M341 (56140), Homework \#8
Due: 11:00am, Thursday, Oct. 25
Instructions: Questions are from the book "Elementary Linear Algebra, 4 th ed." by Andrilli \& Hecker. Please show all your work, not only your final answer, to receive credit. Keep answers organized in the same order the problems have been assigned.

Vector spaces (4.1)

p. 213-215, \#3, 5, 7, 12, 13, 18

Subspaces (4.2)

p. 223-227, \#1(a,c,d), 2(f,g,h), 6, 7, 11, 15, 18

In addition:
A) Let $\mathcal{A}=\mathbb{R}$, with the operations \oplus and \odot given by $\boldsymbol{x} \oplus \boldsymbol{y}=\left(x^{5}+y^{5}\right)^{1 / 5}$ and $a \odot \boldsymbol{x}=a \boldsymbol{x}$. Is \mathcal{A} a vector space? If it is, prove it. If not, how would you modify the definition of scalar multiplication so that \mathcal{A} becomes a vector space?

