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MATHEMATICAL 

GAMES 

Extraordinary nonperiodic tiling 

that enriches the theory of tiles 

by Martin Gardner 

I
n August, 1975, at the end of a two­

part article on tiling the plane with 
congruent convex polygons, I 

promised a later article on nonperiodic 
tiling. This column fulfills that promise 
and presents for the first time a remark­
able nonperiodic tiling discovered by 
Roger Penrose, a British mathematical 
physicist. First let me give some defini­
tions and background. 

A periodic tiling is one on which you 

can outline a region that tiles the plane 
by translation, that is, by shifting the 
position of the region without rotating 
or reflecting it. M. C. Escher, the Dutch 
artist, is famous for his many pictures of 
periodic tilings with shapes that resem­
ble living things. The illustration below 
is typical. The colored area outlines a 
fundamental region that tiles by transla­
tion. Think of the plane as being covered 
with transparent paper on which each 

A periodic tessellation by M, C. Escher (1938) 
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tile is outlined. Only if the tiling is peri­
odic can you shift the paper, without 
rotation, to a new position where all out­
lines again exactly fit. 

An infinity of shapes-for instance the 
regular hexagon-tile only periodically. 
An infinity of other shapes tile both peri­
odically and nonperiodically. A check­
erboard is easily converted to a nonpe­
riodic tiling by identical isosceles right 
triangles or by quadrilaterals. Simply bi­
sect each sq uare as is shown at the left in 
the top illustration on the opposite page, 
altering the orientations to prevent peri­
odicity. 

Isosceles triangles also tile in the radi­
al fashion shown in the center of the 
illustration. Although the tiling is highly 
ordered, it is obviously not periodic. As 
Michael Goldberg pointed out in a 1955 
paper titled "Central Tessellations." 
such a tiling can be sliced in half, and 
then the half planes can be shifted one 
step or more to make a spiral form of 
nonperiodic tiling, as is shown at the 
right in the illustration. The triangle can 
be distorted in an infinity of ways by 
replacing its two equal sides with con­
gruent lines as is shown in the middle 
illustration on the opposite page. If the 
new sides have straight edges, the result 
is a polygon of 5, 7, 9, 11. . .  edges that 
tiles spirally. The bottom illustration on 
the opposite page shows a striking pat­
tern obtained in this way from a nine­
sided polygon. It was first found by 
Heinz Voderberg in a complicated pro­
cedure. Goldberg's method of obtaining 
it makes it almost trivial. 

In all known cases of nonperiodic til­
ing by congruent figures the figure also 
tiles perodically. The right part of the 
middle illustration on the opposite page 
shows how two of the Voderberg en­
neagons go together to make an octagon 
that tiles periodically in an obvious way. 

Another kind of nonperiodic tiling is 
obtained by tiles that group together 
to form larger replicas of themselves. 
Solomon W. Golomb calls them "rep­
tiles." (See Chapter 19 of my book Un­
expected Hanging.) The bottom illustra­
tion on page 112 shows how a shape 
called the "sphinx" tiles nonperiodically 
by giving rise to ever larger sphinxes. 
Again, two sphinxes (with one sphinx 
rotated 180 degrees) tile periodically in 
an obvious way. 

Are there sets of tiles, having two or 
more different shapes, that tile only non­
periodically? By "only" we mean that 
neither a single shape or subset nor the 
entire set tiles periodically but that by 
using all of them a nonperiodic tiling is 
possible. Rotating and reflecting tiles 
are allowed. 

For many decades experts believed no 
such set exists, but the supposition 
proved to be untrue. In 1961 Hao Wang 
became interested in tiling the plane 
with sets of unit squares whose edges 
were colored in various ways. They are 
called Wang dominoes, and Wang wrote 
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Nonperiodic tiling with congruent shapes 

An enneagon (color at left) and a pair of enneagons (right) forming an octagon that tiles periodically 

A spiral tiling by Heinz Voderberg 
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Raphael M. Robinson's six tiles that force a nonperiodic tiling 

Three generations of sphinxes in a nonperiodic tiling 

112 

a splendid article about them for this 
magazine [see "Games, Logic and Com­
puters," by Hao Wang; SCIENTIFIC 
AMERICAN, November, 1965]. Wang's 
problem was to find a procedure for de­
ciding whether any given set of domi­
noes will tile by placing them so that 
abutting edges are the same color. Rota-' 
tions and reflections are not allowed. 
The problem is important because it re­
lates to decision questions in symbolic 
logic. Wang showed that if and only if 
there is a decision procedure, then any 
set of dominoes that tiles the plane non­
periodically will also tile periodically. 
He conjectured that such a procedure 
exists. 

In 1964 Robert Berger, in his thesis 
for a doctorate from Harvard Universi­
ty in applied mathematics, showed that 
Wang's conjecture is false. There is no 
general procedure. Therefore there is a 
set of Wang dominoes that tiles only 
nonperiodically. Berger constructed 
such a set, using more than 20,000 dom­
inoes. Later he found a much smaller set 
of 104. Last year Raphael M. Robinson 
reduced the set to 24. 

It is easy to change such a set of Wang 
dominoes into polygonal tiles that tile 
only nonperiodically. You simply put 
projections and slots on the edges to 
make jigsaw pieces that fit in the manner 
formerly prescribed by colors. An edge 
formerly one color fits only another for­
merly the same color, and a similar rela­
tion obtains for the other colors. By al­
lowing such tiles to rotate and reflect 
Robinson constructed six tiles [see top 
illustration at left] that "force nonperio­
dicity" in the sense explained above. 

At the University of Oxford, where he 
is Rouse Ball Professor of Mathematics, 
Penrose searched for still smaller sets. 
Although most of his work is in relativi­
ty theory and quantum mechanics, he 
continues the active interest in recrea­
tional mathematics he shared with his 
geneticist father, the late L. S. Penrose. 
(They are the inventors of the famous 
"Penrose staircase" that goes round and 
round without getting higher; EScher 
depicted it in his lithograph "Ascend­
ing and Descending. ") In 1973 Penrose 
found a set of six tiles that force nonpe­
riodicity. Soon he found a way to reduce 
them to four, and in 1974 he lowered 
them to two. 

Because the tiles lend themselves to 
commercial puzzles, Penrose was reluc­
tant to disclose them until he had ap­
plied for patents in the United King­
dom, the U.S. and Japan. Now that 
these patents are pending, I have his per­
mission to write about the tiles. I am 
equally indebted to John Horton Con­
way for many of the results of his study 
of the Penrose tiles. 

The shapes of a pair of Penrose tiles 
can vary, but the most interesting pair 
have shapes that Conway calls "darts" 
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Construction of dart and kite 

ACE (FOOL'S KITE) 

and "kites." The illustration at the top 
left on this page shows how they are 
derived from a rhombus with angles 
of 72 and 108 degrees. Divide the long 
diagonal in the familiar golden ratio 
of (1 + VS)!2 = 1.61803398 . . . •  then 
join the point to the obtuse corners. That 
is all. Let phi stand for the golden ratio. 
Each line segment is either 1 or phi as 
indicated. 

The rhombus of course tiles periodi­
cally. but we are not allowed to join the 
pieces in this manner. Forbidden ways 
of joining sides of equal length can be 
enforced by bumps and dents. but there 
are simpler ways. For example. we can 
label the corners Hand T (heads and 
tails) as is shown in the illustration at the 
top right on this page. and then give the 
rule that in fitting edges only corners of 
the same letter may meet. Dots of two 
colors could be placed in the corners to 
aid in conforming to this rule. but a pret­
tier method. proposed by Conway. is to 
draw circular arcs of two colors on each 
tile. as the illustration shows. Each arc 
cuts the sides as well as the axis of sym­
metry in the golden ratio: Our rule is 
that abutting edges must join arcs of the 
same color. 

To appreciate the full beauty and 
mystery of Penrose tiling one should 
make at least 100 kites and 60 darts. The 
pieces need be colored on one side only. 
The areas of the two shapes are in the 
golden ratio. This proportion also ap­
plies to the number of pieces you need 

T 

H 

T 

T 

A coloring of dart and kite to force lIonperiodicity 

SHORT BOW TIE 

Aces and bow ties that speed constructions 

of each type. You might think you need 
more of the smaller darts. but it is the 
other way around. You need 1.618 . . .  as 
many kites as darts. In an infinite tiling 
this proportion is exact. 

A good plan is to draw as many darts 
and kites as you can on one sheet. with a 
ratio of about five kites to three darts. 
using a thin line for the curves. The 
sheet can be photocopied many times. 
The curves can then be colored with. 
say. red and green felt-tip pens. Conway 
has found that it speeds constructions 
and keeps patterns stabler if you make 
many copies of the three larger shapes in 
the lower illustration on this page. As 
you expand a pattern you can continual­
ly replace darts and kites with aces and 
bow ties. Actually an infinity of arbitrar­
ily large pairs of shapes. made up of 
darts and kites. will serve for tiling any 
infinite pattern. 

A Penrose pattern is made by starting 
with darts and kites around one vertex 
and then expanding radially. Each time 
you add a piece to an edge you must 
choose between a dart and a kite. Some­
times the choice is forced. sometimes it 
is not. Sometimes either piece fits. but 
later you may encounter a contradiction 
(a spot where no piece can be legally 
added) and be forced to go back and 
make the other choice. It is a good plan 
to go around a boundary. placing all the 
forced pieces first. They cannot lead to a 
contradiction. You can then experiment 
with unforced pieces. It is always possi-

LONG BOW TIE 

ble to continue forever. The more you 
play with the pieces. the more you will 
become aware of "forcing rules" that 
increase efficiency. For example. a dart 
forces two kites in its concavity. creating 
the ubiquitous ace. 

There are many ways to prove that the 
number of Penrose tilings is uncount­
able. just as the number of points on a 
line is. These proofs rest on a surprising 
phenomenon discovered by Penrose. 
Conway calls it "inflation" and "de­
flation." The top illustration on the next 
page shows the beginning of inflation. 
Imagine that every dart is cut in half and 
then all short edges of the original pieces 
are glued together. The result: a new til­
ing (shown in color) by larger darts and 
kites. 

Inflation can be continued to infinity. 
with each new "generation" of pieces 
larger than the last. Note that the sec­
ond-generation kite. although it is the 
same size and shape as a first-generation 
ace. is formed differently. For this rea­
son the ace is also called a fool's kite. It 
should never be mistaken for a second­
generation kite. Deflation is the same 
process carried the other way. On every 
Penrose tiling we can draw smaller and 
smaller generations of darts and kites. 
This pattern too goes to infinity. 

Conway's proof of the uncountability 
of Penrose patterns (Penrose had earlier 
proved it in a different way) can be out­
lined as follows. On the kite label one 
side of the axis of symmetry L. the other 
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How a pattern is inflated 

The infinite sun pattern 

116 

R (for left and right). Do the same on the 
dart, using I and r. Now pick a random 
point on the tiling. Record the letter that 
gives its location on the tile. Inflate the 
pattern one step, note the location of the 
same point in a second-generation tile 
and again record the letter. Continuing 
through higher inflations, you generate 
an infinite sequence of symbols that is a 
unique labeling of the original pattern 
seen, so to speak, from the selected 
point. 

Pick another point on the original pat­
tern. The procedure may give a se­
quence that starts differently, but it will 
reach a letter beyond which it agrees to 
infinity with the former sequence. If 
there is no such agreement beyond a 
certain point, the two sequences label 
distinct patterns. Not all possible se­
quences of the four symbols can be pro­
duced this way, but those that label dif­
ferent patterns can be shown to corre­
spond in number with the number of 
points on a line. 

We have omitted the colored curves 
on our pictures of tilings because they 
make it difficult to see the tiles. If· you 
work with colored tiles, however, you 
will be struck by the beautiful designs 
created by these curves. Penrose and 
Conway independently proved that 
whenever a curve closes, it has a pentag­
onal symmetry, and the entire region 
within the curve has a fivefold symme­
try. At the most a pattern can have two 
curves that do not close. In most pat­
terns all curves close. 

Although it is possible to construct 
Penrose patterns with a high degree of 
symmetry (an infinity of patterns have 
bilateral symmetry), most patterns, like 
the universe, are a mystifying mixture of 
order and unexpected deviations from 
order. As the patterns expand they seem 
to be always striving to repeat them­
selves but never quite managing it. G. K. 
Chesterton once suggested that an extra­
terrestrial being, observing how many 
features of a human body are duplicated 
on the left and the right, would reason­
ably deduce that we have a heart on 
each side. The world, he said, "looks just 
a little more mathematical and regular 
than it is; its exactitude is obvious, but 
its inexactitude is hidden; its wildness 
lies in wait." Everywhere there is a "si­
lent swerving from accuracy by an inch 
that is the uncanny element in every­
thing . . .  a sort of secret treason in the 
universe." The passage is a nice descrip­
tion of Penrose's planar worlds. 

There is something even more surpris­
ing about Penrose universes. In a cu­
rious finite sense, given by the "local 
isomorphism theorem," all Penrose pat­
terns are alike. Penrose was able to show 
that every finite region in any pattern is 
contained somewhere inside every other 
pattern. Moreover, it appears infinitely 
many times in every pattern. 

To understand how crazy this situa­
tion is, imagine that you are living on an 

© 1976 SCIENTIFIC AMERICAN, INC

This content downloaded from 
��������������146.6.139.5 on Wed, 17 Jun 2020 16:16:12 UTC�������������� 

All use subject to https://about.jstor.org/terms



infinite plane tessellated by one tiling of 
the uncountable infinity of Penrose til­
ings. You can examine your pattern. 
piece by piece. in ever expanding areas. 
No matter how much of it you explore 
you can never determine which tiling 
you are on. It is no help to travel far out 
and examine disconnected regions. be­
cause all the regions belong to one large 
finite region that is exactly duplicated 
infinitely many times on all patterns. Of 
course. this is trivially true of any peri­
odic tessellation. but Penrose universes 
are not periodic. They differ from one 
another in infinitely many ways. and yet 
it is only at the unobtainable limit that 
one can be distinguished from another.· 

Suppose you have explored a circular 
region of diameter d. Call it the "town" 
where you live. Suddenly you are trans­
ported to a randomly chosen parallel 
Penrose world. How far are you from a 
region that exactly matches the streets 
of your home town? Conway answers 
with a truly remarkable theorem. The 
distance is never more than 2d! (This is 
an upper bound. not an average.) If you 
walk in the right direction. you need not 
go more than a distance of 2d to find 
yourself inside an exact copy of your 
home town. The theorem also applies to 
the universe in which you live. Every 
large circular pattern (there is an infinity 
of different ones) can be reached by 
walking a distance in some direction 
that is certainly less than twice the diam­
eter of the pattern and more likely about 
the same distance as the diameter. 

The theorem is quite unexpected. 
Consider an analogous isomorphism ex­
hibited by a sequence of unpatterned 
digits such as pi. If you pick a finite se­
quence of 10 digits and then start from a 
random spot in pi. you are pretty sure to 
encounter the same sequence if you 
move far enough along pi. but the dis­
tance you must go has no known upper 
bound. and the expected distance is 
enormously longer than 10 digits. The 
longer the finite sequence is. the farther 
you can expect to walk to find it again. 
On a Penrose pattern you are always 
very close to a duplicate of home. 

There are just seven ways that darts 
and kites will fit around a vertex. Let us 
consider first. using Conway's nomen­
clature. the two ways with pentagonal 
symmetry. 

The sun (shown in white in the bottom 
illustration on the opposite page) does 
not force the placing of any other piece 
around it. If you add pieces so that pen­
tagonal symmetry is always preserved. 
however. you will be forced to construct 
the beautiful pattern shown. It is 
uniquely determined to infinity. 

The star. shown in white in the top 
illustration at the right. forces the 10 
gray kites around it. Enlarge this pat­
tern. always preserving the fivefold sym­
metry. and you will create another flow­
ery design that is infinite and unique. 
The star and sun patterns are the only 

DEUCE 

The infinite star pattern 

QUEEN 

JACK 

The "empires" of deuce, jack and queen 
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Penrose universes with perfect pentago­
nal symmetry, and there is a lovely sense 
in which they are equivalent. Inflate or 
deflate either of the patterns and you get 
the other. 

The ace is a third way to tile around a 
vertex. It forces no more pieces. The 
deuce, the jack and the queen are shown 
in white in the bottom illustration on the 
preceding page, surrounded by the tiles 
they immediately force. As Penrose dis­
covered (it was later found independent­
ly by Clive Bach), some of the seven 
vertex figures force the placing of tiles 
that are not joined to the immediately 
forced region. The illustration below 

118 

shows in gray what is probably the ma­
jor part of the king's "empire." (The 
king is the colored area.) All the gray 
tiles are forced by the king. (Two aces, 
just outside the left and right borders, 
are also forced but are not shown.) 

This picture of the king's empire was 
drawn by a computer program written 
by Eric Regener of Concordia Universi­
ty in Montreal. His program deflates 
any Penrose pattern any number of 
steps. The colored lines show the do­
main immediately forced by the king. 
The black lines are a third-generation 
deflation in which the king and almost 
all of his empire are replicated. It is not 

The king's empire 

known how much farther the empire ex­
tends, and the smaller empires of the 
jack and the queen have not been com­
pletely mapped. 

The most extraordinary of all Penrose 
universes, essential for understanding 
the tiles, is the infinite cartwheel pattern, 
the center of which is shown in the illus­
tration on the opposite page and on the 
cover. The regular decagon at the cen· 
ter, outlined in heavy black (each side is 
a pair of long and short edges), is what 
Conway calls a "cartwheel. " Every 
point on any pattern is inside a cart­
wheel exactly like this one. By one-step 
inflation we see that every point will be 
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inside a larger cartwheel. Similarly. ev­
ery point is inside a cartwheel of every 
generation. although the wheels need 
not be concentric. 

Note the 10 light gray spokes that ra­
diate to infinity. Conway calls them 
"worms." They are made of long and 
short bow ties. the long ones being in the 
golden ratio to the short ones. Every 
Penrose universe contains an infinite 
number of arbitrarily long worms. In­
flate or deflate a worm and you get an­
other worm along the same axis. Ob­
serve that two full worms extend across 
the central cartwheel in the infinite cart­
wheel pattern. (Inside it they are not 

gray.) The remammg spokes are half 
worms. Aside from spokes and the inte­
rior of the central cartwheel. the pattern 
has perfect tenfold symmetry. Between 
any two spokes we see an alternating 
display of increasingly large portions of 
the sun and star patterns. 

Any spoke of the infinite cartwheel 
pattern can be turned side to side (or. 
what amounts to the same thing. each of 
its bow ties can be rotated end for end) 
and the spoke will still fit all surround­
ing tiles except for those inside the cen­
tral cartwheel. There are 10 spokes; thus 
there are 210 = 1.024 combinations of 
states. After eliminating rotations and 

The cartwheel pattern 

reflections. however. there are only 62 
distinct combinations. Each combina­
tion leaves inside the cartwheel a region 
that Conway has named a "decapod." 

Decapods are made up of 10 identical 
isosceles triangles with the shapes of 
half darts. The decapods with maximum 
symmetry are the buzzsaw and the star­
fish shown in the upper illustration on 
the next page. Like a worm. each trian­
gle can be turned. As before. ignoring 
rotations and reflections. we get 62 dec­
apods. 

VVhen the spokes are arranged the 
way they are in the infinite cartwheel 
pattern shown. a decapod called Bat-

119 
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man is formed at the center. Batman 
(shown in dark color) is the only deca­
pod that can legally be tiled. (No finite 
region can have more than one legal til­
ing.) Batman does not, however, force 
the infinite cartwheel pattern. It merely 
allows it. Indeed, no finite portion of a 
legal tiling can force an entire pattern, 
because the finite portion is contained in 
every tiling. 

Note that the infinite cartwheel pat­
tern is bilaterally symmetrical, its axis 
of symmetry going vertically through 
Batman. Inflate the pattern and it re­
mains unchanged except for mirror re-

120 

flection in a line perpendicular to the 
symmetry axis. The five darts in Batman 
and its two central kites are the only tiles 
in any Penrose universe that are not in­
side a region of fivefold symmetry. All 
other pieces in this pattern or any other 
one are in infinitely many regions of 
fivefold symmetry. 

. 

The other 6 1  decapods are produced 
inside the central cartwheel by the other 
6 1  combinations of worm turns in the 
spokes. All are "holes" in the following 
sense. A hole is any finite empty region, 
surrounded by an infinite tiling, that 
cannot be legally tiled. You might sup-

Three decapods 

A nonperiodic tiling with Roger Penrose's rhombuses 

pose each decapod is the center of infi­
nitely many tilings, but here Penrose's 
universes play another joke on us. Sur­
prisingly, 60 decapods force a unique 
tiling that differs from the one shown 
only in the composition of the spokes. 
Only Batman and one other decapod, 
called Asterix after a French cartoon 
character, do not. Like Batman, Asterix 
allows an infinite cartwheel pattern, but 
it also allows patterns of other kinds. 

Now for a startling conjecture. Con­
way believes, although he has not com­
pleted the proof, that every possible 
hole, of whatever size or shape, is equiv-
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alent to a decapod hole in the following 
sense. By rearranging tiles around the 
hole, taking away or adding a finite 
number of pieces if necessary, you can 
transform every hole into a decapod. If 
this is true, any finite number of holes in 
a pattern can also be reduced to one dec­
apod. We have only to remove enough 
tiles to join the holes into one big hole, 
then reduce the big hole until an untile­
able decapod results. 

Think of a decapod as being a solid 
tile. Except for Batman and Asterix, 
each of the 62 decapods is like an imper­
fection that solidifies a crystal. It forces 
a unique infinite cartwheel pattern, 
spokes and all, that goes on forever. If 
Conway's conjecture holds, any "for­
eign piece" (Penrose's term) that forces 
a unique tiling, no matter how large the 
piece is, has an outline that transforms 
into one of 60 decapod holes. 

Kites and darts can be changed to oth­
er shapes by the same technique de­
scribed earlier for changing isosceles tri­
angles into spiral-tiling polygons. It is 
the same technique that Escher em­
ployed for transforming polygonal tiles 
into animal shapes. The top illustra­
tion on this page shows how Penrose 
changed his darts and kites into chickens 
that tile only nonperiodically. Note that 
although the chickens are asymmetrical. 
it is never necessary to turn any of them 
over to tile the plane. Alas, Escher died 
before he could know of Penrose's tiles. 
How he would have reveled in their pos­
sibilities! 

By dissecting darts and kites into 
smaller pieces and putting them togeth­
er in other ways you can make other 
pairs of tiles with properties similar to 
those of darts and kites. Penrose found 
an unusually simple pair: the two rhom­
buses in the sample pattern in the bot­
tom illustration on the opposite page. 
All edges are the same length. The larg­
er piece has angles of 72 and 108 degrees 
and the smaller one has angles of 36 and 
144 degrees. As before, both the areas 
and the number of pieces needed for 
each type are in the golden ratio. Til­
ing patterns inflate and deflate and tile 
the plane in an uncountable infinity of 
nonperiodic ways. The nonperiodicity 
can be forced by bumps and dents or 
by a coloring such as the one suggest­
ed by Penrose and shown in the illus­
tration. 

We see how closely the two sets of 
tiles are related to each other and to the 
golden ratio by examining the penta­
gram in the bottom illustration on this 
page. This was the mystic symbol of the 
ancient Greek Pythagorean brother­
hood and the diagram with which 
Goethe's Faust trapped Mephistophe­
les. The construction can continue for­
ever, outward and inward, and every 
line segment is in the golden ratio to the 
next smaller one. Note how all four Pen-

Penrose's nonperiodic chickens 

rose tiles are embedded in the diagram. 
The kite is ABCD, the dart is AECB. The 
rhombuses. although they are not in the 
proper relative sizes. are AECD and 
ABCF. As Conway likes to put it. the 
two sets of tiles are based on the same 
underlying golden stuff. 

E 

Are there pairs of tiles not based on 
the golden ratio that force nonperiodic 
tiling? Is there a single piece that tiles 
only nonperiodically? These questions 
define two of the most intriguing prob­
lems that remain to be solved in the the­
ory of tiling. 

A �--------------------��----------�--------------------�� 

The Pythagorean pentagram 
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