
M346 (56615), Sample Final Exam Solutions

1.

a) Consider R3 with the standard inner product. Convert the basis B =
{

(1, 2, 0)T , (3, 1, 1)T ,

(4, 3,−5)T
}

into an orthonormal basis.

Solution: Using Gram-Schmidt, an orthonormal basis is E =
{

1

5
√ (1, 2, 0)T ,

1

6
√ (2,−1, 1)T ,

1

30
√ (2, −1, −5)T

}

. Your answer may be different if the order of vectors in your orthogo-

nalization procedure is different from the obvious one.

b) Find the matrix of the projection PW onto the subspace W = span
{

(1, 2, 0)T , (3, 1, 1)T
}

.

Use this to compute PW⊥v, where v = (1, 2, 3)T , where W⊥ is the orthogonal complement
of W (the subspace of all vectors orthogonal to W ).

Solution: PW =Pe1
+ Pe2

= |e1〉〈e1|+ |e2〉〈e2|= 1

5





1 2 0
2 4 0
0 0 0



+
1

6





4 −2 2
−2 1 −1
2 −1 1



.

c) On R2[t] with inner product 〈p|q〉 =
∫

0

2
p(t)q(t)dt, transform

{

1, t, t2
}

into an orthog-

onal basis (does not need to be orthonormal).

Solution: D=
{

1, t− 1, t2− 2t +2/3
}

.

2.

a) Find the equation of the best line through the points (1,−4), (2, 1), and (3, 2). Is this line
unique?

Solution: Fitting the model y = c + dx we have that A =





1 1
1 2
1 3



 and b = (−4, 1, 2)T , so

A∗A =

(

3 6
6 14

)

and A∗
b =

(

−1
4

)

. Solving the normal equation A∗AxLS = A∗
b gives

the unique least-squares solution xLS= (−19/3, 3)T so the best line is y =−19/3+ 3x.

b) Let W be the subspace of R3 spanned by (1, 2, 3)T and (1, 1, 1)T . Find the point in W

which lies closest to (−4, 1, 2)T . Justify your answer.

Solution: The closest point to b which lies in Ran(A) is AxLS = (−10/3,−1/3, 8/3)T .

3. Let A =

(

4 2 −2 2
3 −1 2 −3

)

.

a) What is the rank r of A?

Solution: r = 2.

b) Write the singular value decomposition (SVD) of A as a sum of r terms (you do not need
to expand your answers as a matrix). [Hint: Remember that the eigenvalues and eigen-
vectors of A∗A and AA∗ are intimately related! Choose the easiest matrix to work with.]
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Solution: We work with AA∗ since this is a smaller matrix than A∗A. The eigenvalues of
AA∗ are σ1 = 2 7

√
and σ2 = 23

√
, with corresponding orthonormal eigenvectors u1 = (1,

0)T and u2 = (0, 1)T . Then A∗A has the same eigenvalues with corresponding eigenvectors

v1 =
1

σ1

A∗
u1 =

1

7
√ (2, 1, −1, 1)T and v2 =

1

σ2

A∗
u2 =

1

23
√ (3, −1, 2, 3)T . So the SVD of A is

A =
∑

i=1
2

σiuivi
∗.

c) Compute the error between A and its best rank-one approximation.

Solution: Since the best rank-one approximation is A1 = σ1u1v1
∗, the approximation

error is ‖A−A1‖= σ2
2

√

= 23
√

in the Frobenius norm.

4. Consider the symmetric matrix A=

(

24 7
7 −24

)

.

a) Write A= UDU∗ for an appropriate diagonal matrix D and unitary matrix U .

Solution: D =

(

25 0
0 −25

)

, U =
1

5 2
√

(

7 1
1 −7

)

.

b) Express x = (13, 9)T as a linear combination of the eigenvectors found in part (a).

Solution: x= 5 2
√

(2u1−u2) where u1, u2 are the columns of U .

c) Let |A| = U |D |U∗, where |D | is the diagonal matrix of magnitudes of the eigenvalues of

A. Show that |A| is positive and compute |A|
√

.

Solution: |A| = U |D |U∗ with |D | =

(

25 0
0 25

)

. It is easy to see that |A| is self adjoint

and has nonnegative eigenvalues, and is therefore positive. Then we have that |A|
√

=

U |D |1/2U∗=
1

50

(

7 1
1 −7

)(

5 0
0 5

)(

7 1
1 −7

)

=

(

5 0
0 5

)

.

5. True or false? Justify your answers.

a) The matrix





1 1 0
0 1 1
1 0 1



has orthogonal eigenvectors.

Solution: True. This holds by the spectral theorem since the matrix is normal.

b)
1

7
√

(

2− i −1 + i

1 + i 2 + i

)

is unitary.

Solution: True. The columns of the matrix are orthonormal.

c) If a matrix A∈Mn,n(C) satisfies A =AT then the eigenvalues of A are necessarily real.

Solution: False. If the entries are complex then this does not necessarily hold.

d) If 〈f |g〉 =
∫

0

∞
f(x)g(x)e−xdx for functions f , g ∈ L2([0, ∞)) and L = x +

d

dx
(assume

that all elements of L2([0,∞)) are differentiable), its adjoint is L∗=x− d

dx
.

Solution: False. Integration by parts shows that the adjoint is actually L∗= (x+ 1)− d

dx
.
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6.

i. For which z ∈R is the sequence v = (a1, a2, a3,	 ), an = zn, in l2(R)? Why?

Solution: Since ‖v‖
l2(R)
2 =

∑

n=1
∞ |an|2 =

∑

n=1
∞ |z |2, the series converges if and only if

|z |< 1 (geometric series).

ii. For which p≥ 0 is the sequence v =(a1, a2, a3,	 ), an = (2 +np)−1, in l2(R)? Why?

Solution: Since ‖v‖
l2(R)
2 =

∑

n=1
∞ |an|2 =

∑

n=1
∞

∣

∣

∣

1

2 + np

∣

∣

∣

2
, the series converges if and only

if p > 1/2 by the limit comparison test for infinite series.

7. Compute the Fourier sine series of the function f(x) = cos (πx) on the interval [0, 1]. [Hint:
Use the trigonometric identity 2 sin (u)cos (v)= sin (u + v)+ sin (u− v), if needed.]

Solution: cos (πx) =
∑

n=1
∞

cn sin (nπx), where cn =
2n

π

[

1 + (−1)n

n2− 1

]

.

8. Using Fourier sine series, find the solution u(x, t) to the time-dependent Schrodinger equation
for a free particle in a 1-dimensional box:







∂tu = i∂xxu

u(0, t)= 0, u(a, t)= 0
u(x, 0) given

, x∈ [0, a], t≥ 0.

(Here, i = −1
√

is the imaginary constant.) That is, find the Fourier coefficients of the solution
in terms of the Fourier coefficients of the initial data u(x, 0). Are the modes of the system
stable, neutrally stable, or unstable? How does the solution behave and how does this differ
from the heat equation studied earlier?

Solution: The solution is u(x, t) =
∑

n=1
∞

cn(t) sin
( nπx

a

)

with cn(t) = eiλntcn(0), where λn =

−n2π2

a2
and {cn(0)}

n=1
∞ are the Fourier coefficients of the initial data u(x, 0). We therefore see

that the modes
{

sin
( nπx

a

)}

n=1

∞
of the system are all neutrally stable since Re(iλn) = 0 for all n.

Using Euler’s formula, we see that the solution takes the form

u(x, t) =
∑

n=1

∞ {

an sin

(

n2π2t

a2

)

sin
(

nπx

a

)

+ bn cos

(

n2π2t

a2

)

sin
(

nπx

a

)

}

for some set of complex-valued constants {an, bn}n=1
∞ which describes a wave in space and time

(called a plane wave). This is significantly different from the behavior of the heat equation,
where all modes of the system decayed and the solution converges to 0 everywhere as t→∞.
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