M346 (56615), Homework \#12
Due: 03:30pm, Tuesday, Apr. 30

Singular value decomposition (SVD)

A) Show that if A is positive, its spectral decomposition $A=U D U^{*}$ agrees exactly with its singular value decomposition $A=U \Sigma V^{*}$ (i.e., show that $\Sigma=D$ and $V=U$).
B) Let $A=\left(\begin{array}{ccc}0 & 0 & -5 \\ -9 & 12 & 0 \\ 0 & 0 & 0 \\ 8 & 6 & 0\end{array}\right)$
i. Compute the SVD of A. Express your answer (i) as the sum of rank-1 terms and (ii) as $A=U \Sigma V^{*}$ for an appropriate U, V, and Σ.
ii. Find the best rank-2 approximation A_{2} of A (where "best" implies closest to in squared Frobenius norm). Express your answer (i) as a sum of two rank-1 terms and (ii) as $A_{2}=U \Sigma_{2} V^{*}$ for an appropriate U, V, and Σ_{2}.
iii. Compute the approximation error $\left\|A-A_{2}\right\|$ in terms of the singular values of A.
C) Let $A=\left(\begin{array}{cc}2 & -3 \\ 0 & 2\end{array}\right)$.
i. Find the SVD of A.
ii. In \mathbb{R}^{2}, describe the image of the unit disc under the transformation A using SVD. That is, draw a picture of the region $\{A \boldsymbol{x}:\|\boldsymbol{x}\| \leq 1\}$.
iii. Similarly, describe the inverse image of the unit disc by drawing a picture of the region $\{\boldsymbol{x}:\|A \boldsymbol{x}\| \leq 1\}$.

