M346 (92153), Homework #12

Due: 10:00am, Tuesday, Jul. 03

Singular value decomposition (SVD)

A) Show that if A is positive, its spectral decomposition $A = UDU^*$ agrees exactly with its singular value decomposition $A = U\Sigma V^*$ (i.e., show that $\Sigma = D$ and V = U).

B) Let
$$A = \begin{pmatrix} 0 & 0 & -5 \\ -9 & 12 & 0 \\ 0 & 0 & 0 \\ 8 & 6 & 0 \end{pmatrix}$$

- i. Compute the SVD of A. Express your answer (i) as the sum of rank-1 terms and (ii) as $A = U \Sigma V^*$ for an appropriate U, V, and Σ .
- ii. Find the best rank-2 approximation A_2 of A (where "best" implies closest to in squared Frobenius norm). Express your answer (i) as a sum of two rank-1 terms and (ii) as $A_2 = U \Sigma_2 V^*$ for an appropriate U, V, and Σ_2 .
- iii. Compute the approximation error $||A A_2||$ in terms of the singular values of A.

C) Let
$$A = \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix}$$
.

- i. Find the SVD of A.
- ii. In \mathbb{R}^2 , describe the image of the unit disc under the transformation A using SVD. That is, draw a picture of the region $\{Ax: ||x|| \leq 1\}$.
- iii. Similarly, describe the inverse image of the unit disc by drawing a picture of the region $\{x: ||Ax|| \le 1\}$.