M346 (92153), Homework \#11

Due: 10:00am, Monday, Jul. 02

Self-adjoint and normal operators

A) Find an orthonormal basis consisting of eigenvectors of $A=\left(\begin{array}{lll}0 & 3 & 0 \\ 3 & 0 & 4 \\ 0 & 4 & 0\end{array}\right)$.
B) Find an orthonormal basis consisting of eigenvectors of $A=\left(\begin{array}{ccc}2 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & 2\end{array}\right)$.
C) True or false? Justify your answers.
i. If L is self-adjoint, then L^{k} is self-adjoint.
ii. A normal operator with all eigenvalues real must be self-adjoint.
iii. The sum of two normal operators is normal.
iv. If $N \in M_{2,2}(\mathbb{R})$ is a real normal matrix then it must either be symmetric (and therefore self-adjoint) or take the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ for some $a, b \in \mathbb{R}$.

Isometries

A) Recall the Frobenius inner product $\langle A \mid B\rangle=\operatorname{Tr}\left(A^{*} B\right)$ for $A, B \in M_{m, n}(\mathbb{C})$. This defines the Frobenius norm $\|A\|=\sqrt{\langle A \mid A\rangle}$. Note that $\|A\|^{2}=\operatorname{Tr}\left(A^{*} A\right)=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}$.
i. Show that the Frobenius norm is unitarily invariant. That is, show that if W is unitary then $\|W A\|=\|A\|$ and $\|A W\|=\|A\|$ for any A. [Hint: Use the cyclical properties of the trace: $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ for any A, B.]
ii. We say that A and B are unitarily equivalent if $A=U B U^{*}$ for some unitary U. In this case, the previous part implies that $\|A\|=\|B\|$. Use this to prove that the matrices $\left(\begin{array}{cc}1 & 2 \\ 2 & i\end{array}\right)$ and $\left(\begin{array}{ll}i & 4 \\ 1 & 1\end{array}\right)$ cannot be unitarily equivalent.
B) Is $A=\frac{1}{2}\left(\begin{array}{cc}1+i & 1+i \\ -1+i & 1-i\end{array}\right)$ unitary? If so, check that its eigenvalues all have magnitude 1 . [Hint: Remember that a matrix is unitary if and only if its columns are orthonormal!]
C) Let $\boldsymbol{v} \in \mathbb{C}^{n}$ with $\|\boldsymbol{v}\|=1$, and define $H_{\boldsymbol{v}}=I-2 \boldsymbol{v} \boldsymbol{v}^{*}$ (this is known as a Householder transformation and reflects the vector \boldsymbol{v} to its negative while leaving its orthogonal complement invariant). Show that H_{v} is unitary.

Positive operators

A) Consider the symmetric matrix $A=\left(\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right)$. Find \sqrt{A} and verify directly that $(\sqrt{A})^{2}=A$.

