
M341 (56140), Sample Midterm #2 Solutions

1. Let A =









4 3 1 2
1 9 0 2
8 3 2 −2
4 3 1 1









.

a) Calculate the determinant of A using a cofactor expansion.

Solution: We expand det (A) about the third column:

det (A) = 1 ·

∣

∣

∣

∣

∣

∣

1 9 2
8 3 −2
4 3 1

∣

∣

∣

∣

∣

∣

+2 ·

∣

∣

∣

∣

∣

∣

4 3 2
1 9 2
4 3 1

∣

∣

∣

∣

∣

∣

− 1 ·

∣

∣

∣

∣

∣

∣

4 3 2
1 9 2
8 3 −2

∣

∣

∣

∣

∣

∣

= −111− 66+ 180

= 3.

b) Recalculate the determinant using row reduction to verify your answer to (a).

Solution: To calculate the determinant, we can put A into upper triangular form using
row operations as follows:

A =









4 3 1 2
1 9 0 2
8 3 2 −2
4 3 1 1









�
〈1〉↔〈2〉









1 9 0 2
4 3 1 2
8 3 2 −2
4 3 1 1









�
〈2〉←〈2〉−4〈1〉
〈3〉←〈3〉−8〈1〉
〈4〉←〈4〉−4〈1〉









1 9 0 2
0 −33 1 −6
0 −69 2 −18
0 −33 1 −7







�
〈3〉←〈3〉−2〈2〉

〈4〉←〈4〉−〈2〉









1 9 0 2
0 −33 1 −6
0 −3 0 −6
0 0 0 −1









�
〈2〉↔〈3〉









1 9 0 2
0 −3 0 −6
0 −33 1 −6
0 0 0 −1









�
〈3〉←〈3〉−11〈2〉









1 9 0 2
0 −3 0 −6
0 0 1 60
0 0 0 −1









= U.

Therefore, 3 =det (U)= (−1)× (−1)× det (A) so det (A) =3 as expected.

c) What is the determinant of −2A? Why?

Solution: det (−2A) = (−2)4det (A) = 16 · 3= 48 since A has 4 rows.

2. Prove that if A is an orthogonal matrix (i.e., AT = A−1) then the determinant of A is either 1
or −1.

Solution: Since

det (A)= det
(

AT
)

=det
(

A−1
)

=
1

det (A)

we have that (det (A))2 = 1, so det (A) =± 1.

3. Let A =





0 1 −1
1 0 1
−1 −1 0



.

a) Determine the eigenvalues of A.

Solution: The characteristic polynomial is

pA(λ)= det (A−λI)=−λ3 +λ =−λ(λ + 1)(λ− 1)
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so the eigenvalues are λ= 1,−1, 0.

b) Find a nonsingular matrix P and a diagonal matrix D such that A= PDP−1.

Solution: Computing the eigenspaces for each eigenvalue and putting the corresponding
fundamental eigenvectors as the columns of a matrix P , we find that A= PDP−1 with

P =





−1 −1 −1
0 1 1
1 0 1



, D =





1 0 0
0 −1 0
0 0 0



.

c) Compute the determinant of A only using your answer to part (a) (i.e., do not compute
the determinant directly.

[Hint: Recall the definition of the characteristic polynomial pA(λ).]

Solution: det (A)= pA(0)= 0.

4. The parts of the following question are unrelated.

a) Is V = R with the usual scalar multiplication, but with addition defined as x ⊕ y = 3(x +
y) a vector space? Justify your answer.

Solution: No. The operation ⊕ is not associative since

(x⊕ y)⊕ z =3(3(x+ y)+ z)= 9x+ 9y + 3z � 3x + 9y + 9z =3(x + 3(y + z))= x⊕ (y ⊕z).

b) Find the zero vector and the additive inverse of the vector space R
2 with operations [x,

y]⊕ [w, z] = [x +w + 3, y + z − 4] and a⊙[x, y] = [ax + 3a− 3, ay − 4a + 4].

Solution: 0 = 0⊙[x, y] = [0x + 3(0) − 3, 0y − 4(0) + 4] = [−3, 4] while −([x, y]) = [−x − 6,
−y +8].

c) If V is a vector space with subspace W1 and W2, prove that W1∩W2 is also a subspace.

[Hint: Do not forget to show that W1∩W2 is nonempty!]

Solution: Since the subspaces W1 and W2 both contain the zero vector, 0 ∈ W1 ∩ W2

and W1 ∩W2 is nonempty. Now suppose x, y ∈W1 ∩W2 and c is a scalar. Then x, y ∈
W1 and x, y ∈ W2 so x + y ∈ W1 and x + y ∈ W2 since W1 and W2 are closed under
vector addition. Therefore, x + y ∈W1∩W2 and W1∩W2 is closed under vector addition
as well. Similarly we find W1 ∩W2 is closed under scalar multiplication, so W1 ∩W2 is a
subspace.

5. Consider S =
{

[2,−3, 4,−1]T , [−6, 9,−12, 3]T , [3, 1,−2, 2]T , [2, 8,−12, 3]T , [7, 6,−10, 4]T
}

.

a) Is S linearly independent? If not, find a maximal linearly independent subset.

Solution: Let A =









2 −6 3 2 7
−3 9 1 8 6
4 −12 −2 −12 −10
−1 3 2 3 4









be the matrix whose columns are vectors

in S. Then rref(A) =









1 −3 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0









, which does not have a pivot in each column so S

is not linearly independent. One maximal linearly independent subset consists of the

pivot columns of A—i.e., B =
{

[2,−3, 4,−1]T , [3, 1,−2, 2]T , [2, 8,−12, 3]T
}

.
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b) Does S span R
4? If not, express span(S) in terms of a minimal spanning set.

Solution: No, S does not span R
4 since rref(A) does not have a pivot in every row. A

minimal spanning subset of S is the set B found in part (a), and span(S)= span(B).

c) Construct a basis for span(S). What is dim (span(S))?

Solution: B forms a basis for span(S), and dim (span(S))= |B |= 3.

d) Construct a basis for R
4 that contains the maximal linearly independent subset found in

part (a).

Solution: We must extend the linearly independent set B by adding to it another vector

that is linearly independent to B. For example, let v = [1, 0, 0, 0]T and define B̃ = B ∪

{v}. Putting the vectors in B̃ as columns of a matrix Ã we find that rref
(

Ã
)

= I4 so B̃

is a basis of R4.

6. Prove that all vectors orthogonal to [2, −3, 1]T forms a subspace W of R3. What is dim (W)
and why?

Solution: Let v = [2, −3, 1]T . Note that 0 ∈W since 0 · v = 0 so W is nonempty. Now suppose
x, y ∈W and c is a scalar. Then (x + y) · v = (x · v) + (y · v) = 0 + 0 = 0 and (cx) · v = c(x · v) =
c0 =0.

We will compute W explicitly in order to find its dimension. Since x = [x1, x2, x3]
T ∈ W if and

only if [2, −3, 1]T · x = 2x1 − 3x2 + x3 = 0, we have that x3 = −2x1 + 3x2 so x = x1[1, 0, −2]T +

x2[0, 1, 3]T . Therefore, B =
{

[1, 0,−2]T , [0, 1, 3]T
}

is a basis for W and dim (W) =2.
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