M346 (56615), Homework #11

Due: 03:30pm, Tuesday, Apr. 23

Self-adjoint and normal operators

- A) Find an orthonormal basis consisting of eigenvectors of $A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 4 \\ 0 & 4 & 0 \end{pmatrix}$.
- B) Find an orthonormal basis consisting of eigenvectors of $A = \begin{pmatrix} 2 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 2 \end{pmatrix}$.
- C) True or false? Justify your answers.
 - i. If L is self-adjoint, then L^k is self-adjoint.
 - ii. A normal operator with all eigenvalues real must be self-adjoint.
 - iii. The sum of two normal operators is normal.
 - iv. If $N \in M_{2,2}(\mathbb{R})$ is a real normal matrix then it must either be symmetric (and therefore self-adjoint) or take the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ for some $a, b \in \mathbb{R}$.

Isometries

- A) Recall the Frobenius inner product $\langle A|B\rangle = \operatorname{Tr}(A^*B)$ for $A, B \in M_{m,n}(\mathbb{C})$. This defines the Frobenius norm $||A|| = \sqrt{\langle A|A\rangle}$. Note that $||A||^2 = \operatorname{Tr}(A^*A) = \sum_{i=1}^n \sum_{j=1}^n |A_{ij}|^2$.
 - i. Show that the Frobenius norm is unitarily invariant. That is, show that if W is unitary then ||WA|| = ||A|| and ||AW|| = ||A|| for any A. [Hint: Use the cyclical properties of the trace: Tr(AB) = Tr(BA) for any A, B.]
 - ii. We say that A and B are unitarily equivalent if $A = UBU^*$ for some unitary U. In this case, the previous part implies that ||A|| = ||B||. Use this to prove that the matrices $\begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix}$ and $\begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$ cannot be unitarily equivalent.
- B) Is $A = \frac{1}{2} \begin{pmatrix} 1+i & 1+i \\ -1+i & 1-i \end{pmatrix}$ unitary? If so, check that its eigenvalues all have magnitude 1. [Hint: Remember that a matrix is unitary if and only if its columns are orthonormal!]
- C) Let $v \in \mathbb{C}^n$ with ||v|| = 1, and define $H_v = I 2vv^*$ (this is known as a Householder transformation and reflects the vector v to its negative while leaving its orthogonal complement invariant). Show that H_v is unitary.

Positive operators

A) Consider the symmetric matrix $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$. Find \sqrt{A} and verify directly that $(\sqrt{A})^2 = A$.