
M346 (56615), Homework #13

Due: 03:30pm, Tuesday, May 07

Infinite-dimensional inner product spaces (6.8)

A)

i. Let v =(a1, a2, a3,	 ) with an =(−1)n/ n
√

. Is v in l2(R)?

ii. Consider the function f(x) = 1/xp. For what p ≥ 0 is f in L2([1, ∞))? For what
p≥ 0 is f in L2((0, 1])?

Fourier series (6.9, 8.5, 8.7)

A) Use integration by parts to evaluate the following integrals with constant k � 0:

i.
∫

0

1
x sin (kx)dx

ii.
∫

0

1
x cos (kx)dx

iii.
∫

0

1
x exp (ikx)dx

[Hint: Use Euler’s formula and your answers to (i) and (ii).]

B) Let f(x) =x for x∈ [0, 1]. Use your solutions from problem (A) for the following parts:

i. Write the Fourier sine series for f—that is, write

f(x)=
∑

n=1

∞

cn sin (nπx)

by finding the coefficients

cn = 2

∫

0

1

f(x) sin (nπx)dx, n∈ {1, 2, 3,	 }.

How fast do the coefficients cn decay?

ii. Plot f(x) and the approximations fN(x)=
∑

n=1

N
cn sin (nπx) for N = 1, 2, 3, 4.

C)

i. Derive a solution u(x, t) to the partial differential equation (PDE)

∂tu=−∂xxu

u(0, t) =0, u(a, t)= 0 x∈ [0, a], t≥ 0

u(x, 0)=

{

x if x < a/2
a− x if x≥ a/2

using Fourier sine series. How does the nth Fourier coefficient evolve, and what
does this imply about the solution u(x, t) for arbitrarily small times t > 0? Con-
trast this behavior to that of the solution to the ordinary heat equation ∂tu = ∂xxu

discussed in class.
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[Note: The equation above is called the backward heat equation because it arises
from the ordinary heat equation under the time change t → −t. It is ill-posed in
that it behaves extremely badly for almost all initial conditions u(x, 0).]

ii. Instead, solve the PDE

∂tu=−∂xxu− ∂xxxxu

u(0, t) =0, u(a, t)= 0 x∈ [0, a], t≥ 0

u(x, 0)=

{

x if x < a/2
a− x if x≥ a/2

using Fourier sine series. Now how does the nth Fourier coefficient evolve and what
does this imply about the solution u(x, t) for small times t > 0? What happens as
t→∞? Again, compare this to the ordinary heat equation.

[Note: By adding the term −∂xxxxu to the equation, we have dramatically
changed its behavior. This term, called a fourth-order regularization, overcomes
the ill-posed nature of the term −∂xxu.]
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