M346 (55820), Homework #12 Due: 12:00pm, Monday, Apr. 23

Isometries

- A) Recall the Frobenius inner product $\langle A|B \rangle = \operatorname{Tr}(A^*B)$ for $A, B \in M_{m,n}(\mathbb{C})$. This defines the Frobenius norm $||A|| = \sqrt{\langle A|A \rangle}$. Note that $||A||^2 = \operatorname{Tr}(A^*A) = \sum_{i=1}^n \sum_{j=1}^n |A_{ij}|^2$.
 - i. Show that the Frobenius norm is unitarily invariant. That is, show that if W is unitary then ||WA|| = ||A|| and ||AW|| = ||A|| for any A. [Hint: Use the cyclical properties of the trace: Tr(AB) = Tr(BA) for any A, B.]
 - ii. We say that A and B are unitarily equivalent if $A = UBU^*$ for some unitary U. In this case, the previous part implies that ||A|| = ||B||. Use this to prove that the matrices $\begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix}$ and $\begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$ cannot be unitarily equivalent.
- B) Is $A = \frac{1}{2} \begin{pmatrix} 1+i & 1+i \\ -1+i & 1-i \end{pmatrix}$ unitary? Diagonalize A. [Hint: Remember that a matrix is unitary if and only if its columns are orthonormal!]
- C) Let $v \in \mathbb{C}^n$ with ||v|| = 1, and define $H_v = I 2vv^*$ (this is known as a Householder transformation and reflects one vector to its negative while leaving its orthogonal complement invariant). Show that H_v is unitary.

Positive operators

A) Consider the symmetric matrix $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$. Find \sqrt{A} and verify directly that $(\sqrt{A})^2 = A$.

Singular value decomposition (SVD)

A) Show that if A is positive, its spectral decomposition $A = UDU^*$ agrees exactly with its singular value decomposition $A = U\Sigma V^*$ (i.e., show that $\Sigma = D$ and V = U).

B) Let
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- i. Compute the SVD of A. Express your answer (i) as the sum of rank-1 terms and (ii) as A = UΣV* for an appropriate U, V, and Σ.
- ii. Find the best rank-2 approximation A_2 of A (where "best" implies closest to in squared Frobenius norm). Express your answer (i) as a sum of two rank-1 terms and (ii) as $A_2 = U\Sigma_2 V^*$ for an appropriate U, V, and Σ_2 .
- iii. Compute the approximation error $||A A_2||$ in terms of the singular values of A.

C) Let
$$A = \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix}$$
.

- i. Find the SVD of A.
- ii. In \mathbb{R}^2 , describe the image of the unit disc under the transformation A using SVD. That is, draw a picture of the region $\{Ax: ||x|| \le 1\}$.
- iii. Similarly, describe the inverse image of the unit disc by drawing a picture of the region $\{x: ||Ax|| \le 1\}$.