M341 (56140), Sample Midterm \#2 Solutions

1. Let $A=\left[\begin{array}{cccc}4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1\end{array}\right]$.
a) Calculate the determinant of A using a cofactor expansion.

Solution: We expand $\operatorname{det}(A)$ about the third column:

$$
\begin{aligned}
\operatorname{det}(A) & =1 \cdot\left|\begin{array}{ccc}
1 & 9 & 2 \\
8 & 3 & -2 \\
4 & 3 & 1
\end{array}\right|+2 \cdot\left|\begin{array}{ccc}
4 & 3 & 2 \\
1 & 9 & 2 \\
4 & 3 & 1
\end{array}\right|-1 \cdot\left|\begin{array}{ccc}
4 & 3 & 2 \\
1 & 9 & 2 \\
8 & 3 & -2
\end{array}\right| \\
& =-111-66+180 \\
& =3
\end{aligned}
$$

b) Recalculate the determinant using row reduction to verify your answer to (a).

Solution: To calculate the determinant, we can put A into upper triangular form using row operations as follows:

$$
\begin{aligned}
& \underset{\substack{3\rangle \leftarrow \leftarrow\rangle-2\langle 2\rangle \\
\langle \rangle\rangle \leftarrow\rangle\rangle-\langle 2\rangle}}{\longrightarrow}\left[\begin{array}{cccc}
1 & 9 & 0 & 2 \\
0 & -33 & 1 & -6 \\
0 & -3 & 0 & -6 \\
0 & 0 & 0 & -1
\end{array}\right] \underset{\langle 2\rangle \leftrightarrow\langle 3\rangle}{\longrightarrow}\left[\begin{array}{cccc}
1 & 9 & 0 & 2 \\
0 & -3 & 0 & -6 \\
0 & -33 & 1 & -6 \\
0 & 0 & 0 & -1
\end{array}\right] \underset{\langle 3\rangle \leftarrow\langle 3\rangle-11\langle 2\rangle}{\longrightarrow}\left[\begin{array}{cccc}
1 & 9 & 0 & 2 \\
0 & -3 & 0 & -6 \\
0 & 0 & 1 & 60 \\
0 & 0 & 0 & -1
\end{array}\right]=U .
\end{aligned}
$$

Therefore, $3=\operatorname{det}(U)=(-1) \times(-1) \times \operatorname{det}(A)$ so $\operatorname{det}(A)=3$ as expected.
c) What is the determinant of $-2 A$? Why?

Solution: $\operatorname{det}(-2 A)=(-2)^{4} \operatorname{det}(A)=16 \cdot 3=48$ since A has 4 rows.
2. Prove that if A is an orthogonal matrix (i.e., $A^{T}=A^{-1}$) then the determinant of A is either 1 or -1 .
Solution: Since

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

we have that $(\operatorname{det}(A))^{2}=1$, so $\operatorname{det}(A)= \pm 1$.
3. Let $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right]$.
a) Determine the eigenvalues of A.

Solution: The characteristic polynomial is

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda^{3}+\lambda=-\lambda(\lambda+1)(\lambda-1)
$$

so the eigenvalues are $\lambda=1,-1,0$.
b) Find a nonsingular matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution: Computing the eigenspaces for each eigenvalue and putting the corresponding fundamental eigenvectors as the columns of a matrix P, we find that $A=P D P^{-1}$ with

$$
P=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right], \quad D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

c) Compute the determinant of A only using your answer to part (a) (i.e., do not compute the determinant directly.
[Hint: Recall the definition of the characteristic polynomial $p_{A}(\lambda)$.]
Solution: $\operatorname{det}(A)=p_{A}(0)=0$.
4. The parts of the following question are unrelated.
a) Is $\mathcal{V}=\mathbb{R}$ with the usual scalar multiplication, but with addition defined as $\boldsymbol{x} \oplus \boldsymbol{y}=3(x+$ $y)$ a vector space? Justify your answer.

Solution: No. The operation \oplus is not associative since
$(\boldsymbol{x} \oplus \boldsymbol{y}) \oplus \boldsymbol{z}=3(3(x+y)+z)=9 x+9 y+3 z \neq 3 x+9 y+9 z=3(x+3(y+z))=\boldsymbol{x} \oplus(\boldsymbol{y} \oplus \boldsymbol{z})$.
b) Find the zero vector and the additive inverse of the vector space \mathbb{R}^{2} with operations $[x$, $y] \oplus[w, z]=[x+w+3, y+z-4]$ and $a \odot[x, y]=[a x+3 a-3, a y-4 a+4]$.
Solution: $\mathbf{0}=0 \odot[x, y]=[0 x+3(0)-3,0 y-4(0)+4]=[-3,4]$ while $-([x, y])=[-x-6$, $-y+8]$.
c) If \mathcal{V} is a vector space with subspace \mathcal{W}_{1} and \mathcal{W}_{2}, prove that $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is also a subspace.
[Hint: Do not forget to show that $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is nonempty!]
Solution: Since the subspaces \mathcal{W}_{1} and \mathcal{W}_{2} both contain the zero vector, $\mathbf{0} \in \mathcal{W}_{1} \cap \mathcal{W}_{2}$ and $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is nonempty. Now suppose $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{W}_{1} \cap \mathcal{W}_{2}$ and c is a scalar. Then $\boldsymbol{x}, \boldsymbol{y} \in$ \mathcal{W}_{1} and $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{W}_{2}$ so $\boldsymbol{x}+\boldsymbol{y} \in \mathcal{W}_{1}$ and $\boldsymbol{x}+\boldsymbol{y} \in \mathcal{W}_{2}$ since \mathcal{W}_{1} and \mathcal{W}_{2} are closed under vector addition. Therefore, $\boldsymbol{x}+\boldsymbol{y} \in \mathcal{W}_{1} \cap \mathcal{W}_{2}$ and $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is closed under vector addition as well. Similarly we find $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is closed under scalar multiplication, so $\mathcal{W}_{1} \cap \mathcal{W}_{2}$ is a subspace.
5. Consider $S=\left\{[2,-3,4,-1]^{T},[-6,9,-12,3]^{T},[3,1,-2,2]^{T},[2,8,-12,3]^{T},[7,6,-10,4]^{T}\right\}$.
a) Is S linearly independent? If not, find a maximal linearly independent subset.

Solution: Let $A=\left[\begin{array}{ccccc}2 & -6 & 3 & 2 & 7 \\ -3 & 9 & 1 & 8 & 6 \\ 4 & -12 & -2 & -12 & -10 \\ -1 & 3 & 2 & 3 & 4\end{array}\right]$ be the matrix whose columns are vectors in S. Then $\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & -3 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, which does not have a pivot in each column so S is not linearly independent. One maximal linearly independent subset consists of the pivot columns of A-i.e., $B=\left\{[2,-3,4,-1]^{T},[3,1,-2,2]^{T},[2,8,-12,3]^{T}\right\}$.
b) Does S span \mathbb{R}^{4} ? If not, express $\operatorname{span}(S)$ in terms of a minimal spanning set.

Solution: No, S does not span \mathbb{R}^{4} since $\operatorname{rref}(A)$ does not have a pivot in every row. A minimal spanning subset of S is the set B found in part (a), and $\operatorname{span}(S)=\operatorname{span}(B)$.
c) Construct a basis for $\operatorname{span}(S)$. What is dim $(\operatorname{span}(S))$?

Solution: B forms a basis for $\operatorname{span}(S)$, and dim $(\operatorname{span}(S))=|B|=3$.
d) Construct a basis for \mathbb{R}^{4} that contains the maximal linearly independent subset found in part (a).

Solution: We must extend the linearly independent set B by adding to it another vector that is linearly independent to B. For example, let $\boldsymbol{v}=[1,0,0,0]^{T}$ and define $\tilde{B}=B \cup$ $\{\boldsymbol{v}\}$. Putting the vectors in \tilde{B} as columns of a matrix \tilde{A} we find that $\operatorname{rref}(\tilde{A})=I_{4}$ so \tilde{B} is a basis of \mathbb{R}^{4}.
6. Prove that all vectors orthogonal to $[2,-3,1]^{T}$ forms a subspace \mathcal{W} of \mathbb{R}^{3}. What is $\operatorname{dim}(\mathcal{W})$ and why?
Solution: Let $\boldsymbol{v}=[2,-3,1]^{T}$. Note that $\mathbf{0} \in \mathcal{W}$ since $\mathbf{0} \cdot \boldsymbol{v}=0$ so \mathcal{W} is nonempty. Now suppose $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{W}$ and c is a scalar. Then $(\boldsymbol{x}+\boldsymbol{y}) \cdot \boldsymbol{v}=(\boldsymbol{x} \cdot \boldsymbol{v})+(\boldsymbol{y} \cdot \boldsymbol{v})=0+0=0$ and $(c \boldsymbol{x}) \cdot \boldsymbol{v}=c(\boldsymbol{x} \cdot \boldsymbol{v})=$ $c 0=0$.

We will compute \mathcal{W} explicitly in order to find its dimension. Since $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T} \in \mathcal{W}$ if and only if $[2,-3,1]^{T} \cdot \boldsymbol{x}=2 x_{1}-3 x_{2}+x_{3}=0$, we have that $x_{3}=-2 x_{1}+3 x_{2}$ so $\boldsymbol{x}=x_{1}[1,0,-2]^{T}+$ $x_{2}[0,1,3]^{T}$. Therefore, $B=\left\{[1,0,-2]^{T},[0,1,3]^{T}\right\}$ is a basis for \mathcal{W} and $\operatorname{dim}(\mathcal{W})=2$.

