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1 Span, linear independence, basis and dimension

This section summarizes the concepts of span, linear independence, basis and dimension as dis-
cussed in lecture (Sections 4.3-4.6 in Andrilli and Hecker). We try to keep notation similar to that
of the book but will deviate from it slightly. Also note that we will not use the simplified span
method described in the book.

In all that follows, V will denote a given vector space. In the special case when V = R
m,

we will be able to use matrix methods to answer several questions regarding span and linear
independence of a given set of vectors. If V is a general vector space, matrix methods can be used
after fixing a basis of V and writing all vectors in coordinates of this basis. This is what is known
as coordinatization, which we will cover in Section 2 (Section 4.7 in Andrilli and Hecker).

1.1 Span

To begin, we introduce the notion of a linear combination of a finite set of vectors:

Definition. A linear combination of the vectors {v1, 	 , vn} ⊆ V is any vector of the form
a1v1 +
 + anvn for scalars a1,	 , an∈R.

Definition. Let S be a subset (possibly infinite) of V. If S = {} we define span(S) = {0}. If S is
nonempty we define

span(S) = {a1v1 +
 + anvn: v1,	 , vn∈S, a1,	 , an∈R}

That is, the span of S is the set of all (finite) linear combinations of elements of S.

Definition. The span of the rows of a matrix is called its row space while the span of the columns
of a matrix is called its column space.

In lecture, we proved the following theorem and corollary (see p. 231-232 in Andrilli & Heckler):
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Theorem 1. Let S be a nonempty subset of V. Then

1. S ⊆ span(S)

2. span(S) is a subspace of V

3. If W is a subspace of V with S ⊆W then span(S)⊆W

4. span(S) is the smallest subset of V containing S.

Corollary. Let S1 and S2 be subsets of V with S1⊆S2. Then span(S1)⊆ span(S2).

1.1.1 Computing span in R
m

Given a finite set of vectors S ={v1,	 ,vn}⊆R
m, how can we determine which vectors b∈R

m lie
in the span of S? To do this we reduce this to an equivalent problem of determining existence of
solutions to a system of equations.

Theorem 2. Let A be the matrix which has S ={v1,	 ,vn}⊆Rm as its columns. Then b∈ span(S)
if and only if the system Ax = b is consistent (i.e., there exists at least one solution x).

Proof. We know that b ∈ span(S) if there exist scalars a1,	 , an such that a1v1 +
 + anvn = b.
Letting x=[a1,	 , an]T , this is equivalent to showing existence of solutions to Ax=b. That is, we
can find at least one solution x if and only if rref[A|b] has no rows of the form

[

0 
 0
∣

∣ r
]

with
r � 0.

�

Corollary. span(S)=Rm if and only if rref(A) has a pivot in every row. Furthermore, if n <m

(i.e., the number of vectors n in S is strictly less than the dimension m of Rm) then S cannot
span Rm.

Proof. Ax=b is consistent for every b∈R
m if and only if there are no zero rows in rref(A)—that

is, if there is a pivot in every row of rref(A). In the case when n < m, we must have zero rows in
rref(A) since A has more rows than columns. Using the previous theorem completes the proof.

�

1.1.2 Minimal spanning subset

Often we are given a set of vectors that are redundant, in that there is a smaller set B ⊆ S such
that span(B)= span(S) (i.e., we can discard some of the vectors in S without changing the span).
This leads us to the following definition.

Definition. Let S ⊆V. We say that B is a minimal spanning subset of S if these two properties
hold:

i. span(B)= span(S)

ii. If C ⊂B with C � B, then span(C)� span(S).

Given S = {v1, 	 , vn} ⊆ R
m, how we compute a minimal spanning subset B? We can use a

system of equations to find an answer as before. Consider the equation Ax = b, where A is the
matrix with elements of S as its columns as before and b is an arbitrary vector in span(S). Since b

is in the span of S, we know that Ax= b has at least one solution x, and certainly more than one
solution if rref(A) has columns with no pivot (since this yields free variables and non-uniqueness of
solutions to Ax=0). Note now that we only needed one solution to Ax=b in order for b∈ span(S),
so we can pick the one in which all the free variables are set equal to 0. However, this is equivalent

to writing Ãx̃ = b, where Ã is the smaller matrix consisting of only the pivot columns of A and x̃

is the smaller vector consisting of only nonzero entries of the solution x (i.e., those that did not
correspond to free variables). To summarize, we have proven:
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Theorem 3. Let A be the matrix which has S ={v1,	 ,vn}⊆R
m as its columns. Then a minimal

spanning subset of S is given by the pivot columns of A.

Example. Suppose S =
{

[1,1]T , [−2,−1]T , [1,0]T , [0,1]T
}

. To compute a minimal spanning subset

of these vectors, we let A =

[

1 −2 1 0
1 −1 0 1

]

and find that rref(A) =

[

1 0 1 0
0 1 −1 1

]

. Since rref(A)

has pivots in its first and second columns, the pivot columns B =
{

[1,1]T , [−2,−1]T
}

of A comprise
a minimal spanning subset of S.

Note that minimal spanning subsets are not unique—for example, in the previous example the

set B̃ =
{

[1, 0]T , [0, 1]T
}

also constitutes such a set.

1.2 Linear independence

We begin by defining the notion of linear independence for finite sets of vectors.

Definition. Let S = {v1,	 , vn} be a finite subset of V. Then S is linearly independent if and
only if the equation a1v1 + 
 + anvn = 0 implies that a1 = a2 = 
 = an = 0. If S is not linearly
independent, we say S is linearly dependent. We will define the empty set {} to be linearly
independent.

We will extend this definition to infinite sets as follows:

Definition. An infinite subset S ⊆V is linearly independent if and only if every finite subset T of
S is linearly independent.

It should be fairly obvious that any set that contains the zero vector must be linearly dependent.
We will now state some alternate characterizations of linear independence (see p. 243-246 in
Andrilli & Heckler for further discussion and proofs). The first equivalence simply expresses the
fact that linearly independent vectors cannot “overlap,” in the sense that any one vector cannot
be written as a linear combination of the others. The second equivalence expresses the same fact
in an iterative manner, while the last equivalence demonstrates that linear independence yields a
unique way of writing any vector in the span:

Theorem 4. Let S ={v1,	 ,vn} be a finite subset of V. Then linear independence of S is equivalent
to each of the following statements:

1. There is no vector v ∈S such that v ∈ span(S −{v}).

2. v1� 0 and for each k = 2,	 , n, vk � span({v1,	 , vk−1}).

3. Every vector w∈span(S) can be expressed uniquely as a linear combination of elements of S.

Proof. We only prove the third equivalence. Suppose S is linearly independent and w∈ span(S).
If we can write w =a1v1+
 +anvn and w= c1v1+
 + cnvn, then subtracting the second equality
from the first implies (a1 − c1)v1 + 
 + (an − cn)vn = 0. Therefore, by linear independence of S

we have a1− c1 =
 = an − cn = 0, which shows that w is given by a unique linear combination of
S. For the converse, suppose that every vector w ∈ span(S) can be expressed uniquely as a linear
combination of S. Since 0 ∈ span(S), there is only one linear combination a1v1 + 
 + anvn of S

that equals 0. Since 0v1 + 
 + 0vn = 0 this means that a1 = a2 = 
 = an = 0 and we have linear
independence of S.

�

1.2.1 Determining linear independence in R
m

Given a finite set of vectors S = {v1, 	 , vn} ⊆ R
m, how can we determine if S is linearly

independent? We do this by reducing to an equivalent problem of proving uniqueness of solutions
to a system of equations.
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Theorem 5. Let A be the matrix which has S ={v1,	 ,vn}⊆R
m as its columns. Then S is linearly

independent if and only if the system Ax =0 has no nontrivial solutions (i.e., x=0 is the unique
solution).

Proof. S is linearly independent if a1v1 + 
 + anvn = 0 implies a1 = a2 = 
 = an = 0. Letting

x = [a1,	 , an]T , this is equivalent to showing that the only solution to Ax = 0 is x = 0.
�

Corollary. S is linearly independent if and only if rref(A) has a pivot in every column. Further-
more, if n>m (i.e., the number of vectors n in S is strictly greater than the dimension m of R

m)
then S cannot be linearly independent.

Proof. Ax=0 has a unique solution if and only if rref(A) does not yield free variables—that is, if
there is a pivot in every column of rref(A). In the case when n>m, we must have some non-pivot
columns in rref(A) since A has more columns than rows. Using the previous theorem completes
the proof.

�

1.2.2 Maximal linearly independent subset

Now suppose we have a set of vectors which are not linearly independent. Can we discard some
of these vectors in order to end up with a linearly independent set? This leads to the notion of a
maximal linearly independent subset.

Definition. Let S ⊆V. We say that B is a maximal linearly independent subset of S if these
two properties hold:

i. B is a linearly independent subset of S

ii. If B ⊂C with C � B, then C is linearly dependent.

Given S = {v1,	 , vn} ⊆Rm, how we compute a maximal linearly independent subset B? We
use a system of equations to find an answer. Suppose Ax=0, where A is the matrix with elements
of S as its columns as before. We know that this equation has nontrivial solutions x if rref(A) has
columns with no pivot (since this yields free variables). Since we want the zero vector to be the
only solution, we must exclude all the non-pivot columns of A in order for this to hold true. This
is equivalent to writing Ãx̃ =0, where Ã is the smaller matrix consisting of only the pivot columns
of A. To summarize, we have proved:

Theorem 6. Let A be the matrix which has S ={v1,	 ,vn}⊆R
m as its columns. Then a maximal

linearly independent subset of S is given by the pivot columns of A.

Corollary. B is a maximal linearly independent subset of S if and only if it is a minimal spanning
subset of S.

Example. Suppose S =
{

[1, 1]T , [−2, −1]T , [1, 0]T , [0, 1]T
}

as before. The pivot columns

B =
{

[1,1]T , [−2,−1]T
}

of A comprise a maximal linearly independent subset of S. Again, maximal

linearly independent subsets are not unique—in this example, the set B̃ =
{

[1, 0]T , [0, 1]T
}

is also
such a set.

1.3 Basis and dimension

In this section, we study subsets B ⊆V which span all of V and are also linearly independent. By
the previous results this implies that every vector in V has a unique representation as a linear
combination of B. This is important since having such a B allows us to specify any element of the
vector space simply in terms of a set of scalars.
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1.3.1 Definitions and basic results

Definition. B ⊆V is a basis for V if and only if the following are true:

i. B spans V

ii. B is linearly independent.

The prototypical example of a basis is the set of standard basis vectors B = {e1, 	 , en} in R
n,

where ek is the vector which has kth component equal to 1 and all other components equal to 0.
It is easy to check that this set of vectors is linearly independent and that any vector in R

n can
be written as a linear combination of them.

We begin with a technical lemma that is proven in the book (see p. 257-259 of Andrilli and
Hecker):

Lemma 7. Suppose S is a finite set that spans V. If T ⊆ V is linearly independent, then T must
be finite and |T | ≤ |S |.

As we now show, this implies that if a vector space has a finite basis, then all other bases of
this space are also finite and have the same number of elements.

Theorem 8. Let B1 and B2 be bases of V such that B1 is finite. Then B2 is finite and |B1|= |B2|.

Proof. Since B1 is a basis, it spans V . In addition, B2 is linearly independent since it is a basis.
By the previous lemma, finiteness of B1 implies finiteness of B2 and that |B2| ≤ |B1|. Since we
have shown B2 is finite, we can reverse the roles of B1 and B2 and apply the lemma again to find
|B1| ≤ |B2|. Therefore, |B1|= |B2| and the proof is complete.

�

This theorem gives us an unambiguous notion of dimension of a vector space. Roughly, the
dimension of a vector space corresponds to the number of “independent directions” in which we
can move. A precise characterization of this notion as follows:

Definition. If V has a finite basis B we say that V is finite-dimensional and define the dimen-

sion of V to be dim (V)= |B |. If V has no finite basis that we say that V is infinite-dimensional.

The next result shows that for a finite-dimensional space V with dim (V) = n, any set that
spans V must have at least n elements, and any set that is linearly independent must have at most
n elements. The boundary case for each exactly corresponds to the set being a basis, which must
both span V and be linearly independent.

Theorem 9. Suppose V is finite-dimensional.

1. If S is a finite subset that spans V then |S | ≥dim (V). Moreover, |S |= dim (V) if and only
if S is a basis for V.

2. If T is a linearly independent subset of V then |T |≤dim (V). Moreover, |T |=dim (V) if and
only if T is a basis for V.

Proof. Suppose B is a basis for V with |B |=dim (V)=n. Applying the technical lemma with T =B

for statement (1) and S =B for statement (2) proves the the inequalities given above. Now we must
confirm that equality holds in each statement if and only if the set in question is actually a basis.

For (1), assume |S |= dim (V)= n. We prove that S is a basis by contradiction. Since S spans
V , if it is not a basis then it must be linearly independent. Therefore, there is some v ∈ S such
that v ∈ span(S − {v}). So, v is redundant and we have that S − {v} spans V . But this is a
contradiction since |S − {v}| = n − 1 < dim (V), which we just proved cannot be true since every
spanning set must have size greater than or equal to dim (V)! For the converse, if S is a basis for
V then we know that S is finite and |S |= dim (V) by the previous theorem.
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For (2), assume |T |=dim (V)=n. We prove that T is a basis by contradiction. Since T is linearly
independent, if it is not a basis then it must not span V . Therefore, there is some vector v∈V such
that T ∪{v} is linearly independent. But this is a contradiction since |T ∪{v}|= n+1>dim (V),
which cannot be true as we have proven that every linearly independent set has size smaller than
or equal to dim (V). Finally, for the converse we know that if T is a basis for V then |T |=dim (V)
by the previous theorem.

�

1.3.2 Constructing bases from spanning sets and linearly independent sets

The next result is essentially a restatement of the previous theorem, except that it does not
explicitly use the dimension of V (and it also holds for infinite-dimensional spaces). Since it is
similar in spirit to the previous theorem we do not provide a proof.

Theorem 10. Suppose S spans V. Then a minimal spanning set (equivalently, a maximal linearly
independent set) B ⊆S is a basis for V.

This implies that if we have a set that spans V then we can always find a basis for V contained
within it by throwing away redundant vectors. In addition, we can show that given a linearly
independent set, we can always find a basis for V that contains it by adding additional vectors. To
summarize:

Theorem 11. Suppose V is finite-dimensional.

1. If S spans V, there is some basis B for V such that B ⊆S.

2. If T is linearly independent, there is some basis B for V such that T ⊆B.

Proof. For statement (1), simply take B to be a minimal spanning set of S. Then B ⊆S trivially
and B is a basis. For statement (2), let C be any set that spans V and consider the finite set T ∪C.
Order the elements of T ∪C so that the elements of T appear first. Then, we can iteratively check
for linear independence of larger and larger subsets to find a maximal linearly independent subset
B that contains T (since T is itself linearly independent). Then B is a basis and we are done.

�

The theorem above gives a computational method for find a basis in R
m that contains a given

spanning set, or is contained in a given linearly independent set:

• Case 1 (shrinkage): Given S that spans Rm but is not necessarily linearly independent, find
a minimal spanning subset B. Then B is a basis that is contained in S.

• Case 2 (enlargement): Given a linearly independent set T that does not necessarily span
R

m, add on a spanning set C for V and then find a maximal linearly independent subset B

that contains T (to do this, first put the vectors in T as the columns of a matrix A before
adding vectors in C to the right of it). Then B is a basis.

Example. Suppose V =R
2 and S =

{

[1, 1]T , [−2,−1]T , [1, 0]T , [0, 1]T
}

. Then S spans R2 and by

the computation done earlier, the minimal spanning subset B =
{

[1, 1]T , [−2,−1]T
}

is a basis for
R2 which is contained in S.

Example. Suppose T =
{

[4, 4]T
}

, which is obviously linearly independent. To find a basis that

contains T , we add to it any spanning set C of R2—for example, C =
{

[1, 1]T , [−2, −1]T , [1, 0]T ,

[0, 1]T
}

. Putting the vectors in T ∪ C as the columns of a matrix A =

[

4 1 −2 1 0
4 1 −1 0 1

]

(where

the vectors in T have been added first), we have rref(A) =

[

1
1

4
0 −

1

4

1

2

0 0 1 −1 1

]

. Since the first and

third columns of A are the pivot columns, we find that a maximal linearly independent subset of
T ∪C that contains T is B =

{

[4, 4]T , [−2,−1]T
}

.

6 Section 1



1.3.3 Dimension of a subspace

We conclude our discussion with a theorem concerning subspaces:

Theorem 12. Suppose V is finite-dimensional and W is a subspace of V. Then W is finite-
dimensional with dim (W)≤ dim (V). Moreover, dim (W) =dim (V) if and only if W =V.

Intuitively, this should make sense. Since a subspace is no larger than the vector space in which
it resides, we should expect that its dimension cannot be larger either. The only subtlety in the
proof of this theorem is to demonstrate that W actually has a basis, which we will not show here.

2 Coordinatization

We can study general finite-dimensional vector spaces V using the same tools we used for Rn, so
long as we can find a way to relate V to R

n. This process is known as coordinatization.

2.1 Representation of vectors in a basis

Suppose B ={b1,	 ,bn} is a basis of an n-dimensional vector space V. We claim that for any v∈V ,
there is a unique way of writing v as a linear combination of B. To justify this, if v =

∑

i=1

n
aibi

for some set of scalars a1,	 , an and we can also write v =
∑

i=1

n
cibi for some set of scalars c1,	 ,

cn, then
∑

i=1

n
(ai − ci)bi = 0 and linear independence of B implies ai = ci for every i. Knowing

this, we have the following:

Definition. Given a basis B = {b1, 	 , bn}, suppose v =
∑

i=1

n
aibi. Then the coordinates

[v]
B
∈R

n of v in B is the real-valued vector

[v]
B

= [a1,	 , an]T .

Note that the coordinatization of the ith basis vector bi is [bi]B = ei = [0,	 , 0, 1, 0,	 , 0]T , the ith

standard basis vector in R
n. Furthermore, coordinatization preserves the operations of vector

addition and scalar multiplication, and is therefore an isomorphism from V to R
n:

Theorem 13.

i. Let x, y ∈V and a∈R. Then [x + y]
B

= [x]
B

+ [y]
B
and [ax]

B
= a[x]

B
.

ii. If v1,	 ,vm∈V and w=
∑

i=1

m
aivi, then [w]

B
=

∑

i=1

m
ai[vi]B. Therefore, {v1,	 ,vm} spans

V if and only if
{

[v1]B,	 , [vm]
B

}

spans R
n.

iii. {v1,	 , vm} are linearly independent if and only if
{

[v1]B,	 , [vm]
B

}

are linearly indepen-
dent.

Since the proof of these statements is straightforward, we do not provide them here. The main
utility of this result is that it allows us to compute the span and check for linear independence of
vectors in an abstract space V using the methods we discussed earlier for Rn.

2.2 Change of basis

Suppose B = {b1,	 , bn} and C = {c1,	 , cn} are two bases of V . If we know the coordinates [v]
B

of a vector v ∈V in basis B, can we use this to find the coordinates [v]
C
in basis C?

Theorem 14. There is a unique n × n matrix PCB such that [v]
C

= PCB[v]
B

for all v ∈ V.
Furthermore, the ith column of PCB equals [bi]C, so that

PCB =
[

[b1]C 
 [bn]
C

]

.
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Proof. Suppose v =
∑

i=1

n
aibi, so that [v]

B
= [a1,	 , an]T . Then by direct calculation,

[v]
C

=

[

∑

i=1

n

aibi

]

C

=
∑

i=1

n

ai[bi]C =
[

[b1]C 
 [bn]
C

]





a1�
an



=PCB[v]
B
.

To check that PCB is the unique matrix which satisfies this relation, suppose that there is an n×n

matrix A such that [v]
C

= A[v]
B
for all v ∈V . Then [bi]C =A[bi]B =Aei = ith column of A, so we

must have A= PCB.

�

We call PCB the change of basis matrix (or transition matrix) from B to C. Note that to
keep track of which basis we are starting from and moving to, the subscripts should be read from
right to left.

Corollary. If B and C are bases of V, then PCB is invertible and the change of basis matrix PBC

from C to B satisfies PBC =PCB
−1.

Proof. We only need to show that PBCPCB = In. Let y∈R
n. Since [ · ]

B
is an isomorphism, there

is some x∈V such that [x]
B

= y. Therefore,

PBCPCBy = PBCPCB[x]
B

= PBC[x]
C

= [x]
B

= y

for every y ∈R
n and PBCPCB is the identity matrix.

�

In practice, given a standard basis B and another basis C it is often difficult to compute PCB

but trivial to find PBC. Using the corollary above gives us a straightforward way of generating
PCB by finding the inverse of PBC. To summarize, the procedure to compute [v]

C
is:

1. Find [v]
B
(this step is usually trivial).

2. Find PBC by computing [ci]B for each i.

3. Invert PBC to generate PCB = PBC
−1 .

4. Evaluate [v]
C

= PCB[v]
B
.

Remark. This procedure is essentially what is described in Andrilli & Hecker, p. 284-288, except
that we are assuming from the outset that v ∈V = span(B)= span(C). In the book, the procedure
is described using augmented matrices, which in our discussion is used to find PCB by inverting
PBC. Finally, note that the textbook uses P to denote the change of basis matrix PCB, and P−1

to denote PBC.

Example. Let B =

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

be the standard basis in M22. It can be

checked that C =

{[

1 0
0 1

]

,

[

1 0
0 −1

]

,

[

0 1
1 0

]

,

[

0 1
−1 0

]}

is also a basis forM22 (how?). Defining

v =

[

1 2
4 3

]

∈M22, we easily find that [v]
B

= [1, 2, 4, 3]T . What is [v]
C
?

Unlike when we were working with basis B, finding the coordinates in C is nontrivial since it is
not clear how to write v as a linear combination of vectors in C. To do this we will use the change

of basis matrix PCB = PBC
−1 . Since [c1]B = [1, 0, 0, 1]T , [c2]B = [1, 0, 0, 1]T , [c3]B = [0, 1, 1, 0]T , and

[c4]B = [0, 1,−1, 0]T , we find

PBC =
[

[c1]B 
 [c4]B

]

=









1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0









.
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Inverting this matrix implies that

PCB = PBC
−1 =

1

2









1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0









so

[v]
C

= PCB[v]
B

= [2,−1, 3,−1]T .

That is, v =2c1− c2 + 3c3− c4, which can be verified directly.

We conclude this section with a general result that encompasses the ones discussed earlier. It
provides us a criterion for checking, given a basis B of a subspace W = span(B), whether a set C

of the same size is also a basis of W (note that if |C |� |B | then C cannot possibly be a basis):

Theorem 15. Suppose E is a basis for V, and let B be a basis for a nontrivial k-dimensional
subspace W of V. Let C be a set such that |C |= |B |, and define the n× k matrices

PEB =
[

[b1]E 
 [bk]E

]

, PEC =
[

[c1]E 
 [ck]E

]

.

Then C is a basis for W if and only if

rref([PEC |PEB]) =

[

Ik R

On−k,k On−k,k

]

where Ik is the k × k identity matrix, On−k,k is the (n− k)× k zero matrix, and R is some k × k

matrix. Furthermore, if C is indeed a basis then R is the change of basis matrix from B to C—i.e.,
PCB = R.

The usefulness of the theorem is that it allows us to find the change of basis matrix PCB when
neither B nor C are simple or standard, and even in the case when we do not explicitly know the
span of B or C. No proof is given since this result is similar in spirit to those discussed earlier,
but more general and stated in a slightly different manner. To see this, consider the case when
W = V , E = B, and if C is assumed to be a basis of W . Then, PEB = PBB = In and PEC = PBC,
so the conclusion of the theorem is that

rref([PBC |In])= [In|PCB],

i.e., that PCB = PBC
−1 .

Example. Let V =P4 and consider the basis B = {b1, b2, b3} of W = span(B), where

b1 = 6x4 + 20x3 + 7x2 + 19x− 4

b2 = x4 +5x3 + 7x2− x+ 6

b3 = 5x3 + 17x2− 10x + 19.

Define C = {c1, c2, c3}, where

c1 = x4 +3x3 +4x− 2

c2 = 2x4 + 7x3 + 4x2 + 3x+ 1

c3 = 2x4 + 5x3− 3x2 + 8x− 7.

Is C also a basis of W , and if so, what is the change of basis matrix from B to C?
To begin, let us start by writing B and C in coordinates of the standard basis E =

{

1, x, x2,

x3, x4
}

of P4. That is,

PEB =
[

[b1]E 
 [b3]E

]

=













−4 6 19
19 −1 −10
7 7 17
20 5 5
6 1 0
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and

PEC =
[

[c1]E 
 [c3]E

]

=













−2 1 −7
4 3 8
0 4 −3
3 7 5
1 2 2













.

We find that

rref([PEC |PEB])=













1 0 0 6 1 2
0 1 0 1 1 2
0 0 1 −1 −1 −3

0 0 0 0 0 0
0 0 0 0 0 0













=

[

I3 PCB

O2,3 O2,3

]

so C is a basis for W and PCB =





6 1 2
1 1 2
−1 −1 −3



.

Example. Suppose V =S2,2, the vector space of 2×2 symmetric matrices. Let B =

{[

2 −3
−3 1

]

,
[

1 5
5 0

]}

. It is easy to check that B is linearly independent, so it is a basis for W = span(B). Now

consider the set C =

{[

0 2
2 −4

]

,

[

−1 6
6 3

]}

. Is C a basis of W?

To begin, it can be checked directly that E =

{[

1 0
0 0

]

,

[

0 1
1 0

]

,

[

0 0
0 1

]}

is a basis of S22

(how?). Then

PEB =
[

[b1]E [b2]E

]

=





2 1
−3 5
1 0



, PEC =
[

[c1]E [c2]E

]

=





0 −1
2 6
−4 3



.

Since

rref([PEC |PEB]) =





1 0 0 1
0 1 0 1

0 0 1 1



�[

I2 R

O1,2 O1,2

]

,

C is not a basis of W .
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