M346 (55820), Homework \#12

Due: 12:00pm, Monday, Apr. 23

Isometries

A) Recall the Frobenius inner product $\langle A \mid B\rangle=\operatorname{Tr}\left(A^{*} B\right)$ for $A, B \in M_{m, n}(\mathbb{C})$. This defines the Frobenius norm $\|A\|=\sqrt{\langle A \mid A\rangle}$. Note that $\|A\|^{2}=\operatorname{Tr}\left(A^{*} A\right)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}$.
i. Show that the Frobenius norm is unitarily invariant. That is, show that if W is unitary then $\|W A\|=\|A\|$ and $\|A W\|=\|A\|$ for any A. [Hint: Use the cyclical properties of the trace: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for any A, B.]
ii. We say that A and B are unitarily equivalent if $A=U B U^{*}$ for some unitary U. In this case, the previous part implies that $\|A\|=\|B\|$. Use this to prove that the matrices $\left(\begin{array}{cc}1 & 2 \\ 2 & i\end{array}\right)$ and $\left(\begin{array}{cc}i & 4 \\ 1 & 1\end{array}\right)$ cannot be unitarily equivalent.
B) Is $A=\frac{1}{2}\left(\begin{array}{cc}1+i & 1+i \\ -1+i & 1-i\end{array}\right)$ unitary? Diagonalize A. [Hint: Remember that a matrix is unitary if and only if its columns are orthonormal!]
C) Let $\boldsymbol{v} \in \mathbb{C}^{n}$ with $\|\boldsymbol{v}\|=1$, and define $H_{\boldsymbol{v}}=I-2 \boldsymbol{v} \boldsymbol{v}^{*}$ (this is known as a Householder transformation and reflects one vector to its negative while leaving its orthogonal complement invariant). Show that $H_{\boldsymbol{v}}$ is unitary.

Positive operators

A) Consider the symmetric matrix $A=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. Find \sqrt{A} and verify directly that $(\sqrt{A})^{2}=A$.

Singular value decomposition (SVD)

A) Show that if A is positive, its spectral decomposition $A=U D U^{*}$ agrees exactly with its singular value decomposition $A=U \Sigma V^{*}$ (i.e., show that $\Sigma=D$ and $V=U$).
B) Let $A=\left(\begin{array}{ccc}3 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & -2 & 0 \\ 0 & 0 & 1\end{array}\right)$
i. Compute the SVD of A. Express your answer (i) as the sum of rank-1 terms and (ii) as $A=U \Sigma V^{*}$ for an appropriate U, V, and Σ.
ii. Find the best rank-2 approximation A_{2} of A (where "best" implies closest to in squared Frobenius norm). Express your answer (i) as a sum of two rank-1 terms and (ii) as $A_{2}=U \Sigma_{2} V^{*}$ for an appropriate U, V, and Σ_{2}.
iii. Compute the approximation error $\left\|A-A_{2}\right\|$ in terms of the singular values of A.
C) Let $A=\left(\begin{array}{cc}2 & -3 \\ 0 & 2\end{array}\right)$.
i. Find the SVD of A.
ii. In \mathbb{R}^{2}, describe the image of the unit disc under the transformation A using SVD. That is, draw a picture of the region $\{A \boldsymbol{x}:\|\boldsymbol{x}\| \leq 1\}$.
iii. Similarly, describe the inverse image of the unit disc by drawing a picture of the region $\{\boldsymbol{x}:\|A \boldsymbol{x}\| \leq 1\}$.

