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SUMMARY

We review simulation based methods in optimal design. Bvgueatility maximization, i.e., optimal
design, is concerned with maximizing an integral expressipresenting expected utility with respect
to some design parameter. Except in special cases neithenrdkimization nor the integration can be
solved analytically and approximations and/or simulatiased methods are needed. On one hand the
integration problem is easier to solve than the integragippearing in posterior inference problems.
This is because the expectation is with respect to the jogttilbution of parameters and data, which
typically allows efficient random variate generation. Oe thither hand, the problem is difficult be-
cause the integration is embedded in the maximization asddaossibly be evaluated many times for
different design parameters.

We discuss four related strategies: prior simulation; simag of Monte Carlo simulations; Markov
chain Monte Carlo (MCMC) simulation in an augmented proliglinodel; a simulated annealing type
approach.
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1. INTRODUCTION

Optimal design problems are concerned with maximizing etqebutility in a statistical exper-
iment. The maximization is over some design parameterD. The experiment is defined by
a modelp,(y | 6), i.e., a distribution of a vectay of observables conditional on some unknown
parameter vectaf. The model may depend on the design paramé&thence the subscrigt
The model is completed by a prior distributip(®) for the parameter vector. Utility is a func-
tion u(d, 8, y), for example negative squared error lass- —{6 — E(¢|y,d)}?, or something
more problem specific like = total number of successfully treated patients, etc. Sihee t
design parametethas to be chosen before observing the experiment, we neeakimize the
expectation of(-) with respect tq6, y). We can formally state the design problem as

d* = argmaxU(d), whereU(d) = /u(d,@,y) pa(0,y) dody. (1)
deD ——
p(0)pa(y | 9)

U(d) is the expected utility for actiod. Unless model and likelihood are chosen to allow ana-
lytic evaluation of the expected utility integral, the opél design problem requires numerical
solution strategies.

Chaloner and Verdinelli (1995) and Verdinelli (1992) prian extensive review of ana-
lytical and approximate solutions to Bayesian optimal glegiroblems, focusing on the tradi-
tional experimental design question of choosing covasiaiea regression problem, including
non-linear regression and linear regression with inteyest non-linear function of the param-
eters.

In this paper we explore different, simulation based stjiate Section 2 reviews the basic
concept of Monte Carlo simulation for the evaluatiortigil), including a proposal of “borrow-
ing strength” across simulations under different desimgsmoothing through simulated pairs
of design and observed utilities. Section 3 approachesrti@dgm with very different strate-
gies, using a model augmentation which defines an artificaability model on the triple of
design, data and parameters. Simulation in the augmentddlnsoshown to be equivalent to
solving the optimal design problem (1). Critical shortcogs of the proposed approach are
problems arising with flat and high dimensional expectelityisurfaces. Section 4 proposes
an idea reminiscent of simulated annealing which replalcesekpected utility surface by a
more peaked surface without changing the solution of thengbpdesign problem.

2. PRIOR SIMULATION

Except in special problems, the stochastic optimizatia@blem (1) does not allow a closed
form solution. Often the utility function(-) is chosen to allow analytic evaluation even if
a more problem specific utility/loss function were avai@blA typical example is the use
of preposterior variance on some parameters of interesgadsof total treatment success in
medical decision problems. More realistic utility functgocan be used in simulation based
solutions to the optimal design problem.

Most simulation based methods for optimal design are basat@observation that the
integral inU(d) is easily evaluated by Monte Carlo simulation. In most peaidp,(6,y) =
p(0)pa(y|0) is available for efficient random variate generation, alfayan approximation of
U(d) by

. 1M
U(d) = i > u(d, b3, yi), (2)

=1
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where{(6;,v:;), i = 1,..., M} is a Monte Carlo sample generateddy~ p(0), y; ~ pa(y|6;).
Since the prior probability model typically does not dependhe chosen desigh we do not
use a subscript for p(6). But no additional difficulties would arise if the prior weieedepend
ond in a given application.

Monte Carlo approximations of this type are routinely usedayesian optimal design
problems. In many examples part of the expected utilitygraecan be solved analytically,
leaving Monte Carlo simulation only for the remaining naraytic integration. Some recent
examples in the literature are the following studies.

Sun, Tsutakawa and Lu (1996) consider optimal design fongiaesponses, specifying
U(d) as expected posterior variance of some functiaf a binary response curve. Amongst
other strategies to evaluat&d), they use a combination of Monte Carlo integration with re-
spect toy and numerical quadrature for integration with respeét to

Carlin, Kadane and Gelfand (1998) discuss optimal desigrsiequential experiment. The
setup allows up td& observations (data monitoring points). The design defirgeping rule
which gives at each time a decision of whether to stop theraxpat or continue sampling to
the next step. Given that the trial is stopped at a certameste terminal decision problem
of choosing one of the two available actions can be solvetyacally. The design is param-
eterized in terms of a vectat of upper and lower bounds which decide continuation of the
experiment at each step by specifying continuation if thetgrdor mean on the parameter of
interest falls between the bounds, and termination otlserwMonte Carlo simulation from
pa(6,y) is used to evaluate expected utility for a given design. éndbntext of the sequential
design this strategy is referred to as forward simulation.

A more traditional method to evaluate sequential desigas backward induction (chapter
12, DeGroot 1970). Vlachos and Gelfand (1996) use MonteoGanhulation to evaluate the
continuation risk in a backward induction for a sequentesdign problem.

If at the time of the decision some data- p(x|6) is already available then the decision
needs to condition om. The priorp() is replaced by (¢|z). In the evaluation of (2), gen-
eratingd ~ p(6|z) possibly requires Markov chain Monte Carlo (MCMC) simutati For
example, Wakefield (1994) considers optimal design stiedeig a population pharmacoki-
netic study. The problem is to find the optimal dosage regifaea new patient. The decision
is made conditional on already observed datar earlier patients who were administered the
same treatment. Wakefield proposes Monte Carlo evaluatexpected utilities using a Monte
Carlo average as in (2), replacing the ppof) by the relevant posterigié | =). The required
posterior sampl& = {6;,: = 1,...,M} is generated by MCMC simulation. Compared to
parameter estimation, the solution of the optimal desigihlem comes at no additional com-
putational cost, since the MCMC posterior samplis already generated. In a similar decision
problem, Palmer and Muller (1998) consider the questiorhobsing an optimal schedule of
blood stem cell collections. The decision is a vectaf indicators for each of 10 possible
days withd; = 1 if a stem cell collection is scheduled for dayandd; = 0 otherwise. The
design space is the set of all possiblé vectors of such indicators. We evaludtéd) by a
Monte Carlo approximation like in (2). The decision is maded new patient, conditional
on dataxr from the previously observed patients. Thu8|z) replaces(d) as the relevant
distribution onf. As in Wakefield (1994), we proceed by generating via MCMC &ada
{6; ~p(@|z),i=1,...,M} and evaluating/(d) by (2).

In many problems the expected utility surfd¢gl) can be assumed continuous. The use of
(2) in the context of the optimal design maximization fadskploit such continuity. Separate
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large scale Monte Carlo simulation for each new value a@fcludes inefficient duplication
of effort in the following sense. In the course of the simiglaf assume we have already
evaluated’(d) and consider now another designwhich is close tal (in some appropriate
metric). Repeating the full Monte Carlo simulation foXd’) entirely neglects the already
available evaluation df (d).

In Muller and Parmigiani (1996) we propose a numerical optiBayesian design scheme
which does exploit such continuity if present. First seleaine designg; € D (possibly
on a grid). Then simulate experimerits, ;) ~ pq,(0,y), one for each chosen design. For
each simulated experimefd;, 6;,y;) we evaluate the observed utility = u(d;,0;,v;). In a
scatterplot ofl; andu; the integration in (1) can be replaced by a simple scattegphmothing
U(d), and the optimal design can be read off as the mode of the sneaote. Figure 1 shows
two typical examples. Under specific assumptions on theydespace, the utility function and
the chosen method of scatter plot smoothing we show thatgtimal design based dii(d) is
a consistent estimator far.
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Figurel. Simulated utilitiess; = u(d;, 6;,y;) for some designd;,i = 1,...,I. The left panel shows simulated

utilities for a design problem with a one-dimensional dagigrameter { = sample size on the horizontal axis).
The right panel corresponds to a bivariate design paraméfe= {% change, initial dosp). In both panels,
the points show the observed utilities = u(d;, 6;,y;) for the simulated experimentd;, 6;,y;). The smooth
curve/surface is the fitted functidh(d). Smoothing replaces the integration in (1). The mod& @f) gives the
optimal design. In the right panel, the estimated mode iscatéd with a white triangle. The left figure shows
simulated utilities in Example 1 of Muller and Parmigian®@6). The example in the right panel is taken from
Clyde, Muller and Parmigiani (1995b).

Erkanli, Soyer and Angold (1998) use the scheme in a probtemerning the estimation
of the prevalence of a rare disorder in a two phase design. In a first phase apémsive
screening test is administered. A proporti@nof the patients who screened positively are
subjected to a more expensive diagnostic test. For therpatieho tested negative on the
screening test, a proportiafy is chosen for the diagnostic test. The design problem is the
choice of optimal proportiong = (d;, d») Subject to an expected budget constraint. The design
criterion is minimum preposterior expected variancegfoiVe will return to this problem as
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Example 3 below.

3. AUGMENTED PROBABILITY SIMULATION

In Bielza, Muller and Rios Insua (1996) and Clyde, Muller &atmigiani (1995a) we propose
to solve the optimal design problem (1) by recasting the leralas a problem of simulation
from an augmented probability modeld, 8, y). A probability modelr(-) is defined in such a
way that the marginal distribution ihis proportional to the expected utility(d). Specifically,
assume is boundedy(d, 6, y) is non-negative and bounded and define an artificial digtdbu

h(d,8,y) o< u(d,0,y)p(0)pa(y|0)

on(d,#,y). Underh, the marginal distribution id is proportional tof u(d, 8, y)pa(8, y)dd dy =
U(d), i.e.,h(d) is proportional to the expected utility(d), as desired. The definition 6{d, 6, y)

is reminiscent of data augmentation as used in posterieréante (Tanner and Wong, 1987).
But in contrast to data augmentation the marginal distidoudf the original random variables
(6,y) is changed in the augmented model. Also, interest in the antgd model focuses on the
induced distribution of the artificially added latent vél&d, not on the original parameters.
Simulation fromi(-) can be used to solve the optimal design problem.

Algorithm 1. An MCMC scheme with stationary distribution h(d,0,y).
We use super-indic€sto indicate design parameters and corresponding utibitftes ¢ itera-
tions of the Markov chain.

1. Start with a desiga®. Simulate(d,y) from ps(0,y) = p(8) pp(y|0). Evaluateu® =
u(d®,0,y).

2. Generate a “candidatel’ from a probing distributiony(d|d°). Details of the probing
distribution will be discussed below.

4. Compute

a:min{l h(d,0,5) g(d°|oi>pdo<e,y>}:mm{1 ag<d°|oi>}
’h(doaeay) g((ﬂdO) pd(Nag) 7 )

N

(d,ul) = (d,@)  with probabilitya
' (d°,u%)  with probability1 — a

6. Repeat steps 2 through 5 until the chain is judged to haipally converged.

The algorithm defines an MCMC scheme to simulate frofi, 6,y), using a Metropolis-
Hastings chain with an independence proposal to up@ate. There still remains the spec-
ification of the probing distribution(d|d). Choosing a symmetric probing distribution, that
is one for whichy(d|d) = g(d|d), leads to a simple expression for the acceptance prolyabilit
a = min(1,a/u).

For later reference we note an alternative probing digtiobuleading to an algorithm
which is similar to a Gibbs sampler for posterior simulatidbenote withp the dimension
of the design space, and et (di, ..., d,). Replace steps 2 through 5 by a single steps 2"
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2'. Forj =1,...,p, generate a newvalu@ ~ h(dj|d},...,d}_l,dgH,...,dg).

To (approximately) generate fromid; | d;,: # j) we use the following random walk Metropolis
chain. Proceed like in steps 2 through 5 of Algorithm 1, bstéad ofy(d | d) use a probing
distributiong;(d | d) which changes only thg-th coordinate, i.e.d; = d;, i # j. Simulating
sufficiently many iterations of steps 2 through 5 wjthas probing distribution will generate
an approximate draw from(d; | di,...,d;_;,d}, ;... dp).

Algorithm 1, as well as the above descrlbed variation, aexisp cases of MCMC sim-
ulation as described in Tierney (1994). If the design spads an interval inkR? and0 <
u(d,8,y) < M for some bound/, then it follows from results in Tierney (1994) that the abov
described schemes define Markov chainglid, y) with stationary distributior.

The output from the MCMC simulation can be used in severalstayderive the optimal
design. First, the sample of simulat¢dcan be used to derive an estimate:@f). The mode
corresponds to the optimal design This is illustrated in the following Example 1.

Example 1. InBielza etal. (1996) we illustrated the scheme in an exartgden from Covaliu
and Oliver (1995). An electric company has to decide whdtheommission a conventional or
an advanced reactor. The company has the option of ordetasg af the advanced reactor. The
problem involves three decision nodés: (dy, do, d3) representing decisions whether or not to
commission the testi(), and which reactor type to decide for under the possibleameés of
the test, including a dummy outcome corresponding to “ni3 {ds, d3). There are two random
variablesy = (y1,v2), the outcome of the tesy() and the occurrence of an accidenf)( The
utility function includes a cost for commissioning the tesid for ordering the two reactor
types, and a payoff as a function of possible accidents axtaetypes. Decision space and
sample space are finite discrete with few possible reatimatonly, allowing many alternative
solution methods including straightforward analytic exsion of expected utility under all
possible decisions. For illustration we solve the problesimg simulation on the augmented
probability modelr(d,y) (there are no unobservable parameteirs this problem). Figure 2a
shows the histogram of simulated values for the decisiorrdod 0
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(a) h(d) (b) hy(d) < U(d)’, J = 10.

Figure2. Example 1. The left panel show&d) estimated by a histogram of simulated valdésThe right panel
shows the same estimate basedig(d) given in (3). Simulation fronh; is discussed in Section 4.

In many cases the approach used in Example 1 will be impediiedecause the expected
utility function, and thus:(d), are too flat around the mode, requiring prohibitive simalat
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sample sizes to estimate the mode. Instead we considertargolat of all simulated pairs
(d,u) and proceed as proposed in the previous section. A smoottirdiagh the simulated
points provides an estimate 0f(d), and the optimal design can be readily read off. In this
case, the MCMC simulation serves to stir sampling towardasof high expected utility and
replaces sampling on a grid. Note that the p&its) used for the smoothing have to include
all simulated designs, including proposalwhich were rejected as states of the Markov chain.
Compared to simulating an equal number of experiments fergds on a regular grid, as
proposed in Section 2, the computational effort involvedAlgorithm 1 is the same. The
evaluation of the acceptance probabilities in step 5 reguio additional computation beyond
the evaluation of the observed utilities). Example 2 illustrates this strategy.

2
< (o) 000\
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~

(a) U(dy,ds,ds, df) (b) U(d}, da, d, ds)

Figure3. Example 2. The estimated expected utility surfd¢é). The plots shol/(d) as a function ofd; , ds)
and (d», d4), respectively, keeping the other two coordinates fixed atetstimated optimal value. The solid
diamond marks the optimal design.

Example 2. In Rios Insua et al. (1997), we discuss a problem concernddtive operation

of two reservoirs. Four parameteis- (d<, dX, df, d$) represent the amount of water released
through turbines (subscrip) and spill gates (subscrig) on two reservoirs andC), re-
spectively. A probability model defines a distribution ofiows into the reservoirs. A utility
function formally combines a variety of goals related torggeleficit, final storage and water
spillage. Using Algorithm 1 we simulated experiments fo0,000 design choices Figure 3
shows a smooth fit through the simulated paits:). The value in each cell of the grid is the
average over all simulated utilities with desighflling within the respective grid cell.

Using the MCMC simulation incurs no additional computatiboost beyond evaluating
the utilitiesu(d, 6,y) for each considered design. The MCMC simulation keeps samfib-
cused in areas of high expected utility, and avoids unnacgsampling in areas of low ex-
pected utility. Figure 4 shows a histogram of the numberrags that each of 10,000 cells in
an equally spaceth x 10 x 10 x 10 grid over the design space were visited. Evenly spreading
simulations across the design space, as proposed in S@ctiwa would have in all cells an
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equal number of simulations. Using the MCMC scheme, desifpse tod* get heavily over-
sampled, as desirable for a more reliable reconstructidneoéxpected utility surface close to
the mode. 0
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Figure4. Example 2. A histogram of the number of designs which wersidered in each of the 10,000 cells of
the grid used in Figure 3. If the designs were evenly spread the grid all cells would include an equal number
of simulations.

The strategy used in Example 2 is feasible only for a low disi@mal decision space, say
up to around four dimensions. The next section describesra gamerally applicable variation
of the algorithm.

4. TIGHTENING THE EXPECTED UTILITY SURFACE

Simulation from the augmented modgl) does not entirely solve the original stochastic opti-
mization problem. It only transforms it to a problem of estting the mode of a distribution
based on a simulated sample. In place of (1) we face the prmobfededucing the mode of
h(d) from the simulation output. In the last two examples this wassible by considering
the histogram of simulated’s, or a surface through all simulated pajtsu). However, sim-
ple inspection of a histogram or surface can not provide &grsolution for at least two
reasons. First, in high dimensional design spaces derstity&ion becomes impracticable,
using histograms or any other method. Similarly, fitting gate through the simulated, «)
pairs becomes difficult for high dimensionalAnd secondly, expected utility surfaces in most
applications are very flat over a wide range of designs. Thislerequire unreasonably large
simulation sample sizes to estimate the modg(af.

Both problems can be addressed by replacing the targetidarigid) with a power trans-
formationh”’(d). This is the generic idea of simulated annealing (van Lasrh@nd Aarts,
1987). In the context of simulated annealing the recipracal 1/J is referred to as “anneal-
ing temperature”. Considering the lindit— 0 replaces the original target function with a point
mass at the mode. For sufficiently largesimulations from a probability density proportional
to theJ-th power of the original target function cluster tightlpand the mode. Direct applica-
tion of this scheme to the optimal design problem (1) is hiaddy the fact that we do not get
to evaluate:(d) itself, but only the augmented modell, 4, y). Taking a power oh(d, 8, y) or
of u(d, #,y) would, of course, not achieve the desired transformatidghemarginal. However,
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simulated annealing motivates the following related salne@onsider

J

hJ(d7 91’y17 .. ’0.]7 yJ) (8 H u(d7 Ojayj)pd<0j7yj)7 (3>
j=1

i.e., for eachd generate/ experimentg(6;,y;),j = 1,...,J} and consider the product of the
observed utilities. The implied marginal ihis proportional to the/-th power of the expected
utility, hs(d) o« U’(d). Note that substituting the average instead of the prodiithe.J
observed utilities in (3) would imply (d) as marginal distribution od, not the desired power
U’(d).

The modification to the earlier MCMC algorithm to generatenirr; is minimal. We
replace steps 1, 3 and 4 by:

Algorithm 2. Sampling from hy(d).

1. Simulate(d;,y;) ~ pp(6,y), j = 1,...,J. For each simulated experiment evaluafe=
u(d®,6;,y;). Defineu? = I1; u?.

3. Simulate(d;, ;) ~ p;6,y), j = 1,...,J. For each simulated experiment evaluaje=
u(d, Hj,yj). Definea = Hj Uj.

4. Computer = min(1,a/u°).

The modified algorithm can be used to replat@) by a more peaked transformatioi (d).

This can be done without any notion of an annealing schedeleusing one fixed valugonly.

For illustration, consider Example 1. Because of the nedffismall differences in expected
utility, a disproportionately large simulation sampleesiz needed to detect the optimal design
in this simple problem. Using’(d) the differences become exacerbated. Figure 2b shows
U’ (d), using.J = 10. The following Example 3 illustrates the same strategy inoaentomplex
decision problem.

V7
7 AN
B 0 0 o eSS
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(a) U(d) (b) {U(a)}*

Figure 5. Example 3. The estimated expected utility surfei¢é) and the distributiort; (d) o {U(d)}*° from
which designs were simulated. Sampling fropfocuses simulations around the mode.
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Example 3. We implement the modified algorithm for the two phase desigiblem de-
scribed in Erkanli, Soyer and Angold (1998). The problem wascribed earlier in Section
2. Figure 5a shows estimated expected utilities as a fumdfal = (di,d2). We use the
MCMC scheme of Algorithm 2 to select the desighat which experiments were simulated.
This achieves a simulation which concentrates effortsraddhe mode, and uses only few sim-
ulations for areas of the parameter space away from the aptlesign. This is illustrated in
Figure 5b. 0

The strategy used in Example 3 relied upon the low dimens§tgrod the decision vector,
and would not be feasible in higher dimensions. For higheredisional applications Algo-
rithm 2 can be embedded in an annealing scheme. Starting.with1 use an “annealing
schedule” to increasé over iterations, i.e.J = J(t). In Section 3 we described a Gibbs sam-
pler like variation of Algorithm 1. We can define an analogwasgation of Algorithm 2. If the
decision vector is a discregedimensional vectod = (di,...,d,) with d; € {1,...,L}, then
direct application of Theorem B from Geman and Geman (198&béishes convergence to
the optimal design. Let’* = supU(d), U, = infU(d) andA = U* — U,. The result requires
that the annealing schedule be bounded By < log(t)/(p A).

For practical use we do not propose a formal implementatfoanoannealing scheme.
Rather, we suggest to increag@nly until the simulated designs are sufficiently tightlysl
tered such that the (trimmed) sample mean of the simulatadmeis a reasonable approxima-
tion of the optimal design. Figure 6 illustrates this schemExample 2. The circles indicate
the designg’ generated in the simulated annealing scheme. The sample ahétze simula-
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(a) (di,d3) (b) (d3, d})
Figure 6. Example 2. Simulation output in a simulated annealing sehdéyote how the simulated points cluster
around the mode of expected utility surface shown in Figure 3

tion output provides a good approximation of the optimalgiesvithout the intermediate step
of reconstructing.(d).

Still, problems where continuity df (d) is an unreasonable assumption defy this strategy.
Designs with high expected utility can not necessarily heeeted to cluster together. In such
problems we are only left with the option of formal simulatethealing.
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Example 4. In Sanso and Muller (1999) we address a problem of choosinfatamonitoring
stations. Out of an existing network of 80 stations a subsataund 40 stations needs to be
selected. We define a utility function to formalize the airmmdking inference about rainfall
over the area on one hand, and minimizing cost on the othet. fidre utility function includes
a payoff each time the predictive residuals at any of theecui80 locations is in absolute value
below a certain thresholdl The predictive “residual” at a station which is actuallgluded in
the subset is defined as zero. The design parameter is a Weetdd, . .., ds) of indicators
with d; = 1 if stationi is included in the chosen subset, af)d= 0 otherwise. The high
dimensionality of the decision vector complicates the giegiroblem. In Sanso and Muller
(1999) we used Algorithm 1, together with an idea proposeBli@hza et al. (1996). Using a
hierarchical clustering tree of the simulated designs wetdireas where simulations cluster.
Alternatively, Figure 7 illustrates the use of the simuthéanealing algorithm described
above. 0

u(d)

\ T T T T T
0 500 1000 1500 2000 2500
ITERATION

Figure 7. Example 4. Estimatelf (d') for simulated designd’, t = 1,...,T. EvaluatingU (d') is not part of
the algorithm and was separately computed for this plofagisi Monte Carlo approximation (2) with/ = 100.
The numerical standard errors are approximatel§y. The white line is a loess fit through the scatterplot showing
the steady increase in expected utility.

5. DISCUSSION

We have proposed several schemes to implement simulatsedbaptimal Bayesian design.
None of the proposed algorithms is sufficiently general aalist to allow routine applica-
tion without adaptation to the specific problem. Rather, ghiposed algorithms should be
understood as examples for possible strategies.

The discussion was in the context of solving optimal desigibiems specified in the form
of a probability model, a decision space, and a utility fimgtbut could of course be used to
solve decision problems defined in any equivalent alteraatiay. For example, influence dia-
grams are used for a graphical representation of decisairigms. See, for example, Shachter
(1986) or Shenoy (1995) for a definition and review of solutstrategies. The algorithms de-
fined in this paper can be used as simulation based solutiategies for influence diagrams,
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including arbitrary, possibly continuous random variagbéend decision nodes. In fact, Jen-
zarli (1995) proposed the use of Gibbs sampling estimadet® (@valuatd/(d) in the context
of influence diagrams (Gibbs sampling rather than indepstrgiempling is required since the
decision is possibly made conditional on some data knowinetitne of decision making).

An interesting variation in the simulated annealing scheliseussed in Section 4 is the
use of probing distributions which incorporate some apipnaxe knowledge of the optimal
design. Laud, Berliner and Goel (1992) and Fei and Berlih®91) discuss such strategies in
a more general context.

The optimal design problem (1) is formally similar to the lplem of maximum like-
lihood estimation with normalization described in Geye®94). Given a family{hy(z) :

9 e ©} of non-negative integrable functions, fiddo maximize the normalized likelihood
1(6) = ho(x)/ [ ho(z")dz'. Geyer (1994) discusses a solution based on replacing tbgrah
c(6) = [ hg(x)dx by a Monte Carlo estimate based arMonte Carlo simulations. The pa-
per gives conditions under which the resulting approxioratj(4) hypoconverges ta¢), and
maximum likelihood estimate, derived fromi,,(-) converge to the maximum likelihood esti-
mated derived fromi(-). Hypoconvergence is a type of convergence of a sequencadidns
defined and explained in Geyer (1994).
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