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JJ
ohn Conway became interested in the kite and dart
tilings (Figure 1) soon after their discovery by Roger
Penrose around 1976 and was well known for his

analysis of them and the memorable terminology he
introduced. (John enhanced many subjects with colorful
terminology, probably every subject on which he spent
much time.) Neither Penrose nor Conway actually pub-
lished much about the tilings; word spread initially through
talks given by John, at least until 1977, when Martin
Gardner wrote a wonderful ‘‘Mathematical Games’’ article
in Scientific American [7], tracing their history back to
mathematically simpler tilings by Robert Berger, Raphael
Robinson, and others. I stumbled on the Gardner article in
1983 and became interested in the earlier tilings on
realizing they could be used to make unusual models of
solids in statistical physics.

I worked on this connection for a number of years, and
when Conway was visiting the knot theory group in Austin
in 1991, I asked him about a technical point on which I had
been thinking. Within two hours he answered my question,
and for the next 10 years or so we had frequent corre-
spondence, which among other things resulted in three
papers. It was great fun working with John, and I learned a
lot, in part due to his unusual approach to mathematical
research. I will describe our interaction and the results that
came out of it in that decade, but to place the work in
context, I will start with the prehistory as I first learned it
from Gardner’s article.

The Origins of Aperiodicity
In 1961, the logician Hao Wang considered the following
structure. Start with a finite number of unit squares in the
plane, and deform their edges with small bumps and dents
[11]. Wang was interested in tilings of the plane by trans-
lations of these ‘‘tiles,’’ a tiling being a covering without
overlap. (Think of the squarish tiles in a tiling fitting toge-
ther as in an infinite jigsaw puzzle, bumps fitting into
neighboring dents and with corners touching and pro-

ducing a copy of Z2.)
Wang asked whether there exists such a finite collection

of tiles (i.e., of edge deformations of unit squares) with
these two properties:

(a) One can tile the plane by translates of the tiles.
(b) No such tiling is periodic, that is, invariant under a pair

of linearly independent translations.

Intuitively, he was asking whether there is a finite collec-
tion of deformed squares such that translation copies can
tile the plane but only in complicated ways, namely
aperiodically. (Other notions of ‘‘complicated,’’ such as
‘‘algorithmically complex,’’ were considered by others later,
but this is the original, brilliant, idea.)

Wang was interested in this question because the solu-
tion would answer an open decidability problem in
predicate calculus, an indication of its significance. His
student Robert Berger finally solved the tiling problem in
the affirmative in his 1966 thesis [1], though Wang had
already solved the logic problem another way. Berger
found a number of such aperiodic tiling sets, well moti-
vated but all rather complicated. Over the years, nicer
solutions were found, in particular by Robinson, when the
example by Penrose appeared in Gardner’s column in
1977: two (nonsquare) shapes, a kite and a dart, with their
edges deformed (not shown in the tiling), appear in
Figure 2.

This example doesn’t quite fit Wang’s structure, though
the difficulties are easily resolved. The fact that the tiles are
not square isn’t so important, since they are still compatible
with nonorthogonal axes. And since the tiles appear in a
tiling in only 10 different orientations, one could simply call
rotated tiles different tile types and eschew rotations. In any
case, the tilings were certainly interesting to many readers
of Gardner’s column.

Wang’s invention of aperiodicity evolved in several
directions, including physics modeling, which was the
source of my original interest. This article celebrates John
Conway and his mathematics, and I will concentrate on the
geometric developments arising from the kite and dart til-
ings rather than the broader subject.

The Pinwheel and Quaquaversal Tilings
When John visited Austin in 1991, I pointed out the curious
fact that in all known aperiodic tiling sets, for instance the
kite and dart, the tiles appear in only a finite number of
relative orientations. By analogy to particle configurations,
this seemed artificial, and I thought there ought to be
examples without that special feature. On the face of it, this
was a hard problem—new aperiodic tiling sets are hard to
find, even without this new property—but there was a
natural path that I thought might yield such an example if
only one could solve a certain much simpler problem first. I
asked John whether there exists a polygon in the plane that
can be decomposed into smaller copies of itself, all the
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same size, such that their relative orientations include an
angle irrational with respect to p. He quickly came up with

the 1; 2;
ffiffiffi

5
p

right triangle with the decomposition shown in
Figure 3. This did not solve my aperiodic tiling problem,
but I hoped that I could now solve it using a beautiful
recent result due to Shahar Mozes concerning tilings with
squarish tiles. In his 1989 master’s thesis [8], Mozes had
studied the technique of Berger and Robinson and broadly
generalized it. I will give one ingredient in Mozes’s theorem
through an example.

A simple method for building a complicated sequence of
symbols is by substitution. For instance, the Thue–Morse
sequence

abbabaabbaababba. . .

can be generated by repeating the substitution a ! ab,
b ! ba, obtaining consecutively

a ! ab ! abba ! abbabaab ! � � � :

On applying this idea to arrays in the plane, the substitution
in Figure 4 gives rise to the infinite array in Figure 5.

Mozes used substitutions to generalize Robinson’s
technique of addding bumps and dents to the edges of the
unit squares so that the tilings by the jigsaw pieces are
precise analogues of those in the infinite substitutions. (In

his language, he was studying subshifts with Z
2 action, and

he proved how, given a substitution subshift, to construct a
subshift of finite type that is conjugate to it as a dynamical
system.) It should be noted that this process usually pro-
duces many differently deformed copies of each of the
original square shapes.

Iterating the pinwheel substitution of Figure 3 by
decomposing each triangle as indicated and then expand-

ing the whole collection by a factor
ffiffiffi

5
p

about some point

Figure 1. A kite and dart tiling.

Figure 2. Kite and dart tiles with edge deformations to force

aperiodicity.

Figure 3. Pinwheel substitution.

A
A

B

C

D

C A

D B
C D

D

C

B

A

B D

A C
B

Figure 4. Morse substitution.
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Figure 5. Morse tiling.
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and repeating leads to substitution pinwheel tilings such as
shown in Figure 6. They will fill the plane if one uses
appropriate expansion points, and they will have the

desired range of orientations, since the angle arctanð12Þ is

irrational with respect to p.
Before going further, I should mention a complication,

in that if I succeeded in finding deformed triangles that tile
the plane only as in Figure 6, it would require infinitely
many different tiles if one used only translations as in (a).
What I was hoping to do was find a finite number of tiles
satisfying the following two conditions:

(a0) Congruent copies can tile the plane.
(b) No such tiling is periodic.

Note that geometry is slipping in by the replacement of

the translation symmetries of Z
2 by congruences of the

plane in condition (a0), a change that is not in the spirit of
Wang’s invention, which was purely algorithmic, but which
opened the door to interesting geometry, as we will see.

The square grid is heavily used by Mozes (and Berger
and Robinson), so it was not at all clear that the technique
could be adapted when the triangular tiles are also rotated
as in the substitution of Figure 3. But I eventually adapted it
in 1992, though the proof is much more complicated than
that of Mozes. This gave a large but finite set of differently
deformed triangular tiles that tile only as in Figure 6.

John was not interested in this. I worked with him for
years, and it was clear from the beginning that he was very
particular as to what he was willing to think about. What
attracted him to the kite and dart tilings was the challenge,

which motivated Penrose also, to find an aperiodic tiling set
with as few tiles as possible. He loved puzzles, in particular
those involving geometry in the sense of Euclid. He loved
discrete math in various senses. What he did not love was
analysis, and there was no way I could get him interested in
the ergodic theory of Mozes, work that I found beautiful.

Anyway, the pinwheel example brought into play the
rotations in the plane in making aperiodic tiling sets, and
mathematically, it represents a shift in the subject toward
geometry, in the sense of Klein’s Erlangen program,
geometry viewed through the isometry groups of spaces.

Since the rotation group in three dimensions is much
richer than that in two dimensions, it was natural to see
what would happen if one started with a substitution there.
It was not clear that I could interest John in such a project.
Indeed, once my very complicated proof of the pinwheel
bumps and dents (more formally called matching rules)
was published, John sat me down in his office and
informed me that I had wasted a lot of effort and that he
would show me how to obtain matching rules for the
pinwheel substitution in a very simple way. The idea was to
look inside a pinwheel tiling at the neighborhoods of tiles
made not just by nearest neighbors, but by next-nearest
neighbors, etc., to some appropriate fixed finite depth, and
use these to define tiles with matching rules. This technique
was, in fact, known to work for some older examples
coming from a substitution, and John was sure that it was
true generally. So we spent some time on the floor looking
at larger and larger neighborhoods in a pinwheel tiling
drawn on a large piece of paper. Finally, John let me show
him a proof by Ludwig Danzer that this method cannot
work for the pinwheel. John was very surprised. And he
was now sufficiently appreciative of what I had done on
the pinwheel that our discussions became almost two-
sided.

Also about this time, I told him of an old but unpub-
lished example from 1988 by Peter Schmitt, a single
deformed unit cube in space, that was aperiodic. It was
based on the following simple idea. One puts bumps and
dents on four sides of the cube so it can tile space only if it
forms infinite slabs of unit thickness: think of cubes lined
up on a table, checkerboard fashion. Then on the tops cut
two or three straight grooves (i.e., dents) at an appropriate
angle with respect to the edges, and at the bottom corre-
sponding raised bumps (the reverse of the dents), but at an
angle with respect to the dents that is irrational with respect
to p (see Figure 7).

If you think for a moment, it is clear that this will allow
only tilings that consist of infinite parallel slabs rotated
irrationally with respect to one another and are therefore
aperiodic. Wonderfully simple. Anyway, John was very
interested. He had gotten interested in the kite and dart
tilings as the smallest known aperiodic set—two tiles—and
had spent a lot of time trying to find a single planar tile that
was aperiodic, but without success. And here was a simple
way to find such a tile in three dimensions! Immediately he
wanted to improve it. We spent a few hours (again on the
floor, over a large sheet of paper) smoothing out the
bumps and dents and came up with what was arguably a
nicer example. This illustrates well our different interests in

Figure 6. A pinwheel tiling.

� 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature, Volume 43, Number 2, 2021 17



aperiodicity. For John, it was the challenge of finding
simpler and nicer examples of aperiodic tiling sets, and
although I tried, I never understood the point.

In 1995, John was willing to consider my proposal to
investigate tilings in three dimensions exhibiting special
properties. Rather quickly, we (mostly John) arrived at the
‘‘quaquaversal’’ substitution of a triangular prism. The
prism, which looks like a door wedge, is shown in Figure 8
decomposed into eight smaller copies of itself. The fig-
ure shows two views of the decomposed prism, each fully
depicting only four of its components, those illustrated
more easily from that vantage. The original prism has five

edges of length 1, two edges of length
ffiffiffi

3
p

, and two edges
(hypotenuses) of length 2.

It was now harder to ‘‘see’’ what tilings of space are
produced by iterating the substitution, but Figure 9 gives
some sense of it by omitting many tiles in order to make the
structure inside visible. I saw no fundamental reason why

one could not extend the pinwheel technique to produce
matching rules for this three-dimensional example, so I
never tried, and of course John wasn’t interested in this
anyway.

This was our first serious joint project. Our objective was
to prove various properties of quaquaversal tilings that
were not obtainable in planar tilings such as the pinwheel.
For instance, if one looks into a planar substitution tiling,
the number of orientations of tiles that appear in an
expanding window will grow at most logarithmically with
the diameter of the window, as a simple consequence of
commutativity of rotations. I hoped that one could get
power growth in three dimensions, and in fact, we proved
this in [4]. It was not so easy, requiring analyzing the sub-
group of the rotation group through which the tile is turned
in the substitution process, namely the groups generated by
rotation about orthogonal axes, one by 2p=3 and the other
by 2p=4. (John liked to represent rotations by quaternions,
which was a new world for me.) We called this group
G(3, 4) and determined a presentation of it and its sub-
group G(3, 3). (Only G(4, 4) and G(2, n) are finite groups.)
This led to two more papers (with a third coauthor,
Lorenzo Sadun) [5, 6], which studied groups generated when
the angle between the rotation axes was more interesting
geometrically: ‘‘geodetic’’ angles, whose squared trigono-
metric functions are rational. (John had disapproved of my
choice of the pinwheel name—it seems the toy I based it on
is called something else in England—and once we were
working together, it was unquestioned that John would
produce terms such as ‘‘quaquaversal’’ and ‘‘geodetic.’’ He
imported the word quaquaversal from geology, where it
refers to structures oriented in all directions.)

Our results have had a number of applications, and in
particular, the quaquaversal tiling has lived up to its origi-
nal motivation. Both the pinwheel tilings and the
quaquaversal tilings provide easily computable partitions
of (2- and 3-dimensional) space that are statistically round
in the sense that the number of orientations of a tiling’s
components becomes uniform as the diameter of a window
grows into the tiling. Such tilings have therefore been usedFigure 7. A Schmitt tile.

Z

Y

X

3A

2A

1A

4A

Z

Y

X

1B

3B
4B

2B

Figure 8. Quaquaversal substitution: two views.
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together with numerical solutions of differential equations,
and other analyses of discrete data in space, for which one
wants to avoid artificial consequences of the symmetries of
cubic partitions. In this regard, the pinwheel suffers from
the slow (logarithmic) speed at which it exhibits its
roundness, and the quaquaversal tilings successfully over-
came this weakness. This subject is directly related to
expander graphs, and the quaquaversal tilings have
recently been analyzed in that context.

Quaquaversal tilings employ successive rotations about
orthogonal axes. To connect better with significant poly-
hedra, in our following papers with Sadun we replaced
right angles with geodetic angles and analyzed the sub-
groups of SOð3Þ this produced. To understand how we
applied this, it is useful to step back a bit.

One way the complexity of the rotation group of three
dimensions is exhibited is in fundamental aspects of vol-
ume. In two dimensions, a pair of polygons have equal
area if and only if each can be decomposed into a common
set of polygons, i.e., if they are rearrangements of a com-
mon set of simple components. This is the Wallace–Bolyai–
Gerwien theorem. But this criterion fails badly in three
dimensions (Hilbert’s third problem); two polyhedra are
equidecomposable into polyhedra if and only if they have
the same volume and have the same Dehn invariant, a
result known as Sydler’s theorem. Because of our choice of
the class of angles between rotation axes, we were able to
apply our results on tiling groups to compute Dehn
invariants for Archimedean polyhedra.

But one can go further into the fundamentals of volume.
The Banach–Tarski paradox shows that two balls of dif-
ferent volumes can be equidecomposed into a finite
number of more complicated (nonmeasurable) compo-
nents! The intrusion of measurability is significant for our
story, as we will see from another interesting aperiodic
tiling.

The Binary Tiling of the Hyperbolic Plane
In the same paper in which Penrose wrote up the kite and
dart tiling in 1978 [9], he also introduced a tiling of the
hyperbolic plane, using congruent copies of a tile with two

sides that are geodesics and two sides that are horocycles.
Using the upper-half-plane model of the hyperbolic plane,
Figure 10 shows the tiling, and Figure 11 shows the binary
tile, which has bumps and dents added.

In any tiling of the plane made from congruent images
of a binary tile, its rectangular bumps force tiles to uniquely
fill out the strip between two horizontal horocycles, and
then the triangular bumps force such strips to uniquely fill
out the half-plane below it. There must also be a strip
above it, but it is not unique: there are two ways to place it.
Therefore, there are uncountably many ways a given binary
tile can sit in such a tiling, of which Figure 10 is
representative.

Whether the binary tile is ‘‘aperiodic’’ requires a further
reinterpretation of the concept, in terms of symmetries of
the hyperbolic plane. It is complicated but fortunately
unnecessary here. We will just note the connection of these
tilings with a famous packing of disks by Károly Böröczky
produced a few years earlier, in 1974 [2].

Superimposing a disk in the binary tile yields disk
packings such as that depicted in Figure 12. Assume that
the ‘‘primary’’ tile has vertices with complex coordinates at
i, 2 þ i, 2i, and 2 þ 2i and that the disk is centered at
1=2 þ 7i=4. Performing the rigid motion z ! 6z=5 just on
the disks results in the primary tile now having disks at
3=5 þ 21i=10 and 3 þ 21i=10, and the full shifted disk
packing is as in Figure 13.

A useful notion of density for the disk packing would
require that the density be unchanged by the rigid motion,
but that would contradict the change from one to two disks
in each tile. It took years to come to grips with this amazing
example. Thirty years later, an analysis of the situation by
Lewis Bowen in his 2002 thesis [3] starting from aperiodicity
and using an ergodic theory perspective showed that one
can make sense of packing density and aperiodicity in
hyperbolic spaces, but one has to avoid pathological or
nonmeasurable sets of packings or tilings.

This is getting beyond the scope of this article, so I’ll just
sharpen this last point. The aspect of volume elucidated by
equidecomposability is basically discrete mathematics in
two (Euclidean) dimensions. The Banach–Tarski paradox
shows that such a fundamental study of volume becomes
much more complicated in three dimensions, involving
measurability. On considering volume at a grander scale,
namely the relative volumes of asymptotically large sets,
one arrives at one of the key goals of discrete geometry: the
study of the densest packings of simple bodies (for
instance, spheres). And in this realm, Böröczky’s jarring
example in the hyperbolic plane eventually forced a form
of measurability. In summary, analysis forces its way into
this fundamental area of discrete geometry because of the
complicated nature of the isometry group of the underlying
space.

Penrose introduced two aperiodic tilings in 1978, the
kite and dart tilings in the Euclidean plane and the binary
tilings of the hyperbolic plane. These tilings introduced
geometry into aperiodicity, vastly broadening its appeal,
and in particular, it captured John Conway’s interest. New
geometric examples then led to reformulations of aperi-
odicity, which also brought in ergodic theory, which John

Figure 9. A quaquaversal tiling.
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avoided, but nothing could replace the amazing inven-
tiveness that John brought to the parts of the story that
attracted him. This tribute to John is built around
provocative geometric examples, a playground in which he
was unequaled.
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Figure 10. A binary tiling.

Figure 11. A binary tile.

Figure 12. A Böröczky packing.

Figure 13. A shifted Böröczky packing.
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