel (e)), and the parametric ex-

changeable model (panel (f)). In all cases, p(z0|data) is overlaid on a plot of latent data.
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Figure 2: Interrater agreement data. Draws from p(Z0|data) and p(ρ0|data) under the DP

mixture model (panels (a) and (c), respectively) and the probit model (panels (b) and (d),

respectively).
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Figure 3: Interrater agreement data. Plots of pairs of posterior means (Zi1, Zi2) = (E(Zi1 |

data),E(Zi2 | data)), arranged by ρi = E(ρi | data). The top panel indicates four subsets for

ρi, (0.26, 0.32), (0.36, 0.38), (0.39, 0.47) and (0.48, 0.57) with 14, 28, 25 and 818 associated

pairs, respectively. The bottom four panels show (Zi1, Zi2) with the left bottom panel

corresponding to the (0.26, 0.32) subset for ρi, the right bottom panel to (0.36, 0.38), the

left top panel to (0.39, 0.47) and the right top panel to (0.48, 0.57).

28



1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

cell (1,1)

1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

−3 −2 −1 0 1 2

0
1

2
3

4
5

cell (1,3)

−3 −2 −1 0 1 2

0
1

2
3

4
5

−1 0 1 2 3

0.
0

1.
0

2.
0

3.
0

cell (4,1)

−1 0 1 2 3

0.
0

1.
0

2.
0

3.
0

−2 −1 0 1

0
1

2
3

4
5

cell (4,3)

−2 −1 0 1

0
1

2
3

4
5

Figure 4: Interrater agreement data. Posteriors for four log odds ratios under the non-

parametric model (solid lines) and the probit model (dashed lines). The circles denote the

corresponding empirical log odds ratios.

29


